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Resonant trapping in the transport of a matter-wave soliton through a quantum well
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We theoretically investigate the scattering of bright solitons in a Bose-Einstein condensate on narrow attractive
potential wells. Reflection, transmission, and trapping of an incident soliton are predicted to occur with remarkably
abrupt transitions upon varying the potential depth. Numerical simulations of the nonlinear Schrödinger equation
are complemented by a variational collective coordinate approach. The mechanism for nonlinear trapping is
found to rely both on resonant interaction between the soliton and bound states in the potential well and on the
radiation of small-amplitude waves. These results suggest that solitons can be used to probe bound states that are
not accessible through scattering with single atoms.
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I. INTRODUCTION

A classical particle incident on a potential barrier can either
reflect or pass over it, depending on its kinetic energy in
relation to the height of the barrier. Therefore, it always passes
a negative barrier (e.g., a hole). This is no longer the case for
quantum-mechanical particles or matter waves [1]. Solving the
linear Schrödinger equation shows that partial reflection can
be expected from attractive potentials such as quantum wells.
In recent experiments by Pasquini et al. [2,3], Bose-Einstein
condensates (BECs) have been found to reflect from a surface
in spite of mostly attractive atom-surface interactions. In
addition to the wave nature of ultracold atoms, BECs also
experience nonlinear mean-field interactions, which present a
complication in the experiments [4,5]. On the other hand, the
nonlinear interactions are potentially useful when they result
in effects that are not obtainable with linear matter waves.

Here we focus on BECs with attractive interactions confined
to a quasi-one-dimensional waveguide that can form self-
localized wave packets known as bright solitons. In the limit of
tight transverse confinement, the mean-field theory of BECs
reduces to the nonlinear Schrödinger equation, an integrable
soliton equation [6]. A well-known property of solitons is
that they behave in many respects as classical particles (e.g.,
with respect to their collisional properties or their motion in a
slowly varying external potential [7]). As solitons have both
particle and wave properties, they may experience “quantum”
reflection from an attractive potential well and yet maintain
their particle-like integrity to a large degree [8]. In addition to
such nonlinear wave effects, macroscopic quantum tunneling
and fragmentation have recently been discussed [9,10].

On the other hand, there is a possibility that a scattering
soliton, or part of it, may become trapped in a potential well.
Such an effect would not be possible for either a classical or
a quantum-mechanical particle in the absence of dissipation.
In this article we study the effect of trapping of solitons in
attractive potential wells. We argue that a resonant population
transfer between the soliton and nonlinear bound states of
the potential well, first suggested by Goodman, Holmes, and
Weinstein [11], is vital for this effect. Here we explore the
details and the consequences of this mechanism. It is possible
to deduce the energy of the most weakly bound state of an
unknown defect by scattering solitons with known parameters

and by recording the trapped particle number. This could
potentially lead to real-world applications of nonlinear wave
scattering. Although the current work addresses matter-wave
solitons in particular, our findings are equally applicable to
nonlinear optics or other nonlinear wave problems governed
by the nonlinear Schrödinger equation.

Recent progress in experiments has made it possible to
create matter-wave solitons and to explore their properties
[12–14]. This possibility, besides the importance of soliton
physics in other areas of physics [15–18], has motivated a vari-
ety of authors to investigate the scattering of solitons on differ-
ent kinds of potentials, like barriers or impurities [9,10,19–23],
wells [8,11,24–26], steps [27–29], and a potential ramp [30].
Here we focus on the quantum well, which we understand as an
attractive potential well with well-distinguished single-particle
energy levels representing linear bound states. One of us
has previously investigated the enhancement of quantum
reflection by nonlinear interactions in solitons and the abrupt
transition to transmission in the scattering on an attractive
defect potential [8]. The aim of the current work is to extend
the previous work to include trapping phenomena. By varying
the strength of the attractive defect and scattering a slow
soliton, we identify regimes dominated by transmission,
reflection, trapping, and a combination of trapping and
reflection. We discuss a trapping mechanism by a resonant
transfer to (quasi)bound states within a quantum well. Similar
resonant effects have been investigated in the transport of
repulsive condensates through a double barrier potential [31].

In Sec. II we introduce the theoretical approach employed
for scattering matter-wave bright solitons in a tight waveg-
uide trap. Numerical simulations of trapping phenomena are
presented in Sec. III before a discussion of resonant mecha-
nisms for trapping and transmission. A collective coordinate
approach based on a variational model is discussed in Sec. IV
and compared with the simulation results. Section V then
discusses the trapping mechanism in more detail. The final
section, Sec. VI, discusses how energy levels of defects can be
probed via the scattering of solitons.

