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Matter-wave turbulence: Beyond kinetic scaling
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Turbulent scaling phenomena are studied in an ultracold Bose gas away from thermal equilibrium. Fixed
points of the dynamical evolution are characterized in terms of universal scaling exponents of correlation
functions. The scaling behavior is determined analytically in the framework of quantum field theory, using a
nonperturbative approximation of the two-particle irreducible effective action. While perturbative Kolmogorov
scaling is recovered at higher energies, scaling solutions with anomalously large exponents arise in the infrared
regime of the turbulence spectrum. The extraordinary enhancement in the momentum dependence of long-range
correlations could be experimentally accessible in dilute ultracold atomic gases. Such experiments have the
potential to provide insight into dynamical phenomena directly relevant also in other present-day focus areas like
heavy-ion collisions and early-universe cosmology.
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I. INTRODUCTION

Turbulence is a characteristic phenomenon naturally ob-
served in many dynamical settings far from equilibrium.
Besides its generic appearance in the context of fluid dynamics,
wave turbulence has become an important topic in nonlinear
dynamics. In laboratory experiments of ultracold atoms, re-
cently turbulent dynamics of vortical motion in Bose-Einstein
condensates has received increasing attention from both theory
and experiment, see Refs. [1–4]. Similar experiments may
provide insight into dynamical phenomena relevant also in
other present-day focus areas like collision experiments of
heavy nuclei and reheating after inflation in early-universe
cosmology, see Refs. [5–7] for recent reviews.

The theoretical framework for turbulence was formed, to
a large part, in the 1940s [8]. In the usual approach, wave
turbulence is characterized by scaling laws derived in the
framework of kinetic theory, see Refs. [6,9] for reviews
with further references. There are two requirements for the
validity of kinetic theory: The de Broglie wavelengths of
particles must be small compared to the mean free path
between collisions. This allows one to describe them as
classical colliding particles. The second requirement is that
the duration of individual scattering events should be small
compared to the mean free time between collisions. Otherwise,
interference between successive collisions would spoil their
mutual independence.

We study, in the present work, turbulent dynamics of an
ultracold Bose gas beyond quantum kinetic theory. We use
quantum field theoretical methods, with the aim of forming
a theory framework for the systematic study of turbulence
phenomena in experiments with ultracold atoms. Nonthermal
scaling solutions for the dynamics are found, and these are
characterized, in the infrared, by anomalously large exponents,
confirming results recently presented in Refs. [10,11] in the
context of relativistic field theory. Such an extraordinary
enhancement in the low-energy distribution of matter-wave
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modes could be experimentally accessible in dilute ultracold
atomic gases.

We point out in this work the strong connections between
the phenomenon of “weak wave turbulence,” which is per-
turbative and well described within kinetic theory, and the
predicted nonperturbative low-energy scaling solutions. Since
the latter occur in the deep infrared, the scaling behavior comes
with distinctive properties such as critical slowing down and
universality characteristic for critical phenomena. We explain
in detail why this far-from-equilibrium critical dynamics may
be understood as a “strong turbulence” phenomenon. As in
the kinetic theory of weak wave turbulence, two different
solutions are found in both the ultraviolet and infrared limits.
It is shown that the obtained solutions corresponding to a
quasiparticle cascade in the ultraviolet regime require a fixed
dispersion relation between frequency and momentum while it
is sufficient to have energy conservation for the solutions which
relate to a scale-invariant energy flux, i.e., energy cascade.

Turbulence can arise as a stationary phenomenon in a
driven system away from thermal equilibrium, as well as
during a transient period after the driving force has ceased.
It then offers the system a special path of transit to eventual
thermalization. Progress in understanding the structure of state
space with respect to trajectories connecting nonequilibrium
with equilibrium has potential applications in very different
areas of physics. The preparation of ultracold atomic Bose
and Fermi gases in various trapping environments allows the
precise study of quantum many-body dynamics of strongly
correlated systems. A number of experiments have recently fo-
cused on far-from-equilibrium dynamics, long-time evolution,
and thermalization in such systems, cf., e.g., Refs. [12–14].

A possible realization of turbulent dynamics in an ultracold
atomic gas could be achieved with a Bose-Einstein condensate
mode as a source of excitations, which starts oscillating
parametrically after a quench of the scattering length and
thus the chemical potential. The associated phenomenon of
parametric resonance leads to a strong enhancement of infrared
modes. This has been studied in great detail in weakly
coupled theories of preheating after inflation in the early
universe [10,15–19]. In this case, weak turbulence describes
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above a characteristic momentum scale the gradual transfer of
energy toward higher momenta in the form of a cascade.

In contrast, for low momenta, occupation numbers grow
nonperturbatively large and exhibit a different scaling be-
havior. A correct description of these low-energy modes
requires nonperturbative approximations. A nonperturbative
approach that has gained substantial success in describing
far-from-equilibrium evolution over long times is based on
the two-particle irreducible (2PI) effective action [20–22]
in next-to-leading order (NLO) 1/N approximation [23,24].
Dynamic equations derived from an nPI effective action by
definition obey crucial conservation laws, as for the total
energy and, in a nonrelativistic system, for particle number.
Here we use the 2PI approach in NLO 1/N approximation to
study turbulence in ultracold gases.

This article is organized as follows: Sec. II provides the
set of nonequilibrium dynamic equations which are used to
find a necessary condition for the existence of a nonthermal
stationary point. In Sec. III, we derive the stationarity condition
and discuss the thermal fixed point and summarize results for
turbulent scaling found within kinetic theory as far as relevant
for the later discussion. Section IV provides the derivation
of the scaling behavior, both in the perturbative regime as
well in the nonperturbative infrared limit of low-energy mode
excitations. Our conclusions are drawn in Sec. V. Technical
details and a short summary of real-time functional quantum
field theory are provided in the appendix.

II. NONEQUILIBRIUM DYNAMICS BEYOND
KINETIC THEORY

In this section we summarize the aspects of nonequilibrium
quantum field theory most relevant to the discussion of turbu-
lence in this article. Our analysis is based on the 2PI effective
action [20–22] applied to real-time dynamics. We approximate
the 2PI effective action to next-to-leading (NLO) in the
nonperturbative expansion in powers of the inverse number N
of internal degrees of freedom [23,24]. This description can
reach substantially beyond a quantum kinetic approach, which
is typically restricted to on-energy-shell scattering between
quasiparticles with a well-defined dispersion relation. After
successful applications of these nonperturbative expansions to
the study of far-from-equilibrium dynamics and thermalization
in relativistic bosonic [16,23,25,26] and fermionic [27–29]
theories, they have recently been employed in the context of
ultracold bosonic quantum gases [30–34]. For introductory
texts see, e.g., Refs. [35,36]. Some details about the 2PI
effective action approach to nonequilibrium dynamics relevant
for our discussion can also be found in Appendix B.

We consider the evolution of an ultracold bosonic quan-
tum many-body system described by the complex N -
component Heisenberg field operators �α(t, x), α = 1, . . . ,N
in d spatial dimensions, obeying the commutation relations
[�α(t, x),�†

β(t, y)] = δαβδ(x − y), [�α(t, x),�β (t, y)] = 0.
In the following we choose a basis where the field is written
in terms of its real and imaginary components, �α = (�1,α +
i�2,α)/

√
2. Including the field component index as well as

the “magnetic” index α into a single index a = (ia, α), with

ia = 1, 2, the commutation relations read

[�a(t, x),�b(t, y)] = −σ 2
ia ib

δαβδ(x − y), (1)

where σ 2 denotes the Pauli two-matrix.1 We consider a
quantum field theory for a complex N -component field ϕa(x)
[a = (ia, α), ia = 1, 2, α = 1, . . . ,N ; b = (ib, β), etc.] with
quartic interactions,

S[ϕ] = 1

2

∫
xy

ϕa(x)iD−1
ab (x, y)ϕb(y)

− λ

8N

∫
x

ϕa(x)ϕa(x)ϕb(x)ϕb(x), (2)

where we use the notation
∫
x

≡ ∫
dx0

∫
ddx with (x0, x) =

(t, x). This model describes, e.g., an ultracold Bose gas of
atoms withN hyperfine sublevels whose interaction strength g

does not depend on the particular hyperfine scattering channel
of a pair of atoms. In d = 3 dimensions the coupling strength
in such a system is g = λ/N = 4πa/m, a being the s-wave
scattering length. The free inverse classical propagator of this
model reads

iD−1
ab (x, y) = iG−1

0,ab(x, y)
∣∣
φ=0

= δ(x − y)δαβ

[−iσ 2
ia ib

∂x0 − H1B(x)δab

]
, (3)

see Eq. (B5). Here H1B(x) = −∑d
j=1 ∂2

j /2m + V (x) denotes
the single-particle Hamiltonian, and we choose, in the follow-
ing, the external potential V (x) to vanish.

A. Dynamic equations

In this section we recall the equations which describe
the time evolution of the lowest-order connected correlation
functions or cumulants [33,35]

φa(x) = 〈�a(x)〉, (4)

Gab(x, y) = 〈T �a(x)�b(y)〉 − φa(x)φb(y). (5)

The two-time correlation function G defined in Eq. (5) involves
a time-ordered product of in general noncommuting field
operators. Therefore, G can be decomposed as [37]

Gab(x, y) = Fab(x, y) − i

2
sgn(x0 − y0)ρab(x, y), (6)

where the signum function sgn(x0 − y0) evaluates to 1 (−1) for
x0 later (earlier) than y0, and where the statistical component
F and the spectral part ρ are defined in terms of the
anticommutator and commutator of the fields, respectively,

Fab(x, y) = 1
2 〈{�a(x),�b(y)}〉c, (7)

ρab(x, y) = i〈[�a(x),�b(y)]〉. (8)

Here, 〈·〉c is a short-hand notation for the cumulant 〈�a�b〉c =
〈�a�b〉 − 〈�a〉〈�b〉, see Eq. (5).

