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We study the dynamics of the relative phase of a bilayer of two-dimensional superfluids after the two superfluids
have been decoupled. We find that on short time scales the relative phase shows “light cone”-like dynamics and
creates a metastable superfluid state, which can be supercritical. We also demonstrate similar light cone dynamics
for the transverse field Ising model. On longer time scales the supercritical state relaxes to a disordered state
due to dynamical vortex unbinding. This scenario of dynamically suppressed vortex proliferation constitutes a
reverse-Kibble-Zurek effect. We study this effect both numerically using truncated Wigner approximation and
analytically within a newly suggested time dependent renormalization group approach (RG). In particular, within
RG we show that there are two possible fixed points for the real-time evolution corresponding to the superfluid and
normal steady states. So depending on the initial conditions and the microscopic parameters of the Hamiltonian
the system undergoes a nonequilibrium phase transition of the Kosterlitz-Thouless type. The time scales for the

vortex unbinding near the critical point are exponentially divergent, similar to the equilibrium case.
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I. INTRODUCTION

The technological advances of trapping and manipulating
ultracold atom systems provide an opportunity to study
many-body dynamics with unprecedented clarity. The real-
ization of Bose-Einstein condensates (BEC) in ultracold atom
systems [1], the Mott insulator transition [2], the BEC-BCS
transition [3], and the Kosterlitz-Thouless transition [4-6]
demonstrated that this technology can be used as a quantum
simulator of many-body phases. Here, the static state of a
system in equilibrium is created and studied. Various dynam-
ical aspects of ultracold atom systems were also probed, such
as dipole oscillations [7], vortex excitations [8], and soliton
dynamics [9], absence of equilibration in one-dimensional
bosonic systems [10], spontaneous formation of vortices in
spinor condensates [11], and many others (see Ref. [12]
for a recent review). In Ref. [13], vortices excitations were
created via laser stirring. In these experiments, the dynamics
of only a few degrees of freedom were studied, such as the
center-of-mass motion, or the dynamical evolution of a vortex.
These experimental developments stimulated a considerable
theoretical interest in understanding nonequilibrium quantum
dynamics including the analysis of dynamics following sudden
quenches [14], studying connections between dynamics and
thermodynamics [15], and dynamics through quantum critical
points [16].

The focus of this article is a detailed analysis of the
full many-body dynamics following the quench in a two-
dimensional quantum rotor model. Physically we imagine the
situation where two initially strongly coupled superfluids are
suddenly separated and we are interested in the evolution of
the relative phase between the two superfluids. In particular, we
will be interested in the question of how the system relaxes to
the equilibrium state. We note that experiments in a similar
setup involving separation of two one-dimensional (1D)
superfluids were reported in Ref. [17] and the corresponding
theoretical analysis was done in Refs. [18-20]. Unlike the
two-dimensional (2D) case, phonon fluctuations in 1D result
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in the exponential decay of the correlation functions and
nonlinear effects in the form of phase slips do not bring
qualitative changes to the behavior of the correlation functions
at least at low initial temperatures [19].

In equilibrium for the uncoupled layers, there are two
possible phases. At low temperatures atoms in each layer
(which we regard as identical) form a (quasi)superfluid phase
while at high temperatures they form a normal Bose gas. These
phases can be distinguished by the long-range behavior of
the single particle correlation function G(x) = (B10)b(x)) =~
plexp{il¢(x) — ¢(0)]}), where b(x) is the single particle oper-
ator, p is the atom density, and ¢ is the phase. We note that a
rotor representation of bosons b(x) ~ +/p(x) exp[i $(x)] is pos-
sible when the healing length characterizing the characteristic
length scale of density fluctuations is short compared to other
length scales in the problem. Under the same conditions the
density fluctuations are negligible if we are interested in long
distance physics. In the superfluid phase this function shows
algebraic scaling G(x) ~ |x|~*/4, where the scaling exponent
T is proportional to the temperature t ~ T/ T,, with T, being
the Kosterlitz-Thouless temperature. At the transition point
we have G(x) ~ [x|~!/4. Above the transition, the correlation
function shows exponential scaling G(x) ~ exp(—|x|/&), with
some correlation length &, which diverges near the transition
temperature. The algebraic scaling of the superfluid phase is
due to the thermally excited phonon (Bogoliubov’s) modes. In
two dimensions these fluctuations generate quasilong-range
order, rather than true long-range order. The transition to
the exponential regime is due to vortex excitations. Above
the transition, vortex-antivortex pairs are deconfined so that
vortices and antivortices become unbound. These excitations
generate a much more disordered phase field, which leads to
exponential scaling of the correlation function.