II. THEORETICAL MODEL

We consider an attractively interacting BEC in a waveguide-
like trap with tight harmonic confinement in two dimensions
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but weak or no confinement in the remaining (z) dimension. In
such a situation, bright solitons constituting localized (bound)
BEC wave packets are metastable and collapse ensues beyond
a critical particle number [32]. We assume that the soliton size
remains subcritical and that the linear density n(z, τ ) at any
time remains well below the threshold for transverse collapse:
−nas � 11.7/(8π ) [33,34], where as is the s-wave scattering
length. In this case, the soliton dynamics may be modeled with
the one-dimensional Gross-Pitaevskii (GP) equation

ih̄
∂

∂τ
φ =

[
− h̄2

2m

∂2

∂z2
+ g1D|φ|2 + V1D(z)

]
φ, (1)

where the GP wave function |φ(z, τ )| = √
n(z, τ ) is nor-

malized to the number of atoms
∫ |φ|2dz = N and the

one-dimensional (1D) interaction constant is g1D ≈ 2h̄ω⊥as

[35,36] under the influence of a transverse harmonic trapping
potential with frequency ω⊥. The quasi-1D approximation (1)
is expected to break down for solitons of close to critical
size, where the dynamics may become inherently three-
dimensional [37]. Small quantitative corrections to Eq. (1)
due to the finite transverse extent of the solitons [38,39] are
not expected to significantly alter the results reported in the
following and are thus neglected.

Choosing an energy scale Ẽ > 0 and a density scale ñ,
we can rewrite Eq. (1) in dimensionless form by introducing
t = τ/t̃ , x = z/x̃, ψ(x) = φ(z)/

√
ñ, where t̃ = h̄/Ẽ and Ẽ =

h̄2/(mx̃2):

i
∂

∂t
ψ(x, t) =

[
−1

2

∂2

∂x2
+g|ψ(x, t)|2+V (x)

]
ψ(x, t), (2)

where we have introduced V (x) = V1D(x)/Ẽ and the dimen-
sionless coupling constant g = g1Dñ/Ẽ. In the following we
assume g < 0 since we consider attractive BECs that support
bright solitons. At this point the energy Ẽ and density scale
ñ remain arbitrary and can be chosen to suit experimental
parameters. We discuss specific choices later in this paper.

For a vanishing potential V (x), Eq. (2) has the soliton
solution

ψ(x) = Asech[A
√−g(x − x0 − vt)] exp[iθ (x, t)], (3)

where v is the velocity of the soliton measured in units of x̃/t̃

and x0 is the dimensionless position at t = 0. The solution is
normalized according to

Ns =
∫

dx|ψ(x, t)|2 = 2A√−g
, (4)

where A is a dimensionless amplitude and Ns is related to the
particle number by N = Ns ñx̃. The phase is given by θ (x, t) =
vx − ωt , and ω = v2/2 + µ is the dimensionless frequency.
Here, µ = gA2/2 is the (negative) chemical potential of a
stationary soliton measured in units of Ẽ. The soliton width in
units of x̃ is given by ls = 1/(A

√−g) [7].
For the numerical simulations that follow, we commonly

choose g = −1, which relates the energy and density scales
by Ẽ = g1Dñ. The further choice of A = 1 fully determines
the energy scale Ẽ = mN2g2

1D/(4h̄2) = N2ω2
⊥a2

s m and the
density scale ñ = N/(2x̃), where the unit length becomes
x̃ = −h̄/(Nω⊥asm) and the dimensionless soliton length
becomes ls = 1.

-V
0

2a

velocity v

FIG. 1. A soliton being scattered on a rectangular well with width
2a and depth V0.

Typical experimental values for 7Li BEC [12,13] are
ω⊥ ≈ 2π × 710 Hz, as ≈ −0.2 nm, and N ≈ 6 × 103. This
yields a length scale of x̃ ∼= 1.7 µm, which is consistent
with experimental observations [12]. For these parameters,
the time unit is t̃ ≈ 0.3 ms. The velocity scale is consequently
x̃/t̃ ≈ 5.7 µm/ms.

For the form of the external potential, we consider a
rectangular well defined as

V (x) =
{

0 for |x| > a,

−V0 for |x| � a,
(5)

as shown in Fig. 1. We are specifically interested in the case
where the width of the well, 2a, is comparable to the soliton
width ls and therefore we choose 2a = 1 for the numerical
studies in this work unless noted otherwise.

Lee and Brand [8] have already investigated in detail the
enhanced reflection of solitons for the special case of a Rosen-
Morse potential −V0sech2(αx) at low velocities. There they
found a steplike behavior of the reflection and transmission
probabilities, which is due to the nonlinearity. Here we aim to
extend this work to include resonant trapping effects.

We solved Eq. (2) numerically via the Crank-Nicholson
method using a standard finite-difference discretization of the
spatial derivatives [40]. The algorithms were implemented
in standard C/C + + and OCTAVE [41]. We performed the
simulations in a box with hard wall boundaries. The box length
was set to lbox = 80ls unless stated otherwise. Furthermore,
we used Ng = 2001 grid points and a fixed time step of
	t = 0.01. The convergence of our calculations with respect
to these quantities was monitored carefully. Reflection from
the boundaries was avoided by appropriate timing of the
simulation. We also used complex absorbing potentials at the
boundaries for verifying that reflection effects remained below
a quantifiable threshold.

III. PHENOMENOLOGY OF SOLITON SCATTERING
ON A QUANTUM WELL

In this section we present results from numerical solutions
of Eq. (2) corresponding to a soliton approaching the well of
Eq. (5). In the initial setup, the soliton (3) is being placed
at position x0 = −12, left of the quantum well moving with
velocity v > 0 toward it (see Fig. 1).