The resulting integrodifferential dynamic equations for φ,
F , and ρ read for Gaussian initial conditions [33,35] (for
simplicity of the notation we define σ 2

ab ≡ σ 2
ia ib

δαβ)

1We use natural units where h̄ = 1.
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[−iσ 2
ab∂x0 − gFab(x, x)

]
φb(x) −

{
H1B(x) + g

2
[φc(x)φc(x) + Fcc(x, x)]

}
φa(x) =

∫ x0

t0

dy�
ρ

ab(x, y; φ ≡ 0)φb(y), (9)

[
iσ 2

ac∂x0 + Mac(x)
]
Fcb(x, y) = −

∫ x0

t0

dz�ρ
ac(x, z; φ)Fcb(z, y) +

∫ y0

t0

dz�F
ac(x, z; φ)ρcb(z, y), (10)

[
iσ 2

ac∂x0 + Mac(x)
]
ρcb(x, y) = −

∫ x0

y0

dz�ρ
ac(x, z; φ)ρcb(z, y). (11)

These identities are equivalent to Kadanoff-Baym or
Schwinger-Dyson equations. Here we employ the notation∫ t ′

t
dz = ∫ t ′

t
dz0

∫
ddz. The “mass” matrix M containing the

free Hamiltonian as well as mean-field potential terms is
defined as

Mab(x) = δab

{
H1B(x) + g

2
[φc(x)φc(x) + Fcc(x, x)]

}
+ g[φa(x)φb(x) + Fab(x, x)]. (12)

The self-energy � acts as the kernel in the non-Markovian
memory integrals in the above dynamic equations and accounts
for collisions building up correlations in the system. It is
obtained as the derivative of the 2PI part 2,

�ab(x, y; φ,G) = 2i
δ2[φ,G]

δGab(x, y)
, (13)

and has been decomposed into a local mean-field part �
(0)
ab (x)

adding to the mass matrix, and a nonlocal part written in terms
of statistical and spectral components,

�ab(x, y) = �
(0)
ab (x)δ(x − y)

+�F
ab(x, y) − i

2
sgn(x0 − y0)�ρ

ab(x, y). (14)

These nonlocal parts form the kernels for the memory integrals
on the right-hand sides of the integrodifferential dynamic
equations (9)–(11).

B. NLO 2PI 1/N expansion

To practically solve the dynamic equations (9)–(11), details
about the self-energy � are required, and these are, in general,
available only to a certain approximation. In the following
we employ an expansion of 2 in powers of the inverse
number of field degrees of freedom N [23,24,36]. The 1/N
expansion to next-to-leading order (NLO) is equivalent to
replacing certain vertices in a loop expansion by a bubble-
resummed vertex [24,30]. In the context of an ultracold
Bose gas, it has been discussed in Refs. [30,32–34]. This
approximation scheme has also been recovered in a functional
renormalization group inspired approach [38], where it results
as a truncation in orders of proper n-point functions combined
with an s-channel approximation of the equation for the proper
four-vertex.

In this scheme, the contribution 2[φ,G] to the 2PI
effective action involves a leading (LO) and next-to-leading
order (NLO) part which can be diagrammatically represented
as shown in Fig. 1 in terms of 2PI closed loop diagrams
involving only bare vertices, full propagators G, and field
insertions φ. While the leading-order contribution involves

one diagram, in NLO a chain of bubble diagrams is resummed.
All of these diagrams are proportional to the same power of
1/N since each vertex scales with 1/N , which is canceled
by the (blue) propagator loops which scale with N since they
involve a summation over the field indices from 1 toN [30,35].

Inserting the 2PI effective action expanded to NLO in 1/N
into Eq. (13) one calculates the self-energy � and from this
the local and nonlocal contributions defined in Eq. (14). The
resulting expressions are provided in Appendix C.

III. STATIONARY SOLUTIONS OF THE
EVOLUTION EQUATIONS

In this section, we set up the condition for stationary
solutions of the dynamic equations introduced above which is
later used to derive turbulent scaling behavior. We furthermore
discuss the thermal equilibrium solutions as well as the scaling
solutions associated to weak wave turbulence found in the
framework of kinetic theory.

A. Stationarity condition

We consider stationary homogeneous solutions of the
dynamic equations (9)–(11), i.e., solutions invariant under
translations in time and space,

φa(x) = φa(t) ∼ exp(−iµt);
(15)

Fab(x, y) = Fab(x − y); ρab(x, y) = ρab(x − y).

Note that the stationarity condition for φ allows for a remaining
rotating phase with constant angular velocity corresponding

G[  ,   ] =

Γ2
LO[  ,G]  =

2
NLO φ + + + + ...

+ + + ...+

φ

Γ

FIG. 1. (Color online) Diagrammatic representation of the lead-
ing order (LO) and next-to-leading order (NLO) contributions in
the 1/N expansion to the 2PI part 2[φ,G] of the 2PI effective
action. The thick blue lines represent two-point functions Gab(x, y),
the red crosses field insertions φa(x), and the dashed lines vertices
λ/(8N )δ(x − y), λ = gN . At each vertex, it is summed over double
field indices a and integrated over double time and space variables x.
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to a chemical potential, i.e., it only requires the condensate
density |φ|2 to be constant in time.

As we are looking for stationary solutions, we can send
the initial time in the dynamic equations to t0 → −∞.
Consequently, also the self-energy components �

F,ρ

ab , as
well as the functions IF,ρ and P F,ρ which are defined
in Eqs. (C4)–(C8) depend only on the relative coordinate,
�

ρ

ab(x, y) = �
ρ

ab(x − y), and so on. We write the Fourier
transform of the statistical correlation function as Fab(p) :=∫

dd+1x exp(ipx)Fab(x), etc., for all other two-point functions.
A necessary condition for a solution of the dynamic

equation (10) for the statistical correlation function F to be
translationally invariant as defined in Eq. (15) reads [10]

J (p) ≡ �
ρ

ab(p)Fba(p) − �F
ab(p)ρba(p)

!= 0. (16)

In Appendix D1 we derive the necessity of condition (16)
for stationarity of F , using the symmetry properties of the
correlation functions involved. This stationarity condition can
also be obtained from the trace of a gradient expansion of the
evolution equation (10), which leads to 2ω∂X0F (X0, ω, p) =
J (X0, ω, p), with ω ≡ p0 [39]. In situations where F and ρ

are independent of the time X0 = (x0 + y0)/2, the gradient
expansion in X0 involved in the derivation of this equation
becomes exact. We remark that there is no analogous condition
following from the dynamic equation (11) for ρ. Following
the same arguments as for F , we find that Eq. (11) allows for
translationally invariant solutions obeying the conditions (15),
see Appendix D1.

B. Thermal equilibrium

Before proceeding to nonthermal stationary solutions we
verify that in thermal equilibrium the condition (16) is
satisfied: In this limit, the grand canonical density matrix reads
ρ̂ = exp[−β(Ĥ − µN̂ )]/tr exp[−β(Ĥ − µN̂ )], and one can
deduce the fluctuation-dissipation relation,

F
(th)
ab (ω, p) = −i

[
nBE(ω) + 1

2

]
ρ

(th)
cb (ω, p) (17)

with

nBE(ω) = 1/(eβ(ω−µ) − 1), (18)

ω = p0. For a detailed discussion see, e.g., Refs. [35,36]: In
addition to this relation there is a similar relation for the self-
energies,

�
F (th)
ab (ω, p) = −i

[
nBE(ω) + 1

2

]
�

ρ(th)
ab (ω, p). (19)

Substituting this equation and Eq. (17) into Eq. (16) one finds,
as expected, in thermal equilibrium the stationarity condition
is fulfilled.

C. Weak wave turbulence from kinetic equations

In this subsection we briefly review the Kolmogorov theory
of turbulent scaling solutions of the wave kinetic equation [9].
Going away from thermal equilibrium, a kinetic description
of the time evolution implies a quasiparticle assumption,
which assumes a fixed dispersion relation ω = ω(p) between
momentum and frequency. Similar to (17) one writes for

spatially homogeneous situations, with t ≡ X0,

F
(qp)
ab (ω, p) = −i

[
n(qp)(ω) + 1

2

]
ρ

(qp)
ab (ω, p), (20)

where the quantity n(qp)(ω) will play the role of a quasiparticle
number of mode p for fixed ω = ω(p). The spectral function is
given, e.g., for a cold Bose gas in the symmetric, i.e., noncon-
densed phase, with quadratic dispersion ω(p) = p2/2m, by the
ideal-gas expression (coupling g = 0) [34]

ρ
(qp)
ab (p) = ρ

(0)
ab (p) = iπ

[
δ

(
ω − p2

2m

)
+ δ

(
ω + p2

2m

)]
× [

sgn(ω)δab − σ 2
ab

]
, (21)

where σ 2 is the Pauli two-matrix.
Inserting this ansatz into the dynamic equation (10) for F ,

where the self-energy has been approximated by the second-
order-in-g expressions given in Appendix C one derives, in
leading order of a gradient expansion in t = X0, and for φ = 0,
the quantum four-wave kinetic equation [34,36]

∂tnp = I (p, t), (22)

I (p, t) = g2
∫

ddkddqddr|Tpkqr|2δ(p + k − q − r)

× δ(ωp + ωk − ωq − ωr)

× [(np + 1)(nk + 1)nqnr

− npnk(nq + 1)(nr + 1)], (23)

where np ≡ n(qp)(p, t). In the case defined by Eq. (21), the tran-
sition matrix element squared |Tpkqr|2 is a numerical constant
independent of momenta. The perturbative expansion for weak
coupling g underlying (23) restricts the occupation numbers
to be parametrically np 	 (|p|a)−1. For 1 	 np 	 (|p|a)−1,
where a is the s-wave scattering length, the equation goes over
to the classical kinetic equation. This is the regime, where
scaling solutions describing Kolmogorov wave turbulence can
be obtained. In the quantum limit np 	 1, waves behave like
particles, and Eq. (22) reduces to the Boltzmann equation.
This is typically the range of high momenta, where occupation
numbers are low, and no turbulent scaling will be observed in
the quantum regime. Owing to the local conservation of np, the
above kinetic equation can be written as a continuity equation

∂tn
(qp)(p, t) + ∂iQi(p, t) = 0, (24)

with the divergence of the current, ∂iQi(p, t) = −I (p, t),
defined in terms of the scattering integral I , Eq. (23).