If we couple the two superfluids with a hopping term
in the temperature regime of the critical temperature, the
system forms a phase-locked state, see Refs. [21,22]. Here
the correlation function of the relative phase scales as
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G(x) ~ exp(—|x|/&) + C, where C # 0 and &; is the correla-
tion length of the phase-locked state. In this state the relative
phase is well aligned over long distances; its fluctuations are
strongly suppressed. We then turn off the hopping and study
the evolution of the system.

In this article we show that the relaxational dynamics occur
in two stages. The first fast stage, which we will term light
cone relaxation, establishes a metastable quasi-equilibrium
state of phonons (or Bogoliubov excitations) characterized
by effective nonequilibrium temperature (in principle this
metastable state can be completely nonthermal). During this
stage the correlations between two arbitrary points in space
x; and Xy, G(X1, Xp, ), where ¢ is the time after the quench,
initially decay in time, independent of their spatial separation
X = |X; — Xp| because these points are not causally connected:
G(x1, Xy, 1) ~ 1/t%, where « is a power-law exponent related
to the parameters of the system. At alater time t*, when the con-
dition 2ut* = x is fulfilled, these correlations (approximately)
freeze in time so that G(Xj, X, ) ~ 1/x“. The exponent « thus
defines the nonequilibrium phonon temperature in the system.
Because this first stage of dynamics involves only phonons,
the exponent « can exceed the maximally allowed equilibrium
value of one-fourth, leading to a nonequilibrium super-critical
metastable state, which can be thought of as a supercritical
superfluid. It is analogous to an overheated classical liquid,
for which a liquid state can be sustained above the critical
temperature if the creation of defects is avoided. We find
that the power law can be substantially above the critical
scaling, and furthermore, that this metastable can be very
long lived.

At longer time scales, vortex-antivortex pairs emerge
and proliferate leading to the true equilibrium state. This
process occurs at much longer time scales. We describe
this thermalization process both numerically, using truncated
Wigner approximation (TWA) and analytically. In particular,
we show that thermalization (here corresponding to the process
of vortex-antivortex proliferation) can be understood by
extending renormalization group ideas to real time dynamics.
By doing partial averaging over fast oscillating high-energy
degrees of freedom, we can rewrite the equations of motion
of slower degrees of freedom through renormalized coupling
constants. As in the case of equilibrium systems we observe
two possible scenarios corresponding to vortex-antivortex
pairs being irrelevant (superfluid phase) or relevant (normal
phase). Thus we are able to see how the system relaxes to one
of the phases in real time. Divergent time (and length) scales in
equilibrium systems translate into divergent relaxation times
required to reach thermalization in the nonequilibrium case.

Physically this decay of the metastable superfluid state to
the new equilibrium is very reminiscent of the Kibble-Zurek
(KZ) effect [23,24]. The latter describes a ramp across a phase
transition, starting on the disordered side. If the ordered state
supports topological excitations, like vortices, then one expects
very slow relaxation of the resulting state to the equilibrium
due to vortex-antivortex recombination. This scenario is illus-
trated in Fig. 1(a): In the disordered phase we have excitations
such as phonons, as well as topological defects. When we apply
a fast ramp across the phase transition, the phonon excitations
thermalize on very short time scales, while topological defects
can exist on much longer time scales. The mechanism of
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FIG. 1. (Color online) Illustration of the Kibble-Zurek (KZ)
mechanism, which describes ramping across a phase transition from
the disordered phase and its counterpart, the reverse-Kibble-Zurek
(rKZ) effect. The latter describes ramping across a transition from
the ordered side. Its defining feature is the dynamical suppression of
vortex unbinding, which happens on a much longer time scale than
the appearance of phononic excitations. We propose to study the rKZ
in a bilayer of 2D superfluids of ultracold atoms by decoupling the
superfluids and measuring the dynamics of the relative phase.