As physical observables we introduce the reflected (R),
trapped/localized (L), and transmitted (T ) fraction of the
soliton, which are calculated at a time well after the initial
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FIG. 2. Reflection (R), transmission (T ), and trapping (L for
localized) as a function of V0 and a fixed velocity v = 0.3 by solving
Eq. (2). The lower panel zooms into one of the structures shown in
the upper panel. The well width 2a = 1 is kept constant and we use
A = 1 and g = −1. The same parameters are used throughout the
paper unless explicitly mentioned otherwise.

impact of the soliton on the well (e.g., t = 166):

R = 1

Ns

∫ −8a

−∞
dx|ψ(x, t)|2,

L = 1

Ns

∫ 8a

−8a

dx|ψ(x, t)|2, (6)

T = 1

Ns

∫ ∞

8a

dx|ψ(x, t)|2,

where R + L + T = 1. Figure 2 shows these quantities as a
function of the depth of the well for a fixed initial velocity
vinitial = 0.3. We consciously study the case of small velocity,
where v2

initial/2 � |µ| = 0.5. For the parameters of Ref. [13]
(see also Sec. II), this velocity amounts to ≈1.7 mm s−1.

The upper panel of Fig. 2 shows several structures of similar
form on a background of almost complete reflection. We thus
call these structures reflection-trapping (RL) windows. In the
following, we focus our discussion mostly on the second
structure, as shown in the lower panel. For a certain range of V0,
the soliton reflects completely on the well. But by increasing
the depth of the quantum well, R suddenly drops to zero
while the transmitted fraction jumps to an absolute maximum.
Further increase gives a sudden drop of T to almost zero and
most of the soliton is trapped inside the quantum well. Then
the trapping component L starts to decrease while the reflected
part increases. At least some of the reflected and transmitted
amplitude in this part of Fig. 2 can be attributed to radiation
(i.e., small-amplitude waves). This becomes apparent in Fig. 3,
where snapshots of the density of the time-dependent wave
function are shown. We discuss the role that radiation plays in
enabling trapping by carrying away kinetic energy in Sec. V.
At slightly larger V0 we observe the coexistence of a reflected
soliton with a trapped component together with radiation in
the transmission channel becoming very small again.

Figure 3 reveals another remarkable feature: The conden-
sate density has a single node localized close to the center
of the well. Our simulations show that the number of nodes
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FIG. 3. The upper panel shows a snapshot of the condensate
density at t = 77 for V0 = 5.2, where trapping is maximized in the
second RL window. One can see the trapped mode in the first excited
bound state (see text) and the radiation that stabilizes the trapped
soliton. The lower panel shows partial trapping with a reflected soliton
at t = 65.

located in the well is a characteristic of each RL window.
Indeed we find that RL windows appear around a critical well
depth, where a linear bound state with the appropriate number
of nodes is formed. In the first RL window, the density reveals
no node; the second one shows one node, the third one shows
two nodes, and so on. The density of the soliton while located
over the well is similar to the density functions for bound
states of the Schrödinger equation in a quantum well. A more
detailed analysis of the relation of the RL window to linear
resonances and nonlinear bound states of the well is given later
in this section.

The time dynamics of the soliton are summarized in the
density plot in Fig. 4. The figure shows the four different

FIG. 4. (Color online) Time and spatial dependence of the
condensate density |ψ(x, t)|2 in grayscale (normalized to a maximum
amplitude of 1) for four different V0 as in Fig. 2 but with lbox = 40.
(a) The case of full reflection, (b) the case of full transmission, (c) a
fully trapped soliton, and (d) the case of partial trapping and reflection
(the additional reflection toward the end comes from the hard wall
boundary conditions).
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FIG. 5. L(V0) (solid line) from the time-independent solutions
and NL,rel(V0) (dashed line) from the time-independent calculations
for a fixed chemical potential µ = − 1

2 . Both quantities show similar
behavior, even for different potential widths and different bound
states.

scenarios of full reflection, full transmission, full trapping,
and partial trapping. In the lower left panel, the density
sloshes around the center but a closer look shows that the
radiation reduces the amplitude of this oscillation and therefore
stabilizes the trapped soliton. Furthermore, the position of
the dip in density remains almost stationary, varying by not
more than 5% of the potential width. The reason for this is that,
for our choice of parameters, the energy differences between
the bound states in the well are large compared to any energy
scale of the incoming soliton. Hence, only one of these states
can be populated; in the case of Fig. 4, it is the first excited
state.

We now discuss the relation of the trapping phenomenon
to (stationary) nonlinear bound states of the well. Figure 5
compares two different observables. The first one is the
trapped component L from the time-dependent simulations.
The other one gives the relative number of particles NL,rel(V0)
in an eigenstate of the time-independent GP equation for a
fixed chemical potential µ, which is set to the same value
as the chemical potential of the free soliton (µinitial = −0.5)
in the time-dependent simulations. Specifically, NL,rel(V0) is
given by

NL,rel(V0) = NE(V0, µ)

NS(µ)
, (7)

where NE(V0, µ) is the normalization constant (4) of the
single-node stationary solution of Eq. (2) with the chemical
potential µ, while NS(µ) is the normalization of a free soliton
with the same chemical potential. In the numerical procedure,
V0 is changed iteratively to keep the chemical potential at the
desired value. The results for NL,rel(V0) can then be compared
with the relative number of trapped atoms L obtained from the
time-dependent simulations. Even for different parameters, the
agreement between both graphs is very good. These findings
indicate that trapping is a resonant phenomenon for which the
chemical potential is the parameter of primary relevance.