Alternatively, one can write the kinetic equation (22)
as a continuity equation for the energy density ε(p, t) =
ω(p)n(qp)(p, t), with the divergence of the current P of
energy flow given by the integral ∂iPi(p, t) = −I(p, t) =
−ω(p)I (p, t).

Taking into account the spherical symmetry of the interac-
tions, the scattering integral I (p, t) can be averaged over the
spatial directions which returns an integral I (ω(p)) depending
on the frequency only. As is shown in detail in Ref. [9], the
stationarity condition I (ω(p)) = 0 has four universal scaling
solutions (ω(p) ≡ ω(|p|)) for the classical kinetic equation:

n(qp)(ω(sp)) ≡ n(qp)(s|p|) = s−κn(qp)(|p|), (25)

where the exponent is either κ = 0 and κ = z, for the
constant and thermal solutions, respectively, z being the
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scaling exponent of the quasiparticle frequency, ω(sp) =
szω(p), or

κ = κQ = 1

3
(3d + 2m − z), (26)

κ = κP = κQ + z

3
. (27)

Here, m is the scaling exponent of the transition matrix el-
ement, T (sp, sk, sq, sr) = smT (p, k, q, r) ≡ smTpkqr, which
evaluates to m = 0 for the weakly interacting cold Bose gas
away from unitarity. The above nonthermal scaling exponents
characterize the Kolmogorov stationary distributions of wave
turbulence. The solution with exponent κQ corresponds to a
|p|-independent radial particle flux |p|d−1Q(|p|), while the
solution with exponent κP gives a momentum-independent
energy flux |p|d−1P (|p|) [9]. For the noncondensed cold Bose
gas, one finds the momentum scaling exponents

κQ = d − 2
3 , (28)

κP = d. (29)

For a system with linear dispersion, z = 1 and dominant
four-wave interaction with m = −2z = −2, e.g., an ultracold
Bose gas in the unitary limit at large momenta |p| (ne-
glecting inelastic scattering), or a relativistic scalar theory
in the high-energy limit [36], one recovers the scaling
exponents

κQ = d − 5
3 , (30)

κP = d − 4
3 , (31)

which in d = 3 evaluate to κQ = 4/3 and κP = 5/3.2

D. Stationarity condition for the full dynamic equation

We proceed by considering the stationarity condition (16)
beyond the above kinetic approximation, i.e., using the 1/N
expansion of the 2PI effective action to NLO following
Refs. [10,11]. A major restriction of the kinetic description
is that it cannot describe high occupation numbers np beyond
the range of validity of perturbation theory. Since scaling
solutions np ∼ |p|−κ imply large occupancies at low momenta,
kinetic theory breaks down in the infrared. In contrast, the
nonperturbative 2PI 1/N expansion to NLO allows us to
investigate the low-momentum regime, which is characterized

2We remark that the exponent 5/3 is not to be confused with that
in the well-known Kolmogorov-Obukhov “5/3-scaling law” [?,8]
which rather applies to the scaling of the radial energy spectrum
E(|p|) ∝ |p|d−1ω(|p|)n(|p|) for turbulence phenomena like vorticity
in an isotropic incompressible fluid where the density ρ is the
only relevant parameter. In this case, the spectrum E(|p|) can be
expressed in terms of ρ, the energy flux P , and the momentum p, in
d = 3 dimensions as E(|p|) ∝ P 2/3ρ1/3|p|−5/3. For wave turbulence
which we discuss in this article, the frequency ω introduces, for
each momentum p, a further relevant parameter. The Kolmogorov-
Obukhov law here results for m = 2, which gives n(|p|) ∼ |p|−(d+10)/3

and, taking into account that, for dimensional reasons, the frequency
follows the proportionality ω ∝ (P |p|5−d/ρ)1/3, the spectral scaling
E(|p|) ∝ P 2/3ρ1/3|p|(d−8)/3, see, e.g., Ref. [9].

b

2PI 1/N:

  = +

Σab (x,y)  = a + aφ
b

FIG. 2. (Color online) Next-to-leading order (NLO) contributions
to the scattering integral J . (Upper panel) Diagrammatic repre-
sentation of the NLO contributions in the 1/N -expansion, to the
self-energy �ab(x, y; φ). The big filled circle represents a resummed
vertex which in NLO 1/N is defined as shown in the lower panel. The
(red) φ dependence of the vertex in the two-loop diagram contributing
to � indicates the further internal field dependence integrated over
within the loops as can be seen from applying Eq. (13) to the lower
line of diagrams of NLO

2 in Fig. 1. All other symbols are as in Fig. 1.

by different scaling solutions than the above Kolmogorov
results.

The NLO 1/N self-energy entering J (p), Eq. (20), is
depicted in Fig. 2. Before proceeding to the scaling behavior
of J we derive, in this section, the formal expression for J in
terms of the correlation functions F and ρ.

1. Vanishing field expectation value

We first consider the simpler case of a vanishing field
expectation value φa ≡ 0. Scaling will result for strongly
occupied modes where quantum fluctuations can be neglected.
Expressed in terms of the statistical and spectral components
of G this means that Fab(x)2 � ρab(x)2. In thermal equilib-
rium this is readily obvious from the fluctuation-dissipation
relation (17). As was shown in Refs. [33,41] away from
equilibrium the classical statistical limit implies that the ρρ

terms are neglected in the function IF defined in Eq. (C5) and,
for φ ≡ 0, the I ρρ term in �F , Eq. (C4). The translationally
invariant self-energies then read

�F
ab(x) = −g(IF Fab)(x)

(32)
�

ρ

ab(x) = −g[(I ρFab)(x) + (IF ρab)(x)],

where

g = λ/N , (33)

and

IF = (1 − IR) ∗ �F + IF ∗ �A,
(34)

I ρ = (1 − IR) ∗ �ρ + I ρ ∗ �A,

with the retarded and advanced functions

IR(x) = (θIρ)(x), IA(x) = (θ−I ρ)(x), (35)

�R(x) = (θ�ρ)(x), �A(x) = (θ−�ρ)(x). (36)

In the classical limit the functions �F,ρ are

�F = g(FF )/2, �ρ = g(Fρ). (37)

Here and in the following we use the more convenient notation
in terms of products and convolutions of functions in x as
well as p space, see Appendix A for details. The product
or convolution of two correlation functions implies sums over
field indices, (Fρ)(x) = Fab(x)ρab(x). Finite integration limits
in time in the above convolutions are taken into account by
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the theta function θ (x) ≡ θ (x0), with θ−(x) ≡ θ (−x). Overall
arguments (x) have been suppressed.

The recursive equations (34) for IF and I ρ can be solved
explicitly. Using the convolution theorem one obtains, in
momentum space,

IF (p) = (λeff�F )(p),
(38)

I ρ(p) = (λeff�ρ)(p),

where �F (p) = g(F ∗ F )(p)/2, �ρ(p) = g(F ∗ ρ)(p), and

λeff(p) = 1 − IR

1 − �A
= 1

(1 − �A)(1 + �R)

= 1

|1 + �R|2 . (39)

Here, we have suppressed arguments (p). The second equality
in Eq. (39) follows from

[1 + �R(p)][1 − IR(p)] = 1 (40)

which in x space reads:

�R − IR − �R ∗ IR = 0. (41)

This identity is proven by substituting the expression (34) for
I ρ into the second term giving

�R + θ [�ρ − (θIρ) ∗ �ρ + I ρ ∗ (θ−�ρ)]

−�R ∗ (θIρ) = 0, (42)

which is verified using (36) as well as that for any two functions
f and g: ((θf ) ∗ (θg)) = θ ((θf ) ∗ (θg)).

We are now ready to write down an expression for J in
the case of vanishing φ: Substituting Eqs. (38) into (32) and
the self-energies into condition (16), we obtain for J 0(p) ≡
J φ=0(p):

J 0(p) = −g2

2
(Fba{Fab ∗ [2λeff(F ∗ ρ)]

+ ρab ∗ [λeff(F ∗ F )]} − ρba[Fab ∗ [λeff(F ∗ F )]})
= − g2

2(2π )8

∫
dd+1kdd+1qdd+1rδ(p + k − q − r)

× λeff(p + k)[Fab(p)Fab(k)Fcd (q)ρcd (r)

+Fab(p)Fab(k)ρcd (q)Fcd (r)

−Fab(p)ρab(k)Fcd (q)Fcd (r)

− ρab(p)Fab(k)Fcd (q)Fcd (r)]. (43)

2. Nonvanishing field

In the general case one needs to take into account the possi-
bility of a nonvanishing condensate field φ = 0. As pointed out
above, scaling will require that statistical fluctuations dominate
over quantum fluctuations, Fab(x)2 � ρab(x)2. In this case the
self-energies (C4) read

�F
ab(x) = �

F (φ=0)
ab − g(IF φaφb + P F Fab), (44)

�
ρ

ab(x) = �
ρ(φ=0)
ab − g(I ρφaφb + P ρFab + P F ρab). (45)

Here and in the following we suppress arguments, e.g., IF =
IF (x), where they can be inferred.