relaxation in our case is exactly complimentary and can be
termed as a reverse Kibble-Zurek effect. Here, the ramp across
a phase transition starts from the ordered side, as illustrated
in Fig. 1(b). In the ordered phase both phonon excitations and
vortices are suppressed. When the system is ramped across
the transition, phonons are generated on a fast time scale.
However, vortices are generated at much longer time scales
leading to the long-lived supercritical superfluid state. We
point out that, in thermally isolated systems (like cold atom
systems), it is much easier to observe the reverse KZ effect
because the disordered phase usually corresponds to a higher
temperature. In isolated systems it is relatively easy to increase
temperature by quenching some parameter, while decreasing
temperature requires much more effort and can be done only
in open systems.

This article is organized as follows: In Sec. II we introduce
the numerical method that we use and find that at short time
scales the system shows light cone dynamics. In Sec. III we
consider the linearized dynamics of the bilayer system. Within
this approximation both light cone dynamics and the emerging
superfluid state can be understood. In Sec. IV we study the light
cone dynamics of a solvable model, the transverse Ising model.
In Sec. V we study dynamical vortex unbinding both with
truncated Wigner approximation and with a renormalization
group approach. We note that a short version of this article with
some of the results was published earlier [25]. Here we expand
the earlier treatment, present additional results and derivations,
and formulate the real-time renormalization group approach
that explains the numerical results.
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II. MICROSCOPIC MODEL AND THE TRUNCATED
WIGNER APPROXIMATION

In this section we present the model that we use in our
numerical approach. We consider two 2D (quasi)condensates
that are aligned in parallel to each other that are coupled by a
hopping term which is then turned off. This can be achieved
by increasing the potential between the two condensates. The
coarse-grained Hamiltonian describing the relative phase ¢; of
the two superfluids corresponds to an XY model, to which we
add a hopping term to describe the phase-locking in the initial

state
H=2 [— 3 Ecostn — ¢+ o= S n?
0 T ' / i =~

<ij>

—V() Z cos(\/iqb[)], (D

where € is an overall (Josephson) energy scale and «
describes the ratio of kinetic and potential energies. We
can formally replace these parameters by Qok/m = 2Jn,
w20 /k = U (so that Qy = /2JnU, k =m+/2Jn/U) and
V(t) = 2J, (t)n/ 2o, which gives a representation of two cou-
pled Bose-Hubbard systems in the quantum rotor limit [26]. In
this limit the Bose operators are replaced by the phase-density
representation and the fluctuations of density are assumed to
be small. In the Bose-Hubbard model J is the in-plane hopping
amplitude, U is the on-site interaction energy, n is the filling
number (i.e., the number of particles per site) and J, is the
interlayer hopping amplitude J, . This representation gives, at
best, a qualitative idea of how the model parameters relate to
the parameters in the experiment, but gives a more intuitive
picture. We note that one can think about the continuum limit
as discrete, where the lattice constant is approximately given
by the zero-temperature healing length in the system (i.e., the
length over which density fluctuations are suppressed).

We emphasize that despite the Berezinskii-Kosterlitz-
Thouless (BKT) transition being classical in origin (i.e., driven
by thermal fluctuations) the mechanism of vortex or phonon
creation in the process we consider comes from quantum
fluctuations. Indeed when the superfluids are strongly coupled
together the density (which plays the role of momentum
conjugate of the phase) strongly fluctuates because of the
zero point motion. The heating mechanism of this system can
be thought of as an enhancement of this zero point motion
following the quench.