Another feature in Fig. 2 is the resonant transmission bands.
They are closely related to the above-barrier transmission
resonances in the linear Schrödinger equation, which is found
from Eq. (1) for g = 0. There one can find the analytical
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FIG. 6. Comparison of T for solitons (g = −1, solid line) with the
analytical solution Tlin(V0) [Eq. (8)] for linear waves (g = 0, dashed
line). From top to bottom we increased vinitial of the incoming soliton.
For increasing velocities, the kinetic term in the Gross-Pitaevskii
equation becomes dominant and therefore both curves approach each
other.

solution for the transmission [42]

Tlin(V0) =
[

1 + V 2
0

v2(v2 + 2V0)
sin2(2a

√
v2+2V0)

]−1

. (8)

In Fig. 6 we compare the transmission for g = 0 with the case
of solitons at g = −1 at different velocities v (see Fig. 6).
For very high velocities, both curves approach each other.
This is easily explained by the fact that the kinetic part
in Eq. (2) becomes much larger than the nonlinear term
and therefore dominates the transmission spectrum. Thus,
decreasing v smoothly increases the effects of the nonlinearity,
in particular the formation of resonant transmission windows
instead of transmission resonance lines. But their positions
remain the same, which means that the nonlinearity just affects
the shape of the transmission lines. We conclude that the basic
mechanism of above-well shape resonances known from the
linear Schrödinger equation remains valid for solitons.

IV. VARIATIONAL ANSATZ

Goodman et al. [11] studied soliton-defect interactions
using simple two-mode models featuring a mobile soliton and
a localized (trapped) mode. Here we extend this approach by
including breathing of the trapped mode.

We approximate the well by an attractive delta potential,
defined as

V (x) = −δ(x)V0 (9)

with V0 > 0. With this simplification there is exactly one linear
bound state for all potential depths. Therefore, we use an ansatz
that splits the total wave function,

ψ = ψs + ψt, (10)

into a free soliton

ψs = Assech(Asx − Qs)e
i�s eiVsx (11)

and a trapped part

ψt = Atsech(x/at )e
i�t eiσt log cosh(x/at ) (12)
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that models a nonlinear mode that is localized at the well.
Here we introduced a particular form of chirping term,
log cosh(x/at ), which is capable of describing breathing
modes. This can be used as a substitute for radiation effects,
which should allow the soliton to be trapped as it can transfer
kinetic energy into another form of excitation. The choice for
this particular form of the chirping term is consistent with
Ref. [24]. This leads to our system’s Lagrangian, given by

L =
∫ ∞

−∞
dx

[
i

2

(
ψ† ∂

∂t
ψ − ψ

∂

∂t
ψ†

)

− 1

2

∣∣∣∣ ∂

∂x
ψ

∣∣∣∣
2

+ 1

2
|ψ |4 − V (x)|ψ |2

]

= − 2A2
t at �̇t − 2A2

t at σ̇t [2 − log(4)] + 2A2
t ȧt σt

− 1

3

A2
t

at

(
1 + σ 2

t

) + 2

3
A4

t at − 2As�̇s − 2V̇sQs + 1

3
A3

s

−AsV
2
s + V0

[
A2

t + A2
s sech2(Qs)

+ 2AtAssech(Qs) cos(�s − �t )
]
. (13)

To obtain the equations of motion, one has to solve the Euler-
Lagrange equations

d

dt

(
∂L

∂q̇i

)
= ∂L

∂qi

(14)

for qi = As,�s,Qs, Vs, At ,�t , at , σt , which leads to

d

dt
As = V0AsAtsech(Qs) sin(�s − �t ),

d

dt
�s = 1

2

(
A2

s − V 2
s

) + V0[Assech2(Qs)

+Atsech(Qs) cos(�s − �t )],

d

dt
Qs = AsVs,

d

dt
Vs = −V0

[
A2

s sech2(Qs)tanh(Qs)

+AsAtsech(Qs)tanh(Qs) cos(�s − �t )
]
,

(15)

d

dt
at = σt

3at

+ [2 − log(4)]
V0

At

Assech(Qs) sin(�s − �t ),

d

dt
σt = 1

3a2
t

(1 + σ 2) − A2
t

3
− V0

2at

+ V0

2Atat

Assech(Qs)

× [2σt sin(�s − �t ) − cos(�s − �t )],

d

dt
�t = −σ̇t [2 − log(4)] + ȧt σt

at

− 1

6a2
t

(
1 + σ 2

t

) + 2

3
A2

t

+ V0

2Atat

[At + Assech(Qs) sin(�s − �t )].