IF and I ρ are as before, and P F , P ρ are rewritten
analogously as described in Appendix D2, giving

P F (p) = gφaφb[Fabλ
eff − IF �ab] (46)

P ρ(p) = gφaφb[ρabλ
eff − I ρ�ab], (47)

where (see Appendix D2)

�ab(p) = 2�
[

GR
ab

1 + �R

]
. (48)

We are now ready to derive the full function J . The
ingredients IF , I ρ , P F , and P ρ are given by Eqs. (38), (46),
and (47), respectively. Substituting these into the full self-
energies, (44) and (45), we get J = J 0 + J φ where J 0 was
obtained in Eq. (43) and the field-dependent part reads

J φ = J λ + J�,

J λ(p) = g2

2
φaφb{ρab(F ∗ F )λeff + 2ρcd [Fdc ∗ (Fabλ

eff)]

− 2Fab(F ∗ ρ)λeff − 2Fcd [Fdc ∗ (ρabλ
eff)]

− 2Fcd [ρdc ∗ (Fabλ
eff)]}, (49)

J�(p)=−g3

2
(ρba{Fab ∗ [�(F ∗F )]}+2Fba{Fab ∗ [(F ∗ρ)�]}

+ Fba{ρab ∗ [(F ∗ F )�]}), (50)

with the effective coupling

�(p) = φaφb�abλ
eff . (51)

J λ and J� written in the form of momentum integrals as in
Eq. (43) for J 0 are provided in Appendix D2. To make contact
with the notation of Ref. [10], we introduce

J 4 = J 0 + J� and J 3 = J λ. (52)

The integral J 4 results from the left self-energy diagram in
the upper panel of Fig. 2, the integral J 3 from the right one
in which the field φ is not integrated over inside the loops.
This concludes the calculation of J . We have three terms J =
J 0 + J λ + J� given by Eqs. (43), (D10), and (D11).

IV. TURBULENT DYNAMICAL SCALING

A. The scaling ansatz

We are looking for solutions that fulfill the stationarity
condition (16) in the infrared. Following Refs. [10,11] we
consider scaling solutions with properties

ρab(szp0, sp) = s−2+ηρab(p0, p) (53)

Fab(szp0, sp) = s−2−κFab(p0, p), s > 0. (54)

The free spectral function (21) fulfills the scaling property (53),
with z = 2 and η = 0. Deviations from this scaling are
accounted for by a modified value for z and an “anomalous
dimension” η (see, e.g., Ref. [42]) different from zero, which
we will assume to be small in the following. The scaling
ansatz (54) for F is chosen analogously, with an exponent
κ still to be determined.

The scaling relation (53), with η = 0, remains valid beyond
the case of an ideal gas, for the near-zero-temperature weakly
interacting Bose gas in the broken phase which is described by
Bogoliubov theory and merely a free gas of quasiparticles
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interacting with the condensate mode. In this case, the
dispersion becomes linear in |p| at low momentum, reflecting
the sound-wave character of the modes and requiring z = 1 in
the scaling relations, but quadratic scaling is ensured by the
Bogoliubov coefficients. At zero temperature one has

ρab(p) = iπ [δ(p0 − ωp) + δ(p0 + ωp)]

× [(
u2

p + v2
p

)
δabsgn(p0) − σ 2

ab

]
, (55)

where ωp = [εp(εp + 2gφaφa)]1/2 (with εp = p2/2m) is the
Bogoliubov dispersion which is linear in |p| at p2 	 4gφaφa .
up = [(εp + gφaφa + ωp)/2ωp]1/2 and vp = [(εp + gφaφa −
ωp)/2ωp]1/2 are the Bogoliubov coefficients resulting from
diagonalization of the propagator and scale like up ∼ |p|−1/2,
vp ∼ |p|−1/2 in the infrared. Hence, the scaling (53) also
applies to function (55).

In the limit of large occupation numbers, the density of
particles with momentum p in momentum space, n(p) =
〈�†(p)�(p)〉, is given by

n(p) = 1

2

∫
dp0

2π
[F11(p) + iF12(p) − iF21(p) + F22(p)].

(56)

Hence, the scaling behavior (54) of F implies that

n(sp) = sz−2−κn(p). (57)

Since in addition we assume isotropy, it follows that n(p) =
n(|p|) ∼ |p|z−2−κ . Hence, for a quadratic single-particle dis-
persion, z = 2, κ acts as the occupation-number scaling
exponent.

In order to derive the scaling exponent κ from the necessary
condition (16) for stationarity we take into account the spatial
isotropy of the Hamiltonian and consider the ensuing weaker
necessary condition which results from integrating Eq. (16)
over the spatial momenta p,3

J (p0) ≡
∫

ddp
[
�

ρ

ab(p)Fba(p) − �F
ab(p)ρba(p)

] != 0. (58)

In the following we determine, under the assumption that
the correlation functions obey the above scaling properties,
for which values of κ the stationarity condition (58) is
fulfilled. To derive these values we make use of scaling
transformations [10,11] which imply reparametrizations of
the frequency-momentum integrals in J (p0), similar to the
Zakharov transformations used in the context of weak wave
turbulence [9]. The thus reparametrized integrals can be trans-
formed to a unique form with the help of the scaling laws
for the correlation functions which relate these functions at
different frequency and momentum scales to each other.

In the following we will consider the scaling behavior in
the ultraviolet (UV) and infrared (IR) regimes separately.
We first derive the scaling exponents in the UV regime.
They correspond the perturbative Kolmogorov exponents, κP ,

3Alternatively one could consider the condition that the function
obtained by integrating J (p) over the frequency p0 and the d − 1-
dimensional angular dependence of p, leaving a function of |p|. The
scaling analysis of such a function would, however, yield the same
exponents as obtained from Eq. (58).

Eq. (29), and κQ, Eq. (28). We will then present the derivation
of a different scaling regime, with significantly enlarged values
for exponents, in the IR.

B. Scaling exponents in the ultraviolet regime

The aim of this section is to show that in the perturbative
regime of sufficiently large frequencies and momenta the
exponents characterizing weak wave turbulence

κ = d + z − 8

3
+ η

3
, (59)

and

κ = d + 4

3
(z − 2) + η

3
(60)

allow J (p0), Eq. (58), in d spatial dimensions to vanish. Here
Eq. (59) corresponds to Eq. (28) and Eq. (60) to Eq. (29) for
z = 2 and η = 0. The conditions for the existence of these
scaling solutions are different. The solution with κ given
by Eq. (59) requires that the excitations of the system are
described sufficiently well by quasiparticles, Eq. (20), with a
fixed dispersion relation (21) while the solution (60) exists
also without this restriction. In the UV the leading-order
perturbative approximation with a zero-width spectral function
becomes valid such that kinetic theory and therefore both
scaling solutions apply.

1. Dominant contribution to J

J has three components J = J 0 + J λ + J�, given by
Eqs. (43), (D10), and (D11). We derive scaling laws for
J 0, J λ, and J� in the UV limit to determine which of the
contributions to J (p) dominates in this regime. For sufficiently
large frequencies and momenta the occupation numbers are
low. As a consequence, one can classify the contributions to
Eq. (58) perturbatively according to powers of g. Since any
nonzero width of the spectral function is of higher order in g,
a δ-like spectral function can be assumed under the integral of
Eq. (58) to a given order in the coupling. A similar reasoning
applies to the perturbative statistical function. Therefore, we
will recover the results of kinetic theory.

Turning first to J 0 we need to find the scaling law
for the effective coupling λeff defined in Eq. (39). As
discussed in Appendix E, �R scales like �R(szp0, sp) =
sz+d−4−κ+η�R(p0, p) [see Eq. (E4)]. If κ > z + d − 4 + η

which according to Eq. (60) requires η < z/2 + 2, this implies
that |�R(p)| 	 1 in the high-momentum limit. Hence, one can
neglect �R in the denominator of (39) and obtains:

λeff(p) ≈ 1 (UV limit). (61)

Away from the UV limit the above relation becomes approxi-
mative as does the scaling behavior discussed in the following.
This also applies to the kinetic wave-turbulence theory where
one needs to show the locality of the scattering integral.
Locality implies, that the scaling law at a particular momentum
scale is independent of what happens far away in momentum
space. In kinetic theory, the locality of the scattering integral
follows from the convergence of the integral [9]. We note
that a proof of convergence of the scattering integral in the
full dynamical theory is more difficult than in the kinetic
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approximation, where the dispersion is fixed and the frequency
integrals can be eliminated. The existence of approximate
scaling solutions at finite momenta can be shown by means
of numerical simulations of the dynamics as presented, e.g., in
Refs. [6,10].

It follows that in the UV limit, we can neglect the effective
coupling in J 0(p), Eq. (43). The same arguments apply to
the remaining contributions J λ and J�, and inserting the
scaling properties (53), (54), (E6), (E9), and (E11) into
Eqs. (43), (D10), and (D11) one finds the scaling relations

J 0(szp0, sp) = s2(d+z−4)+η−3κJ 0(p0, p), (62)

J λ(szp0, sp) = sd+z−6+η−2κJ λ(p0, p), (63)

J�(szp0, sp) = s2(d+z−5)+2η−3κJ�(p0, p). (64)

We anticipate the general result κ = d + 4(z − 2)/3 + η/3.
Comparing the scaling laws for J 0, J λ, and J�, which
scale with exponents 2(d + z − 4) + η − 3κ = −d − 2z, d +
z − 6 + η − 2κ = −d − (5z + 2 + η)/3, and 2(d + z − 5) +
2η − 3κ = −d − 2z − 2 + η, we come to the conclusion that
both J 0 and J λ dominate in the limit of large momenta for
z = 2, assuming η = 0, while for z < 2 or η > 0 the integral
J 0, and for z > 2, the integral J λ dominate on their own. It
will turn out that the same value of κ = d + η/3 renders J 0

and J λ to vanish simultaneously if z = 2.