It is convenient to introduce the rescaled quantities 7 =
Qot/h, ¢ =,/5¢ and i =,/Zn. In terms of these, the
classical equations of motion (EOM’s) are

d¢; ~
g7 = 2

di; 2 Z ('3("5/' "")) FVOBsingF. ()

where we defined 8 = /27 /k. The indices j; describe the
four neighboring sites of site i.

We model the relative phase using a numerical implemen-
tation of the truncated Wigner approximation (TWA) (see
Ref. [27] for a review): The expectation of any quantity at
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some time ¢ > 0 can be determined by sampling over a Wigner
distribution at time ¢ = 0 and solving the classical equations
of motion from O to . This approximation is guaranteed to
be accurate at short times [28,29]. This approximation is also
exact for any quadratic theory so we expect it to be accurate
in the first (light cone) stage of dynamics primarily driven by
phonon excitations. In our case we expect that TWA is also
valid at longer times because when vortex-antivortex pairs
start to emerge the system already reached the metastable state
corresponding to the finite effective temperature. At this point
quantum fluctuations become suppressed by much stronger
thermal fluctuations driving the slow vortex dynamics.

We solve these EOM’s for initial conditions that are
distributed according to the Wigner distribution at r = 0. We
can calculate this distribution under the assumption that J,
is larger than the other energy scales at r = 0. In this limit
the phase fluctuations are small and can be described within
the Bogoliubov approximation, where the system reduces to a
sum of oscillators. The Fourier modes ¢, and i, at t = 0 are
distributed according to (see Ref. [29])

72 26272
W ~exp|— ¢§ _ ) “)
0, Tq rq
where o =1/,/2w,, r;=coth(w,/2Ty), and w,; =
\/4 sin(q,/2)> + 4sin(q,/2)> + VB>, with T, being the

initial temperature. Note that, formally, w, diverges at
V — oo. This divergence is unphysical, being an artifact of
using Hamiltonian (1) in the number phase representation. In
reality when J, becomes very large the transverse Josephson
frequency saturates at w =~ 2J,. This happens at V ~ n or
equivalently J, ~ Un. So for very strong initial coupling one
can still use distribution (4) with V — n.

To visualize our simulations we show an example for a
single run of the system on a 20-by-20 lattice in Fig. 2. The
direction of the arrows on each lattice point describe the phase
¢;. We show “‘snapshots” at various times. The plaquettes
around which there is a phase winding of +27 are marked as
vortices and antivortices. We see that, at r = 0, the phases are
well aligned due to the coupling between the layers, with some
small quantum fluctuations described by the Wigner function.
The coupling is then turned off, vortices and antivortices are
created pairwise, and unbind on a long time scale, as we
will discuss further on. To extract expectation values of our
observables from our simulations, we have to average them
over many realizations of initial fluctuations.

We use this method to extract the equal time correlation
function

G(x, 1) = (expliv2¢;(t) — iN21.(D)]), (5)

where x is an integer separation between the points and ¢ is
the time after decoupling (see Fig. 3). Because we are using
periodic boundary conditions G(x,t) depends only on the
separation between the points x and does not depend on j. Note
that this correlation function [or rather f(f dx'G(x', )] can
be directly measured in interference experiments [5,17,30].
We indeed see a very clear emergence of the light cone
thermalization: At separations larger than 2v¢, where v
is the characteristic phonon velocity, G(x,t) is almost x
independent—it uniformly decreases in time. Once 2vt > x
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FIG. 2. (Color online) We simulate the dynamics of the relative
phase of two 2D superfluids by solving the equations of motion and
by averaging over the Wigner distribution of the initial state. A single
run is shown here for V = 100, k = 10, and T = 2, at the times
t=0,5, 10, 20, 40, 100. Vortices are marked red, antivortices blue.

the correlations freeze in time and depend only on x. The
quantities in the system were rescaled such that the phonon
velocity is set to 1.

We find that the state that emerges within the light cone
shows algebraic scaling and therefore can be referred to as a
superfluid.