Two of these eight dynamical variables can be eliminated
due to conservation laws. The amplitude At can be found from
the normalization of the wave function

N0 = 2As + 2A2
t at , (16)

since N0 is a constant of the motion. We obtain

At =
√
N0

2
− As

at

. (17)

Furthermore, it is not necessary to calculate �t and �s sep-
arately because the only interesting and physically important
property is the phase difference:

	� = �t − �s. (18)

We note that the total phase �t + �s has a trivial time
dependence as it is canonically conjugate to the total energy
(Hamiltonian), which is a further constant of the motion. This
way the problem left to solve consists of six coupled first-order
ordinary differential equations.

This ansatz allows us to calculate the time dynamics of
a soliton without solving the GP equation directly. But, of
course, this approximation is still very simple and thus the
results are not expected to be as accurate as the GP results.
However, they can give further insight into the mechanism
involved. As in the previous section, the initial velocity is set to
vinitial = 0.3 and the initial position of the soliton is Qs = −10.
We choose physically reasonable, small initial values for the
parameters of the trapped mode (At = 10−4 and at = 10−2

for the simulations) in order to avoid numerical divergences.
Furthermore, we use 	� = 0 at t = 0 but we find that the
results do not depend on this initial choice.

Figure 7 shows the phase difference 	� for different
V0 during the scattering process. For V0 = 0.2, the soliton
is being transmitted and we find 	� � 1. Increasing the
potential depth to V0 = 0.5 results in (partial) trapping and
	� � 1, while for an even larger value, V0 = 2, there is
full reflection (	� ≈ ±π ). From Eqs. (15) we can see that
the time dependence of the velocity Vs highly depends on
cos(	�). There we find that for a small phase difference
the velocity does not change sign for all times and therefore
the soliton transmits through the well or gets trapped. In the
other case of 	� ≈ ±π , the soliton can reflect from the well
as the sign of the velocity can change. The difference between
trapping and transmission, however, lies in the potential depth
that determines how fast the trapped mode can be populated;
that is, large values for V0 result in a faster population, as can
be seen in Eqs. (15) for Ȧs and ȧt . Therefore, we can find a

26 28 30 32 34
time t

-π

π

0∆Φ

V
0
=2.0

V
0
=0.5

V
0
=0.2

FIG. 7. The phase difference 	� for different potential depths
and for the time when the incoming soliton reaches the quantum well
at t ≈ 30 from solutions of Eqs. (15). The solid line and the dotted
line clearly show a phase difference close to 0 where transmission
or trapping, respectively, occurs. An example for reflection with a
turning point at t ≈ 29 is given by the dashed line where 	� ≈ ±π

(for initial conditions see text).
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FIG. 8. Results for soliton scattering on a quantum well from the
collective coordinate Eqs. (15). From top to bottom: reflection R and
transmission T versus V0, the total trapping Ltotal, fraction Lt in the
trapping mode, and fraction Ls in the soliton mode.

band between the reflection and the transmission regime where
trapping can occur.

It is a well-known feature in collisions between bright
solitons that a π -phase difference induces repulsion [43].
This mechanism for reflection was discussed in Ref. [8]. In
particular it avoids trapping. Conversely, a resonant process
with small phase difference is responsible for the population
of the trapped mode. This is consistent with the findings of the
previous section, where trapping was described as a resonant
process.

To complete the comparison with the previous section,
Fig. 8 shows the reflection R, trapping L, and transmission T

as a function of the potential depth V0. We see similar features
as in Fig 2. For very small V0, the soliton is being transmitted
almost completely [Fig. 9(a)], while for large V0, full reflection
[Fig. 9(e)] can be observed. Between both of these regimes,
we find a more complicated and interesting behavior. There,
(almost) all the time one observes partial trapping of the soliton
at the end of the simulation. Furthermore, we find two forms of
trapping. The first case is the normal one; in which we see that
the trapping mode is being populated by the incoming soliton.
The other fraction that remains in the soliton mode is moving
either to positive or negative infinity [see Figs. 9(b) and 9(c)].
In addition, another kind of trapping can be observed. In this
situation, the soliton mode oscillates around the delta potential
[Fig. 9(d)]. According to the numerical simulations this is the
only event when full trapping occurs.

We conclude that the basic ideas from the previous section
are still valid: for small V0 there is full transmission, then
(partial) trapping; for very large V0, the soliton reflects
completely.

V. THE TRAPPING PROCESS

In order to study the role of energy conservation and
radiation in the trapping process, we consider the energy

FIG. 9. (Color online) Condensate density as a function of time
by solving Eqs. (15), analogous to Fig. 4. For V0 = 0.2, panel (a)
shows the typical situation of a fully transmitted soliton. Partial
trapping at V0 = 0.7 is shown in panel (b). Panels (c) and (d) present
the cases for V0 = 0.38 and V0 = 0.78. The soliton is being trapped
for (c) due to the population of the trapped mode and sloshes around
the well for (d) while populating the soliton mode only. The last plot
(e) for V0 = 1.75 shows the whole soliton being completely reflected.

functional

E[ψ(x)] =
∫

dx

[
1

2

∣∣∣∣ ∂

∂x
ψ(x)

∣∣∣∣
2

+ V (x)|ψ(x)|2 + g

2
|ψ(x)|4

]
.