2. Scaling transformations

Taking into account the possible dominant contributions
in the UV regime (see last paragraph) the stationarity
condition (58) for the momentum integral over J (p) requires

J 0(p0)
!= 0. (65)

We derive a relation between κ , η, and z which fulfills this
condition. Using the above argument that we can set λeff(p +
k) = 1 in the integrand, the integral reads

J 0(p0) = − g2

2(2π )8

∫
ddp

∫
dd+1kdd+1qdd+1r

× δ(p + k − q − r)[Fab(p)Fab(k)Fcd (q)ρcd (r)

+Fab(p)Fab(k)ρcd (q)Fcd (r)

−Fab(p)ρab(k)Fcd (q)Fcd (r)

− ρab(p)Fab(k)Fcd (q)Fcd (r)]. (66)

As is described in more detail in Appendix F, it is possible
with the help of scaling transformations to exchange p with
another integration variable in Eq. (66), thereby keeping p0 as
a free variable [10,11]. These transformations are similar to
the Zakharov transformations typically employed to compute
exponents for weak wave turbulence for a fixed dispersion
relation and z = 2, η = 0. In that case, frequency integrals
are separated into different domains of integration, which
can be mapped onto each other [9]. Here we use scaling
transformations to map the different integrands of the integral
Eq. (66). Since we do not assume a fixed dispersion relation
in this approach, we will be able to use the same method
also to compute IR scaling exponents in the nonperturbative
regime below. This transformation makes use of the scaling
properties (53) and (54). As these scaling relations involve an

sz in the p0 component, one first rewrites Eq. (66) such that
the integration variables k0, q0, and r0 are positive:∫

dk0dq0dr0 f (p, k, q, r)

=
∫

k0>0,q0>0,r0>0
dk0dq0dr0(f (p, k, q, r) + [r → −r]

+ [q → −q] + [k → −k] + [q → −q, r → −r]

+ [k → −k, r → −r] + [k →−k, q → −q]

+ [k →−k, q → −q, r → −r]). (67)

Here, the function f contains the full integrand in Eq. (66),
including the remaining spatial integrals. For p0 > 0, the fifth
summand in parantheses vanishes due to the delta function
δ(p + k − q − r), such that there are 4 × 7 = 28 terms con-
tributing to the integrand in Eq. (66). Negative arguments can
easily be dispelled using the symmetry properties for F and
ρ: Fab(−p) = Fba(p), ρab(−p) = −ρba(p).

At this point we use a scaling transformation (see
Appendix F) to achieve that in each of the 28 summands,
ρ carries the p argument. We furthermore use that we can
permute the integration variables k, q, r at will. Combining
terms that are equivalent one arrives at the final result:

J 0(p0)

=
∫

k0>0,q0>0,r0>0
ddp

∫
dd+1kdd+1qdd+1r

× [
δp+k−q−r

ab
ρ p

ab

F k

cd

F q

cd

F r p−�
0

(
p�

0 + k�
0 − q�

0 − r�
0

)
+ δp−k+q+r

ab
ρp

ba

F k

cd

F q

cd

F r p−�
0

(
p�

0 − k�
0 + q�

0 + r�
0

)
+ δp−k−q−r

ab
ρp

ba

F k

cd

F q

cd

F r p−�
0

(
p�

0 − k�
0 − q�

0 − r�
0

)
+ 2δp+k−q+r

ab
ρ p

ab

F k

cd

F q

dc

F r p−�
0

(
p�

0 + k�
0 − q�

0 + r�
0

)
+ 2δp−k−q+r

ab
ρ p

ba

F k

cd

F q

dc

F r p−�
0

(
p�

0 − k�
0 − q�

0 + r�
0

)]
,

(68)

Here we have used the short-hand notation
ab
ρp= ρab(p),

cf. Eq. (D12), and δp = δ(p). Combining the scaling of
correlation functions, delta function, and integral measures,
the exponent � results as

� = 1

z
(3κ − 3d + 8 − η) − 3. (69)

We now consider the condition that J λ(p0), Eq. (D10)
vanishes,

J λ(p0)
!= 0. (70)

If p0 is chosen large, only the high-momentum behavior of
the functions involved is important, in particular λeff ≈ 1.
Rewriting the integral such that all frequency variables are
positive and neglecting terms vanishing by the delta function,
one obtains 9 × 3 = 27 summands. By use of a scaling
transformation of the form defined in Appendix F, Eq. (F3),
each of the 27 terms is rewritten such that ρ carries the
p argument. Analogous steps as before lead to the final
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expression

J λ(p0) = φaφb

∫
k0>0,q0>0

ddp

∫
dd+1kdd+1q

× [
δp−k−q

ab
ρp

cd

F k

cd

F q ·p−�
0

(
p�

0 − k�
0 − q�

0

)
+ δp−k+q

ab
ρp

cd

F k

dc

F q ·p−�
0

(
p�

0 − k�
0 + q�

0

)
+ δp+k−q

ab
ρp

cd

F k

dc

F q ·p−�
0

(
p�

0 + k�
0 − q�

0

)
+ 2δp−k−q

cd
ρp

dc

F k

ab

F q ·p−�
0

(
p�

0 − k�
0 − q�

0

)
+ 2δp−k+q

cd
ρp

dc

F k

ab

F q ·p−�
0

(
p�

0 − k�
0 + q�

0

)
+ 2δp+k−q

cd
ρp

cd

F k

ab

F q ·p−�
0

(
p�

0 + k�
0 − q�

0

)]
,

(71)

with

� = 1

z
(2κ − 2d + 6 − η) − 2. (72)

3. Scaling exponent: Results in the UV regime

The delta distributions ensure that J 0(p0), Eq. (68),
vanishes if

� = 1 ⇔ κ = d + 4

3
(z − 2) + η

3
. (73)

J λ(p0), Eq. (71), becomes manifestly zero if

� = 1 ⇔ κ = d + 3

2
(z − 2) + η

2
. (74)

In the special case of a vanishing field expectation value,
ϕ = 0, J = J 0, and the result for κ remains unaffected. We
therefore come to the conclusion that in a cold Bose gas with
quadratic dispersion, z = 2, and η = 0 Kolmogorov-like scal-
ing occurs in the UV regime, with κ = d. The exponent (60)
implies a scaling of the particle number, Eq. (57), as

n(|p|) ∼ |p|−d−(z−2+η)/3. (75)

The scaling exponent κ = d obtained for z = 2 and η = 0
corresponds to the Kolmogorov exponent κP , Eq. (29), for
weak wave turbulence in the kinetic approximation, see
Sec. III C. We now consider the derivation of κQ, Eq. (28).

Inserting the perturbative quasiparticle behavior, Eq. (20),
into Eq. (68) causes the first four summands in square brackets
to vanish because, after evaluating the frequency integrals over
k0, q0, and r0, and thus setting the frequencies to the respective
quasiparticle frequencies, q0 = ω(q), etc., one finds that

ρab(ωk, k)Fab(ωk′, k′) = Fab(ωk, k)Fab(ωk′ , k′) = 0, (76)

for arbitrary momenta k, k′, while in general
ρab(ωk, k)Fba(ωk′, k′) = 0, Fab(ωk, k)Fba(ωk′ , k′) = 0.
As a consequence, only the last term ∝ p�

0 − k�
0 − q�

0 + r�
0

remains in Eq. (68), and J λ(ωp) vanishes identically, cf.
Eq. (71). Hence, a further scaling exponent results since
J 0(p0) vanishes now also for

� = 0 ⇔ κ = d + z − 8

3
+ η

3
. (77)

For z = 2 and η = 0 we obtain κ = d − 2/3. We emphasize
that a fixed dispersion relation or (20) is required to find scaling
with this exponent. Without (20), � = 1 leaves in general
nonvanishing contributions to J 0(p0), Eq. (68), as well as to
J λ(p0), Eq. (71). These terms are in general nonzero since the
frequency dependences of F and ρ allow for collision events
which, as is read off the delta functions in, e.g., Eq. (68),
change the number of wave excitations. Hence, the solution
κQ, Eq. (29) only holds in the quasiparticle limit, Eq. (20). This
finding is consistent with the fact mentioned in Sec. III C that
Kolmogorov’s exponent κQ results under the assumption of a
p-independent radial quasiparticle flux Q(|p|) which in turn
requires the existence of a well-defined quasiparticle number.

C. Scaling exponents in the infrared regime

In this section we show that in the nonperturbative regime
of small frequencies and momenta a different scaling behavior
arises than what is found above for weak wave turbulence.
The exponents

κ = d + z − η (78)

or

κ = d + 2z − η (79)

allow J (p0), Eq. (58) to vanish in the infrared. Despite the fact
that there are strong corrections to kinetic theory in this regime,
we point out that certain properties of the nonperturbative solu-
tions Eq. (78) and Eq. (79) are still similar to the Kolmogorov
solutions Eq. (59) and Eq. (60), respectively. Major differences
concern, apart from the numerical values, properties such as
critical slowing down or universality for the infrared behavior,
which is characteristic for critical phenomena, here far from
equilibrium. Universality of a critical phenomenon requires
that the integral equations, which determine the critical
exponents Eq. (78) and Eq. (79), are dominated by the low-
frequency and -momentum limit such that higher momenta
do not affect the value of exponents. We also emphasize that,
while the perturbative UV solutions are only valid at high
momenta if quantum corrections are neglected, the nonper-
turbative IR solutions are a property of the quantum theory.
Stated differently, classical-statistical fluctuations dominate
over quantum corrections at low momenta, where occupations
numbers are high, such that the quantum and the classical
theory are characterized by exactly the same exponents.