III. LINEARIZED DYNAMICS

In this section we study the linearized dynamics of the
system. Within this description, both the light cone dynamics
and the metastable superfluid (SF) state can be understood.
The quadratic Hamiltonian describing the relative phase of

FIG. 3. (Color online) Plot of short-time behavior of the correla-
tion function as a function of time and space, at temperature 7 = 3,
for k = 10 and V = 20. The dynamics separate into instantaneous,
damped oscillatory behavior, and a “light cone” -like pulse.
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two coupled superfluids reads

Hy = / d*r (—2%0(%)% ‘%& + @nz). (6)

2
v is the phonon velocity of the SF, approximately given by
v = 4/gn/m. ry is the short-range cutoff of the system, of the

order of the healing length. J = v/rj is the KT energy. The
term g ¢>/2 is created by the hopping term of the bilayer. It
is approximately given by g, = 4J, n. We note that when this
Hamiltonian is put on a lattice with a lattice constant r; we
obtain

roxe (G — )7 gt . To
H = Q —_— ! . —Nn-
! OZ 7 Z 7 T T

Ji
(7

This expression can be also obtained directly linearizing the
original Hamiltonian (1). The index j; here describes the four
neighboring sites of the site i and n; is the filling fraction,
related to the density vian; = nr,z. Q is related to the phonon
velocity as 29 = v/r;. We therefore find that the squeezing
parameter « /7 is given by k /m = r;/ro, that is, it is the ratio
of the discretization length scale r; and the short-range cutoff
ro of the system. g is related to V(¢) by glr,z/Z = Qo V().

We now consider the time evolution of ¢ and n under
Eq. (6). It is convenient to go to a momentum representation
where different modes decouple from each other. Assuming
also that we are interested in momenta smaller than 1/r;, where
the lattice effects are not important, we obtain the following
equations of motion

d }’16,%

—n, = —Qo( —= +2V ¢ , 8

dt k 0( 0 ) —k ( )
d ro ( )
— o = Qo—n_y, 9
dt k Orl k

where e,f = 4sin® k, /2 + 4 sin? ky/2 and k is dimensionless,
k=—-m...m.

We rescale the time variable as 7 = Qoz/h. The initial
dispersion is then given by

Wiy = €t +2Vro/n. (10)
The dispersion wy, after the quench is simply w; = €7 in these

units. We solve these equations and calculate the equal-time
correlation function at time ¢ after the quench. We use

G(x, 1) = (explip(0, 1)] exp[—ip(x, 1)]) (11)
exp(—(8¢7)/2), (12)

where §¢ = ¢(0, 1) — ¢(x, t). The averaging is now trivially
done using the Wigner distribution (4). If we put the system
back to the lattice we then find

(8¢%) = > (2 —2cosk - x)
k

T,0 T, 0@k, 0
x cos™(axt) + ———
2wy 0 207

sinz(a)kt)) . (13)

The quantities r¢ o and wy ¢ are defined as before.
We now calculate the Green’s function in the linearized
regime numerically using Eqgs. (12) and (13). We choose the
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FIG. 4. (Color online) (8¢?) of the linearized system, for T = 1
and V8% = 20, as a function of the lattice site, and vz.

discretization r; = ry, the initial temperature 7/ 2y = 1, and
the initial coupling V82 = 20. In Fig. 4 we plot (§¢2) and in
Fig. 5 we plot the correlation function. In both plots the light
cone dynamics are clearly visible. Because of the translational
invariance the correlation function that emerges in the light
cone only depends on the relative distance is given by

G(x, 1)~ C x|/, (14)

for x « 2vt, where T* is an effective temperature that is
estimated below and C; is a numerical prefactor. Outside of
the light cone (x >> 2vt) the function G(x, t) only depends on
time ¢ but not on the distance x

G(x, 1) = Cy|t|T*/4Tkr, (15)

where T* is the same effective temperature. At the light cone
boundary x & 2vt the two asymptotics for the correlation
functions (14) and (15) approximately coincide. However,
we note that the prefactor C, is in general different from
C v~ T*/4Tkr g5 it is evident from the existence of a wave front
that is visible in Figs. 4 and 5.