(19)

We split this energy into different energy terms

E[ψs] = Ed
kin + Ev

kin + Eint. (20)

These terms are defined as

Ed
kin ≡

∫
dx

[
1

2

∣∣∣∣∂|ψ(x)|
∂x

∣∣∣∣
2
]

,

Ev
kin ≡

∫
dx

{
1

2

∣∣∣∣|ψ(x)| ∂

∂x
exp[iθ (x, t)]

∣∣∣∣
2
}

, (21)

Eint ≡
∫

dx

[
−1

2
|ψ(x)|4

]
,

with ψ(x) = |ψ(x)| exp[iθ (x, t)]. The first term gives the
contribution to the kinetic energy from the density variations
while the second term represents a contribution from the phase
gradient, which is connected to the superfluid velocity [6]; Eint

is the interaction energy. Specifically for the soliton solution
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Eq. (3), we find

Ed
kin = 1

3

√−gA3, Ev
kin = A√−g

v2, Eint = −2

3

√−gA3,

(22)

and, for the total energy,

E[ψs] = −
√−g

3
A3 + A√−g

v2. (23)

In particular, we find the universal ratio

Eint

Ed
kin

= −2 (24)

for the soliton solution.
We now show that radiation loss during a scattering event

leads to a decreased velocity due to energy conservation. We
consider a soliton [Eq. (2)] with initial velocity vi that, during
a collision event, suffers a small loss in amplitude due to
radiation (small-amplitude waves spreading away from the
soliton). The amplitude is reduced by the effect of radiation on
At = A − ε with 0 < ε � A. The energy of the transmitted
soliton traveling with velocity vt is given by

Et [ψ] = −
√−g

3
(A − ε)3 + (A − ε)√−g

v2
t

=
(

−
√−g

3
A3 + A√−g

v2
i

)
+ √−gA2ε

−−gA

2vi

δv + O(ε2) + O(δv2), (25)

where the last line has been linearized in ε and δv ≡ vt −
vi . Identifying the term in large parentheses as the energy
of the initial soliton and assuming that radiation loss carries
away a positive amount of energy (since the only negative
contributions to energy could come from the nonlinear term,
which is assumed to be small for radiation), we realize that the
linear term in Eq. (25) must be negative. This leads to

vt � vi − −gA

2vi

ε < vi (26)

since ε > 0. The slowing down of solitons after the collision
can be seen in Fig. 10, which compares the velocity part of the
kinetic energy Ev

kin ∝ v2
t and the transmission.

The same parameters are used as in Fig. 2, where the
transmission window was found to be between V0 = 4.85 and
V0 = 5.2. Figure 10 shows that a small change in the trans-
mission (≈5%) results in a strong decrease of the transmitted
soliton’s velocity vt (≈70%). Extrapolating Eq. (26) beyond
the regime of small ε we find that for

ε ≈ 2v2
i

−gA
(27)

it predicts vt ≈ 0, which allows the soliton be trapped in the
well.

For vi >

√
−g

2 A, we find that the right-hand side of Eq. (26)
is always positive as ε � A. Therefore, we expect that trapping
is reduced until it vanishes for very high velocities vi when
kinetic energy dominates over nonlinear energy contributions.
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FIG. 10. Transmission Trel(V0) = T (V0)/T (4.85) and velocity
contribution to the kinetic energy, Ev

kin,rel(V0) = Ev
kin(V0)/Ev

kin(4.85),
relative to the values at V0 = 4.85 where transmission is maximal. As
the transmitted fraction of the incoming soliton decreases for deeper
wells, so does its velocity vt .

Then the system becomes approximately linear and can be
approximated by a single particle.

Figures 10–14 show results for the energy contributions
after the soliton-well collision. In particular, Fig. 11 gives
energy contributions of the transmitted part of the soliton after
the collision. There we can find for both cases that Eint

Ed
kin

≈ −2.

The curves show oscillations in energy, which can be explained
due to breathing of the soliton after the collision. In the bottom
panel, Ev

kin is given for two values of V0. We find again that
the velocity vt decreases for larger V0.

Snapshots of the condensate density for different times are
given in Figs. 12 and 13. The incoming soliton transmits almost
completely through the well; only a small portion is reflected
as radiation. Furthermore, both figures show once more that
the radiation increases for deeper wells (i.e., the transmitted
fraction is reduced).
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FIG. 11. Time dynamics of different kinetic and interaction
energies for the transmitted part of the soliton for V0 = 4.9 (solid
line) and V0 = 5.1 (dashed line) well after the collision (t ≈ 45). The
soliton undergoes breathing oscillations after the scattering process
that show up as oscillations in the energy. For deeper wells, Ev

kin

becomes smaller (i.e., the velocity of the transmitted soliton vt is
smaller).
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FIG. 12. Logarithmic density plot of the condensate for different
times at V0 = 4.9. A reflected component (radiation) is clearly visible.

Next we look at the reflected part in Fig. 14. There the ratio
between interaction and the density contribution to the kinetic
energy is ∣∣∣∣ Eint

Ed
kin

∣∣∣∣ � 1. (28)

Comparing to Eq. (24), this clearly indicates that the reflected
part in this regime is not soliton-like. Instead the almost
vanishing absolute value for the interaction term shows that
the main contribution, the kinetic energy, is being carried by
radiation as proposed in Ref. [8].