1. Dominant contribution to J

J has three components J = J 0 + J λ + J�, given by
Eqs. (43), (D10), and (D11). Again, we first derive scaling
laws for J 0, J λ, and J� in the IR limit to determine
which of the contributions to J (p) dominates in this regime.
Turning first to J 0 we need to find the scaling behavior
of the effective coupling λeff . As discussed in Appendix E,
if κ > d + z − 4 + η, which according to Eq. (79) requires
η < z/2 + 2, then |�R(p)| � 1 in the denominator of λeff ,
Eq. (39), in the low-momentum limit. Hence, λeff , in the IR
limit, scales like

λeff(szp0, sp) = s2(κ+4−z−d−η)λeff(p0, p)

= s2(z+4−2η)λeff(p0, p). (80)
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In the last line we anticipated the result (79). Now consider
J 0(p) in the low-momentum range. Proceeding through the
same steps as for the UV case one finds the IR scaling of the
three integrals contributing to J (p):

J 0(szp0, sp) = s−κ−ηJ 0(p0, p), (81)

J λ(szp0, sp) = s−d−z+2−ηJ λ(p0, p), (82)

J�(szp0, sp) = s−d−z+2−ηJ�(p0, p). (83)

Comparing these scaling relations we conclude that for κ >

d + z − 2, the integral J 0 dominates in the IR limit. Given the
result (79) this condition requires η < z + 2.

2. Scaling transformations

Taking into account the dominant contributions in the IR
regime (see last paragraph) the stationarity condition (58) reads

J 0(p0)
!= 0. (84)

In the following we show that this leads to a different value
for κ as compared to the UV regime. We obtain, for J 0(p0),
an expression identical to Eq. (66), except that an overall
factor λeff(p + k) multiplies the integrand, cf. Eq. (43). It
is a remarkable property that the main consequence in the
nonperturbative regime is the appearance of a momentum-
dependent effective coupling. As a consequence, in this sense
there is a direct link between the weak-wave-turbulence
analysis in the UV and the calculation of exponents in
the infrared regime of what may be called strong turbulence.

We proceed like in the UV case, splitting the integral such
that it contains only positive frequencies, applying scaling
transformations of the type (F3) and finally combining terms.
We obtain a result similar to (68), but a different expression
for �: As λeff now contributes a scaling factor this results as
[compare Eq. (69)]:

� = 1

z
(κ + η − d − z). (85)

Hence, J 0(p0) vanishes identically if

� = 1 ⇔ κ = d + 2z − η. (86)

This result also holds for the special case of vanishing field,
φ = 0, where J = J 0. The exponent (79) implies a scaling of
the particle number, Eq. (57), as

n(|p|) ∼ |p|−d−z−2+η. (87)

A second solution is obtained from Eq. (85) for � = 0.

� = 0 ⇔ κ = d + z − η. (88)

Given our discussion in Sec. IV B3, this solution requires a
fixed dispersion relation. While in the UV this is described
in terms of a perturbative, i.e., δ-like spectral function, this is
not the case for the infrared properties of critical phenomena.
Here the power-law behavior of the spectral function leads
to dominant contributions in the infrared, i.e., for both
p0 and |p| approaching zero. For a detailed discussion of
this in the context of equilibrium critical phenomena, see
Ref. [43]. In Refs. [6,15] numerical simulations of the classical
equations of motion for a relativistic scalar theory with
quartic self-interactions were presented which demonstrated
the evolution of the system into a turbulent scaling regime

after parametric resonance, confirming perturbative results
for the exponents of weak wave turbulence. New numerical
simulations were presented in Ref. [10], which extend to the
infrared and demonstrate the presence of a strong turbulence
regime with strongly enhanced correlations. Using the 2PI
effective action in NLO 1/N approximation, the properties
of this scaling behavior in the infrared regime are recovered
analytically [10]. The simulations indicate that after parametric
resonance or spinodal decomposition dynamics, the infrared
scaling exponent κ = d + z − η is approached taking z = 1
and η = 0. We emphasize that this is the exponent which
requires a fixed dispersion relation as it is not expected in the
IR regime. Hence the numerical results of Ref. [10], together
with our results indicate that the finite width of the dominant
peak of the spectral function in the IR limit p → 0 allows for
a scaling solution reminiscent of turbulence, corresponding
to the Kolmogorov scaling with κQ in the UV. Moreover,
according to the numerical results this should be approximately
valid and representing a form of “strong turbulence” at small
finite momenta.

D. Thermal scaling

We close our analysis by considering the scaling at the ther-
mal fixed point. The obtained exponents κ = d + z − η and
κ = d + z − 8/3 + η/3 in the IR and UV limits, respectively,
are larger than the exponent for thermal equilibrium: From the
fluctuation-dissipation relation (17) and (18), it follows that,
in the Rayleigh-Jeans limit nBE � 1, i.e., βω ≈ 0 and hence
eβω ≈ 1 + βω, that

Fab(ω, p) ∼ (βω)−1 · ρab(ω, p) (89)

and hence

Fab(szω, sp) = s−2−z+ηFab(ω, p). (90)

As a consequence, the thermal scaling exponent in the large-
momentum limit reads

κ = z − η (thermal equilibrium). (91)

Note that in a Bose gas in the broken, i.e., condensate phase,
at low momenta κ is modified by the interactions. Using the
Bogoliubov dispersion ωp = [εp(εp + 2gφaφa)]1/2, with εp =
p2/2m, which becomes linear in |p| at p2 	 4gφaφa one finds
that, at zero temperature and with η = 0,

κ = 1 (IR limit, T = 0). (92)

Taking into account Eq. (57), κ = z − η leaves, however, the
scaling of the particle number invariant as compared to the
UV, scaling,

n(|p|) ∼ |p|−2+η. (93)

We note that it was shown in Ref. [44], using sum rules for
moments derived from linear response theory that 2np + 1 �
2kBT mφaφa/p

2, which implies that, at finite temperature,
2 − z + κ � 2, i.e.,

κ � z (IR limit, T > 0) (94)

in the infrared limit.
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V. CONCLUSIONS

We have presented a scaling analysis of wave-turbulent
fixed points in the dynamical evolution of a spatially uniform
ultracold Bose gas away from thermal equilibrium. The
analysis was focused on the scattering (self-energy) term of
the dynamical equations for two-point correlation functions,
in nonperturbative next-to-leading-order approximation of a
1/N approximation. The dynamic equations in this approxi-
mation were derived from the 2PI effective action which ensure
the approximated time evolution to obey crucial conservation
laws as those for total energy and particle number.

Searching for a dynamical fixed point was performed by
implementing the necessary condition that the momentum
integral over the scattering term vanishes in a nonthermal
stationary state. Presupposing scaling properties for the cor-
relation functions entering this condition, scaling exponents
were derived for the two-point functions characterizing a
nonthermal stationary state. Such a state, showing nontrivial
scaling properties, is well known in the theory of wave
turbulence. We reproduce the perturbative Kolmogorov scaling
properties discussed, e.g., in Ref. [9], identifying it as the
scaling behavior in the high-frequency regime. We find that
the turbulent spectrum, i.e., the momentum mode occupation,
in d spatial dimensions, behaves like |p|−d−(z−2+η)/3 in this
regime, where d is the number of spatial dimensions, |p|z
the scaling of the dispersion, and η an anomalous dimension
assumed to be small. In deriving this scaling, a possible
nonzero constant condensate field was taken into account, but
the two-to-two scattering events independent of this field were
found to dominate the scaling.

As in the kinetic theory of weak wave turbulence, two
different solutions are found in both the ultraviolet and infrared
limits. Solutions which correspond to a quasiparticle cascade
in the ultraviolet limit require a fixed dispersion relation
between frequency and momentum while it is sufficient to
have energy conservation for the set of solutions which relate
to a scale-invariant energy flux, i.e., an energy cascade. In the
UV the leading-order perturbative approximation with a zero-
width spectral function becomes valid such that kinetic theory
and therefore both scaling solutions apply. At momentum
scales approaching zero the divergence in the spectral function
dominates its behavior such that also in the IR limit both
scaling solutions are relevant.

At low momenta and frequencies we find strong corrections
to the kinetic theory underlying the perturbative Kolmogorov
scaling analysis. A different scaling regime appears in the in-
frared, with significantly enhanced scaling exponents resulting
from the nonperturbative character of the interactions in the
gas. Here the nonperturbative nature of the 2PI 1/N expansion
to NLO is essential to be able to describe this physics. Our
findings confirm analogous results presented for the relativistic
case in Refs. [10,11]. This scaling enhancement should show
up in a strong occupation of low-momentum modes, rising
with a power law n(p) ∼ |p|−d−z−2+η, as compared to the
above quoted Kolmogorov scaling for high-momentum modes.
Since the phenomenon occurs in the deep infrared, the
scaling behavior comes with distinctive properties such as
critical slowing down and universality characteristic for critical
phenomena. Our analysis shows that this far-from-equilibrium

critical dynamics can be understood as a strong turbulence
phenomenon.

Based on our results we propose to study turbulence
phenomena in dilute ultracold gases with hindsight to the
scaling properties of correlation functions, in particular of
the momentum distribution of particles in the gas. It would be
striking to find experimentally the predicted strong turbulence
regime, which would have important consequences also in
other areas of physics such as early-universe cosmology where
similar phenomena can crucially determine the thermal history
of our universe.
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APPENDIX A: NOTATION

We chose the (+ − −−) convention for the Minkowski met-
ric. The Minkowski product between four-vectors p = (p0,

p1, p2, p3) = (p0, p) = (ω, p) and x = (x0, x1, x2, x3) =
(x0, x) = (t, x) is then px = p0x0 − p · x. Functions of
four-vectors are Fourier-transformed with the Minkowski
product as follows: F[f (p)](x) = f (x) = (2π )−4

∫
d4p exp

{−ipx}f (p), F[f (x)](p) = f (p) = ∫
d4x exp{ipx}f (x). In

d < 3 spatial dimensions all definitions are analogous.
Function letters denote both the function and its Fourier

transform. The argument specifies which of the two is meant.
The following convention is used for convolutions:

(f ∗ g)(x) =
∫

dd+1y f (y)g(x − y), (A1)

(f ∗ g)(p) =
∫

dd+1q

(2π )d+1
f (q)g(p − q). (A2)

The convolution theorem is then

F[(f ∗ g)](x) = (fg)(x) = f (x)g(x), (A3)

F[(f ∗ g)](p) = (fg)(p) = f (p)g(p), (A4)

and the inverse versions are F[(fg)](x) = (f ∗ g)(x),
F[(fg)](p) = (f ∗ g)(p). Arguments are often written as
subscripts or dropped completely if clear from the context,

h(x) = f (x)g(x) = fxgx = fg. (A5)

For compactness, matrix indices are sometimes written above
function letters:

Fab(p) = ab

F (p) = ab

F p . (A6)
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Contractions of the matrices F , ρ, etc., are written as follows:

Fabρab = (Fρ). (A7)

APPENDIX B: THE 2PI EFFECTIVE ACTION APPROACH
TO NONEQUILIBRIUM DYNAMICS

In this appendix we review aspects of the 2PI effective
action approach to nonequilibrium dynamics. For introductory
texts see, e.g., Refs. [35,36].