The temperature that emerges inside the light cone can be
estimated by considering the quadratures of ¢ at long times

Tk,0 Tk, 0Wk,0
4a)k,0 46()]%

(¢2(t — 00)) = . (16)

We find that the whole Wigner function in the noninteracting
evolution remains Gaussian. It means that for each mode the
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FIG. 5. (Color online) The correlation function of the linearized
system, for 7 = 1 and VB? = 20, as a function of the lattice site,
and vt.
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Wigner function is equivalent to that of a harmonic oscillator at
finite “temperature” 7", which is in general mode-dependent
e TR0 TRO®k0

= + ’ 17
Wi 26()/(,0 2&)1% ( )

where r = 1/ tanh(w/2T;"). Solving for T} gives
Tr = - Dk .
2tanh™! ( kD tanh(a)k,o/ZT))

2 2
witwi

(18)

For large VA2, which corresponds to initially strong coupling
between two superfluids, this simplifies to a single value,
independent of k

T* = VVE
4tanh(,/VB2/2T)

For small initial temperatures T we have T* ~ |/ VB2/4 (T* =
2J, /J interms of the original Hubbard parameters), that is, the
temperature is fully determined by the initial coupling energy.
The coupling energy between the two layers is transferred into
the in-plane kinetic energy. We remind again that this result
is valid as long as J, < Un, otherwise the dependence of T*
on J, saturates and for the infinite coupling limit we have
T* ~Un/J. For large T we have T* ~ T /2. This result is
a reflection of the doubling of the degrees of freedom when
two layers are uncoupled. In Fig. 6(a) we show dependence
T*(T) evaluated according to Eq. (19), for V = 20, and for
k =1, 3, 10 corresponding to lowering J,. For « = 1, T* is
always above the critical temperature 7, = 7 /2, for «x = 10,
it crosses it. We therefore expect to see very little vortex
formation for small temperatures for « = 10 and many vortices
for all temperatures for x = 1. The intermediate value k = 3
approximately describes the transition between these limits.

19)

FIG. 6. (a) T*, as given in Eq. (19), for k = 1, 3, 10, from top to
bottom and for V = 20. The line T, = 7 /2 was added to indicate the
critical temperature. (b)—(d) Simulations for these values of « and V.
We plot the number of vortices n, as a function of time ¢ and initial
temperature Tp.
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To make this point more clearly, in Fig. 6(b)—6(d) we plot full
nonlinear TWA simulation for each of the three cases. We run
the quench for different temperatures 7', and plot the number of
vortices n,, in the system as a function of time. This number is
obtained by counting the vortices (indicated by red plaquettes
in Fig. 2), and then by averaging over many runs. We find
that for k = 1, the number of vortices is virtually unchanged
implying that the dynamics are completely dominated by
quantum fluctuations, whereas for ¥ = 10 this number drops
to zero when the temperature is lowered. These results are
consistent with the emergent temperature 7* obtained within
the linearized approach.

IV. LIGHT CONE DYNAMICS IN THE TRANSVERSE
ISING MODEL

In this section we demonstrate that light cone dynamics
are not just characteristic for the system we are interested
in, which is characterized by low-energy bosonic wave
excitations. The same mechanism of reaching a steady state is
much more general and is likely related to the existence
of the maximum group velocity in Schrodinger systems as
was proven by Lieb and Robinson [31]. In this section we
demonstrate the presence of the light cone dynamics in another
solvable model, the transverse Ising chain [26,32] described by
the Hamiltonian

Hy = —J; ) (070l + 807). (20)

where J; is an overall energy scale, g describes the strength
of the transverse field, and o*% are the Pauli matrices. We
follow the calculational procedure in Ref. [26]. First, we use a
Jordan-Wigner transformation

of=1-2n;, 1)

PHYSICAL REVIEW A 81, 033605 (2010)

of =[] = 2n)ci + ). (22)