The findings in this section help to understand the finite
width of the transmission bands that we found in Sec. III. If
vi decreases, the width of the transmission bands decreases
as well, because less radiation is needed to trap the soliton.
Consistent with this picture is also the strong dependence of
the maximally trappable component on the incident velocity
as seen from Fig. 15.

We illustrate the transmission and trapping behavior at the
critical point for V0 in Figure 16.

0.001
0.01
0.1

1

t=70

0.0001
0.001

0.01
0.1

1

de
ns

it
y 

|ψ
(x

)|2 t=85

0.0001
0.001

0.01
0.1

t=110

-40 -20 0 20 40
position x

0.0001

0.01

1

t=150

V
0
=5.1

FIG. 13. Logarithmic density plot of the condensate for different
times at V0 = 5.1. Compared to Fig. 12, the reflected part is clearly
larger.
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FIG. 14. Time dynamics of different kinetic and interaction
energies for the reflected part of the soliton for V0 = 4.9 and V0 = 5.1.
The ratio |Eint/E

d
kin| � 1, unlike what one would expect from a

soliton. Because the interaction energy is small, the reflected part
is mainly radiation. This is only valid in the transmission window;
the reflected fraction is a soliton again for the case of trapping.

In addition there is a second mechanism to trap a soliton
that is similar to the temporary trapping of a linear wave
packet, which occurs at the boundary between reflection and
transmission regions with radiation playing no role. For this
situation we find that the soliton remains in the well for some
time td until it reflects. We can measure this time delay td
as the time the center of mass reaches the center of the well
for the first time until it leaves the center again. Furthermore,
we see that, by carefully adjusting the potential depth, td can
be large enough to observe a temporally trapped soliton in
experiments. Figure 17 shows the delay of the soliton during
the transition through the well. It is remarkable that the whole
soliton can be trapped with negligible losses due to radiation
(>99%). The losses are indeed much smaller than for the first
trapping mechanism described earlier. The time evolution of
the density given in Fig. 18 shows an example of the temporal
trapping of the soliton. This delay within the well is analogous
to the interaction-free case for a wave packet traveling with
velocity v toward a well. There, an analytical expression for
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FIG. 15. Plot showing the maximum amount of atoms Lmax that
can be trapped around the second transmission resonance under
variation of the well depth V0.
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FIG. 16. (Color online) Density plot for (a) V0 = 5.182 and
(b) V0 = 5.183 (lbox = 40). In part (a), the soliton decelerates and
remains at the edges of the well before it continues to move to the
right-hand side. In (b) the soliton slows down and remains at the edges
of the well before it decides to move back to get trapped by the well.

the time delay is known [42] as

t lind

= ∂

∂E

(
arctan

{
1

2

√
E√

E + V0
tan[

√
2(E + V0)]

})∣∣∣∣∣
E=v2/2

,

(29)

which is shown in Fig. 17 as a dashed line. This delay can be
explained as a temporary trapping of the linear wave packet
during which it oscillates between both ends of the well before
it escapes again. However, due to the nonlinearity, the position
and the value for the maximum time delay differs significantly
from the linear case. Furthermore, the time delay of Eq. (29)
becomes negative, which happens if the quantum well is deep
enough to turn a quasibound state into a bound state, which is in
contrast to the nonlinear case. One should note, however, that
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FIG. 17. Time delay of the soliton due to the existence of the
potential well (solid line). These are results for the simulations
in Sec. III. Near the transition point from full reflection to full
transmission (left vertical dashed line), the time delay increases
very fast and becomes very large. This means the soliton remains
in the vicinity of the trap for a very long time scale. Within the
transmission region it decreases again until the trapping mechanism
kicks in (right vertical dashed line). This picture for the nonlinear
regime differs from the analytically calculated time delay for the
linear case (dashed-dotted line) not only in the position and value of
its maximum but also for the nonexistent negative time delay (right
of the dotted vertical line).
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FIG. 18. (Color online) Density plot for V0 = 4.842 (lbox = 40).
The soliton decelerates and more than 99% of the initial soliton
is being trapped for a long time period (see also Fig. 17). This is
connected to temporal trapping of a linear wave packet.

in the linear case about 42% of the wave packet reflects at the
point of maximal time delay. For smaller velocities this value
seems to converge toward 50%. In addition, the maximum
time delay for the linear case lies well below the one for the
nonlinear case, where it seems to diverge at the critical value
for V0. Therefore, the connection to the nonlinear case is still
unclear and needs further investigation that goes beyond the
scope of this work.

We want to remark that, although this would be an elegant
way for lossless trapping of a soliton, Fig. 17 also shows that
the width of this delay is very narrow and therefore harder to
realize and to observe experimentally. In a BEC experiment
with a small enough number of atoms, it may be expected that
superposition states will occur in this region [9]. Hence, the
other trapping method is favorable when it comes to experi-
ments, even though one has to take into account minor losses.