1. 2PI effective action

For a given initial-state density matrix ρD(t0) characterizing
a system far from equilibrium, all information about the
quantum field theory is contained in the generating functional
for correlation functions:

Z[J,K; ρD] = Tr

[
ρD(t0)TC exp

{
i

(∫
x,C

J C
a (x)�a(x)

+ 1

2

∫
xy,C

�a(x)RC
ab(x, y)�b(y)

)}]
, (B1)

with Heisenberg field operators �a(x) obeying the non-
relativistic commutation relations (1). In Eq. (B1), TC denotes
time ordering along the closed time path C leading from
the initial time t0 along the real time axis to some arbitrary
time t and back to t0, with

∫
x,C ≡ ∫

C dx0
∫

ddx. Contour time
ordering along this path corresponds to usual time ordering
along the forward piece C+ and antitemporal ordering on the
backward piece C−. Note that any time on C− is considered
later than any time on C+. The source terms in Eq. (B1) allow
to generate correlation functions by functional differentiation
such as

〈TC�(x1) · · ·�(xn)〉 = δnZ[J,K; ρD]

inδJ (x1) · · · δJ (xn)

∣∣∣∣
J,K≡0

, (B2)

where the field indices have been suppressed, xi = (x0,i , xi) is
a d + 1-dimensional coordinate, and we have used that for the
closed time path Z = 1 in the absence of sources.

In order to obtain the dynamical evolution of the system, i.e.,
the time dependence of the correlation functions (B2) requires
precise knowledge of the generating functional Z. For most
nontrivial practical applications it is, however, not feasible to
directly compute Z, e.g., by use of Monte Carlo techniques.
In contrast to many cases of imaginary-time evolution in
equilibrium this is prevented by a variant of the sign problem.
A possible way out is the reformulation of the problem in
terms of an effective action functional. The final aim of this
approach is the derivation of time evolution equations for
certain correlation functions of interest, in particular for the
lowest-order connected correlation functions or cumulants as
defined in Eqs. (4) and (5).

The functional derivative relations (B2) which determine
these two correlation functions are rewritten into stationarity
requirements of an effective action functional [φ,G] with
respect to its arguments φ and G.  is obtained by a double
Legendre transform of the Schwinger functional W [J,R] =
−i ln Z[J,R] with respect to the source fields J and R

introduced in the definition (B2) of the generating functional

Z. The result is the 2PI effective action

[φ,G] = (1loop)[φ,G] + 2[φ,G], (B3)

where

(1loop)[φ,G] = S[φ] + i

2
Tr

(
ln G−1 + G−1

0 G
) + const.

(B4)

denotes the one-loop part obtained in a saddle-point approxi-
mation of the generating functional Z involving the classical
action S and the classical inverse propagator

iG−1
0,ab(x, y) = i

δ2S[φ]

δφa(x)δφb(y)
. (B5)

The trace in Eq. (B4) includes sums over all internal and
space-time indices. The functional S depends on the classical
field only and defines the underlying model to be considered.
A particular class of models considered in this article will be
defined in Sec. II A below.

The stationarity requirements for  with respect to φ and
G,

δ[φ,G]

δφa(x)
= −Ja(x) −

∫
y

Rab(x, y)φb(y), (B6)

δ[φ,G]

δGab(x, y)
= −1

2
Rab(x, y), (B7)

are equivalent to the equations of motion of φa and Gab.
If the initial state ρD(t0) is taken to be Gaussian, then only

the above introduced cumulants φa(t0, x) and Gab(t0, x; t0, y)
are nonzero at t = t0. Then, the initial state ρD(t0), in the
generating functional Z, can be absorbed into the sources J

and R at t = t0. As a consequence, these sources can be set
identically to zero in the equations of motion, (B6) and (B7),
which thus close and describe the evolution of an isolated
system starting in a state defined only by the first- and second-
order cumulants at initial time t0.

2. Dynamic equations

The effective-action approach defined in Eqs. (B3) and (B4)
is, so far, valid for a general class of models describing the
evolution of a nonrelativistic bosonic field �a(x). In Eqs. (2)
and (3) we have specified the particular model by defining the
classical action functional S.

Given the classical action, the contribution 2[φ,G] to
the 2PI effective action, see Eq. (B3), is defined in terms
of an infinite series of all possible 2PI diagrams without
external legs, formed from the bare four-vertex defined by
the interaction part in Eq. (2), full propagators Gab(x, y),
and classical field insertions φa(x), i.e., of all such diagrams
which do not fall apart on opening at most two lines G.
From the resulting 2PI effective action the dynamic equations
are determined by functional differentiation as defined in
Eqs. (B6) and (B7). Since in general 2 is an infinite series,
also the resulting equations contain an infinite number of terms
of increasing order in the number of bare couplings, internal
lines G and fields φ. To obtain a practically solvable set of
equations the diagrammatic series 2 needs to be truncated as
discussed in more detail in Sec. II B in the main text.

While a more detailed account of the standard procedures
summarized above is beyond the scope of this article we point
out that the principal reason for deriving the equations of
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motion for φ and G by use of a stationarity condition is that
the resulting equations conserve particle number and energy
irrespective of the particular truncation of 2. In any such
truncation the equations of motion imply a totally conserved
particle current density jκ (x) = (ρ(x), j(x)) as well as energy
momentum tensor Tκλ(x) with ∂κjκ (x) = 0 and ∂κTκλ(x) = 0,
respectively. Integrated over space, these relations describe
the conservation of total particle number and energy. This
important feature forms a necessary requirement for the
resulting equations to be applicable to long-time dynamics,
i.e., most notably, not to lead to secular evolution in this limit.

APPENDIX C: 2PI SELF-ENERGY

From the 2PI effective action the self-energies (14) in two-
loop order, for φ ≡ 0, are found as(

�F
ab(x, y)

− 1
2�

ρ

ab(x, y)

)
= − λ

N

{(
RF

ab(x, y)

− 1
2R

ρ

ab(x, y)

)

+
(

�F (x, y) 1
2�ρ(x, y)

− 1
2�ρ(x, y) �F (x, y)

) (
Fab(x, y)

− 1
2ρab(x, y)

)}
, (C1)

with (F 2 = FabFab, etc.)(
�F (x, y)

�ρ(x, y)

)
= λ

2N

(
F (x, y)2 − 1

4ρ(x, y)2

2Fab(x, y)ρab(x, y)

)
(C2)

and (
RF

Rρ

)
= λ

N

(
F 3 − 1

4 (Fρ2 + ρFρ + ρ2F )

F 2ρ + FρF + ρF 2 − 1
4ρ3

)
, (C3)

where (F 3)ab(x, y) = Fac(x, y)Fdc(x, y)Fdb(x, y), (Fρ2)ab

(x, y) = Fac(x, y)ρdc(x, y)Fdb(x, y), and so on.
For the 2PI effective action in NLO of the expansion

in 1/N , 2[φ,G] = LO
2 [φ,G] + NLO

2 [φ,G] the diagram-
matic expansion of which is shown in Fig. 1 we obtain, using
Eq. (13), the self-energies (14) as(

�F
ab(x, y)

− 1
2�

ρ

ab(x, y)

)
= − λ

N

{(
IF (x, y)

− 1
2I ρ(x, y)

)
φa(x)φb(y)

+
(

�F (x, y) 1
2�ρ(x, y)

− 1
2�ρ(x, y) �F (x, y)

)(
Fab(x, y)

− 1
2ρab(x, y)

)}
, (C4)

where �F,ρ(x, y) = IF,ρ(x, y) + P F,ρ(x, y; IF,ρ). The re-
summation to NLO in 1/N is taken care of by the coupled
integral equations for IF,ρ [36]:(

IF (x, y)
I ρ(x, y)

)
=

(
�F (x, y)

�ρ(x, y)

)

−
∫ x0

t0

dzIρ(x, z)

(
�F (z, y)

�ρ(z, y)

)

+
∫ y0

t0

dz

(
IF (x, z)

I ρ(x, z)

)
�ρ(z, y). (C5)

The functions P F,ρ , which contribute to �F,ρ in the self
energies (C4) and vanish if φi ≡ 0, read [33]

P F (x, y; IF,ρ) = − λ

N
{
HF (x, y)

+
∫ y0

t0

dz[HF (x, z)I ρ(z, y) + IF (x, z)Hρ(z, y)]

−
∫ x0

t0

dz[Hρ(x, z)IF (z, y) + I ρ(x, z)HF (z, y)]

−
∫ x0

t0

dv

∫ y0

t0

dwIρ(x, v)HF (v,w)I ρ(w, y)

+
∫ x0

t0

dv

∫ v0

t0

dwIρ(x, v)Hρ(v,w)IF (w, y)

+
∫ y0

t0

dv

∫ y0

v0

dwIF (x, v)Hρ(v,w)I ρ(w, y)
}
, (C6)

P ρ(x, y; IF,ρ) = − λ

N
{
Hρ(x, y)

−
∫ x0

y0

dz[Hρ(x, z)I ρ(z, y) + I ρ(x, z)Hρ(z, y)]

+
∫ x0

y0

dv

∫ v0

y0

dwIρ(x, v)Hρ(v,w)I ρ(w, y)
}
, (C7)

wherein the functions HF,ρ are defined as

HF (x, y) = −φa(x)Fab(x, y)φb(y),
(C8)

Hρ(x, y) = −φa(x)ρab(x, y)φb(y).