Jj<i

where ¢; are Fermi operators and n; = cjci. This transfor-
mation leads to a fermionic representation of the Hamilto-
nian that can be further diagonalized using the Bogoliubov
transformation

Vg = UkgCh — iUk g€ 4, (23)

where ¢y is the Fourier transform of ¢;, uy , and vy , are given
by cos(6k,¢/2) and sin(6; ¢ /2), where 6y , = arctan(sink /(g —
cos k)). The resulting dispersion is

€rg = 2J1v/ 8> —2gcosk + 1. (24)

We consider a time dependent g(¢). For + < 0 we have
g(t) = g and we assume the system to be in equilibrium.
We then assume that for ¢ > 0, g(¢) jumps to the value g’.
The equal-time correlation function of ¢ can be calculated
exactly by expressing it in terms of the operator n; [i.e.,
(af(t)a;(t)) =1—4(n;(t)) + 4(n;(*)n;(t))]. It can be shown
that the average density fermionic density (corresponding to
the z component of the magnetization) is given by

1
(ni(t)) = (n;(0)) + I Z Fy o(k, 1), (25)
with k
_ r_ )
Fo gk, 1) = [cos(2ey gt /h)/2 — 1/2](g" — g)sin” k 26
V> —2gcosk + 1(g” —2g'cosk + 1)
and
1 1 g —cosk
O =3 -5 . 27
WO = T o o T ageonk @7

In turn the density-density correlation function (n;(t)n;(t))
reads

1
(i) = 5 3 {expl=itk — k)i = r)([vE,  + Fop Gk, ][, o — Fog (o, 0] + [t 40005 + G ki, 1)]

ki,ky

X [ty gVtpg + Gy g (k2o D]) + [07, o + Fog ki, D][v7, , + Feg (k2. D]}, (28)

where

Geglk, 1) = (i sin(2ey ot /1) + =

Using these expressions we can easily analyze the quench
dynamics. In Fig. 7 we show two examples showing spin-spin
(density-density) correlation functions after a quench. The
first example corresponds to the ramp from g =3 to g’ =1
(i.e., a quench to the quantum critical point). At this point
the dispersion (24) becomes gapless and linear at small
energies. Then the light cone dynamics are anticipated because
there is a well defined “speed of light” characterizing the
propagation of excitations, which is equal to 2J. Indeed
Fig. 7(a) shows a clear signature of such dynamics. There
is a clearly visible “light cone,” which separates into an
instantaneous part (connecting not causally connected points)

2 Vg? —2¢g cosk + 1

1 [cos(2ex g/h) — 1](g’ — cos k)) ( (g' — g)sink

. (29
V(g* —2gcosk + 1)(g”? —2g’cosk + 1)

that is independent of the distance, and a spatially dependent
(causal) part, that expands in the form of a wave front. In Fig.
7(b) we use g’ = 0.5, where at low energies the spectrum of
excitations is gapped. Although the dispersion in this model
is linear (relativistic) only at sufficiently high energies above
the gap we still see a clear light cone structure. The expansion
velocity of the “light cone” in this case is consistent with
twice the maximum of the group velocity v, (k) = de/dk
given by

2Jg forlg| <1

Vgrmax = {21 for [g] > 1. (30)
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FIG. 7. (Color online) The correlation function (o; (¢)o(t)) for a
quench from g = 3tog’ = 1,in(a) and from g = 3to g’ = 0.51in (b),
as a function of time #, specifcally of 2J¢, and the spatial distance r.

So for g’ = 1 we find 2v,. max = 4J and for g’ = 0.5 we find
2Vgrmax = 2J. These are indeed the expansion velocities that
we see in Fig. 7.

V. DYNAMICAL VORTEX UNBINDING

In this section we address the important question of how
the supercritical state relaxes to the ground state (i.e., the
second stage of the dynamics). As we mentioned in the
Introduction the anticipated mechanism for this relaxation
is vortex unbinding. This process is intrinsically nonlinear
and requires a more sophisticated treatment than that of the
noninteracting “light cone” dynamics. In this work we use two
complimentary approaches. In Sec. VA we use a numerical
implementation of the TWA to simulate the dynamics in the
system. In Sec. VB we generalize a renormalization group
approach to analytically describe the process of relaxation in
real time.