VI. PROBING ENERGY LEVELS

Trapping of the soliton amplitude is sensitive to bound states
in the well. Data presented in the previous sections already
suggest that trapping results from a resonant interaction of
the soliton with a stationary defect mode, where the relevant
energy scale is the soliton’s chemical potential. By exploiting
this resonant relationship, we are able to extract the bound-state
energy by analyzing soliton scattering data. We proceed by
comparing the scaled particle number of nonlinear bound-state
solutions with the trapped component after scattering a soliton
with the same chemical potential.

In this section we model the defect as an attractive delta
potential V (x) = −V0δ(x), which has only one bound state at
Eb = −V 2

0 /2. We solve Eq. (2) with g = −1 with a soliton
initial wave function (3), varying the amplitude A and thus the
chemical potential µ = gA2/2. After the soliton has scattered,
we integrate the scaled particle number NL = ∫ b

−b
|ψ |2dx of

the trapped component (choosing b such that at least 99%
of the initial soliton’s normalization is captured). In Fig. 19
we compare these data with the normalization NS = ∫ |φ|2dx

of a stationary localized solution ψ(x, t) = φ(x) exp(iµSt)
of Eq. (2) with the same chemical potential µS = µ. We
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FIG. 19. The scaled number of trapped atoms NL vs µ from
time-dependent simulations of Eq. (2) is compared with NS(µ) for
stationary solutions from Eq. (30). Stationary solutions were also
found with our numerical code for checking numerical accuracy.
Results taken over a range of initial velocities vi show a consistent
picture. The most significant deviations occur at the onset of trapping
around the location of the linear bound state at Eb = −0.5. This
feature is most clearly distinguished for the smallest velocities.

analytically find

NS = 2(
√

−2µ − V0), (30)

which is shown as the full line in Fig. 19. The energy Eb

of the linear bound state [of Eq. (2) with g = 0] is found at
the intersection of the line with the µ axis (i.e., Eb = µ at
NS = 0).

As expected, trapping is observed in the time-dependent
simulation only for µ <≈ Eb (Figs. 19 and 20) with the
scaled particle number increasing with decreasing µ, roughly
following Eq. (30). As seen in Fig. 19 where data with a
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FIG. 20. Scaled particle number of the trapped component NL vs
µ after soliton-defect scattering as in Fig. 19 for different values of the
defect strength V0. Short vertical lines indicate the energy of the bound
state Eb for each of the values of V0. Square-root fits to the data (as
explained in the text) provide estimates β for Eb from the scattering
data. Values found for β are −0.120, −0.505, −1.12, −1.97, −3.08,
and −4.43, which correspond to the analytical values for Eb given by
−0.125, −0.5, −1.125, −2, −3.125, and −4.5, respectively.

variety of different initial velocities are compared, the trapped
component is systematically about 20% larger than expected
from the exact stationary solution. We have verified that the
final state of the trapped component in the time-dependent
simulations corresponds to a stationary solution with further
reduced chemical potential compared to the initial µ. While
at this time we are not able to explain why this happens, the
important result is that recording the trapped component as a
function of µ allows us to locate the bound-state energy Eb.

Figure 20 plots the trapped component as a function of
the soliton’s initial chemical potential µ for different trapping
potentials. Least-square fits of the data (data points with NL >

0.003 were included) to the functional form Nfit = α
√

β − µ

provide estimates β for the bound-state energy Eb.
We expect that bound-state energy levels of narrow poten-

tial wells of more general shape than the one studied here
could be probed experimentally by scattering bright solitons
using this scheme. For defects with more than a single linear
bound state, we expect that only the least strongly bound one
can be detected in this manner. This is supported by the results
of Sec. III that were obtained with a well with multiple bound
states.

VII. CONCLUSIONS

In this work we have investigated the scattering of a bright
soliton on a linear defect in the context of matter-wave solitons.
By numerical simulation and variational collective-coordinate
studies, we have investigated the regime where the solitons
are slow such that nonlinear energy scales dominate over
kinetic energy and where the defect size is small compared
to or of the same order as the soliton length. We have found
a rich transmission-reflection spectrum, which is strongly
influenced by the level structure of the defect. In contrast to
the scattering of linear waves, as in the scattering of single
or independent atoms, part of the soliton can be trapped on
the defect corresponding to the population of bound states or
nonlinear localized modes.

We find windows of transmission associated with above-
well resonances in linear scattering. Nonlinear interactions
modify the line shapes and lead to an abrupt onset of
transmission. We have shown that particle loss of a few percent
because of radiation leads to slowing down of the soliton
due to energy conservation. A resonant coupling between the
incoming soliton and bound states on the defect is identified as
the mechanism that leads to trapping and population of bound
states. We have shown how this resonant coupling provides
a way to experimentally probe bound states of an unknown
localized potential well by scattering of nonlinear waves.

In future work it will be interesting to study the subsequent
scattering of two or more solitons or the scattering of solitons
as we might expect additional effects of matter-wave enhance-
ment or triggering the release of stored solitons. In addition,
quantum many-particle effects like condensate fragmentation
or macroscopic quantum tunneling could be investigated in
the context of resonant soliton-defect scattering. Although
solitons are known to be stable beyond the mean-field
description, depletion can arise dynamically [9,10,44]. While
these questions are very interesting, they lead beyond the scope
of the present work and thus are deferred to further study.
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