APPENDIX D: STATIONARITY CONDITION

1. General discussion

In this appendix we present a proof of Eq. (16): Consider
the dynamic equation (10) for translationally functions F , ρ,
and φ, obeying (15), with y set to zero:

[
iσ 2

ac∂x0 + Mac

]
Fcb(x) = −

∫ x0

−∞
dd+1z�ρ

ac(x − z)Fcb(z)

+
∫ 0

−∞
dd+1z�F

ac(x − z)ρcb(z)

(D1)

with

Mac = δac

{
− ∇2

x

2m
+ g

2
[φdφd + Fdd (0)]

}
+ g[φaφc + Fac(0)]. (D2)

Contracting over indices a = b, and using the symmetry prop-
erties σ 2

ab = −σ 2
ba , Fab(x) = Fba(−x), Ḟab(x) = −Ḟba(−x)

and (∂2
j Fab)(x) = (∂2

j Fba)(−x), one finds that the left-hand
side of Eq. (D1) is invariant under x → −x. Considering
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the right-hand side of Eq. (D1), and using the further
symmetry properties ρab(−x) = −ρba(x), �F

ab(−x) = �F
ba(x)

and �
ρ

ab(−x) = −�
ρ

ba(x) following from Eqs. (C4)–(C8) one
finds, adding Eq. (D1) and minus its counterpart with the sign
of x reversed and summing over a = b, that

0 =
∫

dd+1z
[
�

ρ

ab(x − z)Fba(z) − �F
ab(x − z)ρba(z)

]
(D3)

which, by the convolution theorem, proves the stationarity
condition (16). Following the above line of argument for
the dynamic equation (11) for ρ immediately shows that
the condition corresponding to Eq. (D3) is automatically
fulfilled.

2. Field-dependent contribution to J

In this appendix we first sketch the derivation of Eqs. (46)
and (47) and finally quote the momentum-integral expressions
for J λ (49) and J� (50). In the translationally invari-
ant case, cf. Eq. (15), the integrals P F and P ρ can be
written, using the notation introduced in Appendix A and
Sec. III D1, as

P F (x) = gφaφb

(
Fab + Fab ∗ IA + IF ∗ GA

ab

− GR
ab ∗ IF − IR ∗ Fab − IA ∗ Fab ∗ IR

+ IF ∗ GR
ab ∗ IR + IA ∗ GA

ab ∗ IF
)
, (D4)

P ρ(x) = gφaφb

(
ρab − GR

ab ∗ I ρ + ρab ∗ IA

− IR ∗ ρab + I ρ ∗ GA
ab + GR

ab ∗ I ρ ∗ IR

− ρab ∗ IA ∗ IR + GA
ab ∗ IA ∗ I ρ

)
, (D5)

with the retarded and advanced propagators

GR
ab(x) = θρab, GA

ab(x) = θ−ρab. (D6)

The above expressions for P F and P ρ can be cast into a
compact form with the help to λeff and �ab, to be defined
below. Consider the complex conjugate of Eq. (40),

(1 + θ− ∗ I ρ)(1 − �A) = 1 (D7)

obtained with �R(p)∗ = −�A(p), I ρ(p)∗ = −I ρ(p), and
θ (p)∗ = θ−(p). Hence

λeff(p) = 1

(1 + �R)(1 − �A)
= (1 − θ ∗ I ρ)(1 + θ− ∗ I ρ).

(D8)

We furthermore define

�ab(p) = 2Re

(
GR

ab

1 + �R

)
= GR

ab

1 + �R
+ −GA

ba

1 − �A

= (θ ∗ ρab) − (θ− ∗ ρba) − (θ ∗ ρab)(θ ∗ I ρ)

− (θ− ∗ ρba)(θ− ∗ I ρ). (D9)

Now, going over to momentum space and rearranging terms
in Eqs. (D4) and (D5), one obtains Eqs. (46) and (47).

We close this appendix by quoting the momentum-integral
expressions for J λ, Eq. (49), and J�, Eq. (50):

J λ(p) = g2

2(2π )4
φaφb

∫
dd+1kdd+1qδp−k−q

×
[
λeff

p

(
ab
ρp

cd

F k

cd

F q − ab

F p

cd
ρ k

cd

F q − ab

F p

cd

F k

cd
ρ q

)

+ λeff
k

(
cd
ρp

ab

F k

dc

F q − cd

F p

ab
ρ k

dc

F q − cd

F p

ab

F k

dc
ρ q

)
+ λeff

q

(
cd
ρp

dc

F k

ab

F q − cd

F p

dc
ρ k

ab

F q − cd

F p

dc

F k

ab
ρ q

)]
,

(D10)

J�(p) = − g3

2(2π )8

∫
dd+1kdd+1qdd+1rδp+k−q−r�p+k

×
(

ab
ρp

ab

F k

cd

F q

cd

F r + ab

F p

ab
ρ k

cd

F q

cd

F r

− ab

F p

ab

F k

cd
ρ q

cd

F r − ab

F p

ab

F k

cd

F q

cd
ρ r

)
. (D11)

Here we have introduced a compact notation for matrix indices
and momentum dependence, e.g.,

ab
ρp= ρab(p). (D12)

Expression (D11) can be combined with J 0, Eq. (43), to J 4,
Eq. (52) to

J 4(p) = g2

2(2π )8

∫
dd+1kdd+1qdd+1rδp+k−q−r

× λeff
p+k(1 − gφaφb�ab)

×
(

ab
ρp

ab

F k

cd

F q

cd

F r + ab

F p

ab
ρ k

cd

F q

cd

F r

− ab

F p

ab

F k

cd
ρ q

cd

F r − ab

F p

ab

F k

cd

F q

cd
ρ r

)
. (D13)

APPENDIX E: SCALING PROPERTIES

The scaling properties for ρ and F are given in Eqs. (53)
and (54), respectively. In general, if two functions f and g

scale like

f (szp0, sp) = s−γ f (p) and g(szp0, sp) = s−δg(p),

it follows that their convolution scales like

(f ∗ g)(szp0, sp) = sz+d−γ−δ(f ∗ g)(p). (E1)

Hence, �ρ(p) = g(F ∗ ρ), scales as

�ρ(szp0, sp) = sz+d−4+2η−κ�ρ(p), (E2)

The Fourier-transformed step function θ (p) ∼∫
dd+1xeipxθ (x) scales as

θ (szp0, sp) = s−z−dθ (p). (E3)

By the scaling rule for a convolution (E1), we see that the
retarded function �R(p) = θ ∗ �ρ scales like �ρ :

�R(szp0, sp) = sz+d−4+2η−κ�R(p). (E4)

If κ > z + d − 4 + 2η, |�R(p)| � 1 in the IR, and one can
neglect the 1 in the denominator of λeff = |1 + �R|−2,

λeff(szp0, sp) = s2(κ+4−z−d−2η)λeff(p) (IR). (E5)

In the UV limit, |�R(p)| 	 1, thus

λeff(p) = 1 (UV limit). (E6)

According to Eq. (E1), the retarded propagator (D6),
GR

ab(p) = θ ∗ ρab, scales like ρ:

GR
ab(szp0, sp) = s−2+ηGR

ab(p), (E7)
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�ab(p) = 2�[GR
ab/(1 + �R)], Eq. (48), as

�ab(szp0, sp) = sκ−d+2−z−η�ab(p) (IR), (E8)

�ab(szp0, sp) = s−2+η�ab(p) (UV). (E9)

Finally, �(p) = ϕaϕb�ab · λeff , Eq. (51), scales as

�(szp0, sp) = s3(κ−d−z)+5(2−η)�(p) (IR), (E10)

�(szp0, sp) = s−2+η�(p) (UV). (E11)

APPENDIX F: SCALING TRANSFORMATIONS

Scaling transformations are extensively used within the
Kolmogorov-Zakharov theory of wave turbulence [9]. In
this appendix we briefly describe the scaling transfor-
mation used in Secs. IV B and IV C to derive scaling
exponents.

The scaling transformation allows to exchange two vari-
ables in an integral expression despite the fact that one of
them is a free variable, if the functions of the integrand obey a
scaling property: Consider an integral which has the form of the
scattering integral J 3(p) integrated over the spatial momenta,
J 3(p0) = J λ(p0), see Eqs. (D10), (58) [p = (p0, p), etc.]:

I (p0) =
∫

k0,q0>0
ddpdd+1kdd+1qδ(p − k − q)f (p)g(k)h(q),

(F1)

with p0 > 0, and f , g, and h obeying the scaling laws

f (szp0, sp) = s−γ f (p0, p),

g(szp0, sp) = s−δg(p0, p), (F2)

h(szp0, sp) = s−εh(p0, p).

The following transformations allows to swap p and k [10,11]:

p0 = p0

k′
0

k′
0; k0 = p0

k′
0

p0; q0 = p0

k′
0

q ′
0

(F3)

p =
(

p0

k′
0

) 1
z

k′; k =
(

p0

k′
0

) 1
z

p′; q =
(

p0

k′
0

) 1
z

q′

leading to the result

I (p0) =
∫

k0,q0>0
ddpdd+1kdd+1qδ(k − p − q)f (k)g(p)h(q)

× (p0/k0)−β, (F4)

where

−β = 1

z
(2d + 2z − γ − δ − ε). (F5)

Hence, the arguments p and k are exchanged at the cost
of a factor (p0/k′

0)−β which involves the scaling expo-
nents. The scaling transformations applied in Secs. IV B and
IV C on the integrals contributing to J 4(p0) which involve
one more frequency-momentum integration are performed
analogously.
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