PHYSICAL REVIEW A 81, 033605 (2010)

A. Numerical approach

Within TWA we need to solve the full nonlinear equations
of motion (3) subject to the initial conditions distributed
according to the Wigner function (4). Then the equal-time
correlation functions or other observables are found by
averaging the Weyl symbol of the corresponding observable
computed at time 7 over the fluctuating initial conditions. Note
that since we are interested only in the phase-phase correlation
function, the corresponding Weyl symbol is obtained by simply
substituting the Heisenberg quantum operator corresponding
to the phase with the classical phase [29]. In Fig. 8 we
show the result of such simulations. We can observe how
the metastable superfluid state relaxes to the disordered state.
For that we show the correlation functions of the system
on a much longer time scale than in Fig. 3. The exponent
of the algebraic scaling gradually decreases. Eventually the
correlation function is more accurately approximated by an
exponential fitting function, signaling that the thermal Bose
gas phase was reached. Because this is the phase of deconfined
vortices and because the intermediate superfluid phase is well
described by a phonon-only description, we conclude that
the dynamical transition that we observe is due to vortex
unbinding. The example of a single run shown in Fig. 2 is
consistent with this picture: Defects are created soon after the
quench, but they only gradually separate on a much longer
times scale. It is this process that we refer to as the reverse
Kibble-Zurek mechanism.

To better characterize the process of vortex unbinding
further we fit the correlation function G (x, #) to either algebraic
or exponential fitting functions. Such a choice is motivated
by the two possible regimes of the equilibrium system and
is supported by the analytic renormalization group results
presented in the next section. The algebraic fitting function we
use is ¢[L/m|sin(wrx/L)|]~"/* and the exponential function
is cexp[—|sin(rx/L)|/xo]. Note that in the fitting functions
we use the conformal distance L/m|sin(rx/L)|, which is
more appropriate in finite systems with periodic boundary
conditions (see e.g. Ref. [26]). In equilibrium the algebraic
exponent T will be the relative temperature 7/ T,.. Any value
above 1 is therefore supercritical. The parameter x( defines the
length scale of the exponential decay. The parameter ¢ in both
functions gives an overall scale.

FIG. 8. (Color online) Long-time behavior of the correlation
function for T =1, x = 8, and V = 80. The correlation function
first develops algebraic scaling, so the system forms a metastable
quasisuperfluid state. On longer time scales the correlation function
shows exponential decay. The coherence is lost due to dynamical
vortex unbinding.
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FIG. 9. Time dependence of the exponent 7 extracted from
fitting the long-time correlation function G(x, t), for different initial
couplings. In all four examples we use 7 = 1 and « = 8. The initial
couplings V' are chosen as V = 80, 70, 50, and 20, corresponding
to curves I to IV. The curve I corresponds to the example shown in
Fig. 8. In this case the correlation function can be well fitted with an
algebraic function forup tot &~ 60, after that G(x, r) is better fitted by
an exponential function with a decay length of the order of the lattice
constant. For the other cases, G(x, t) is well fitted with an algebraic
function throughout the whole time interval.

Using these fitting functions we analyze four different
situations corresponding to the same initial temperature
T =1 and the same parameter xk = 8, but with different
initial couplings V between the planes. The first (I) case
corresponding to V = 80 is identical to the one plotted in
Fig. 8. The other three curves correspond to V = 70, 50, 20
(II-IV). In Fig. 9 we show the exponent 7 extracted from the
fit as a function of time for these situations. In all of them at
short times G(x, t) develops algebraic scaling when the light
cone dynamics reaches the system boundaries. For the cases
[-III the emerging scaling exponent t is well above the critical
exponent. After that, the exponent gradually increases on
much longer time scales. During this process, the decay of
the correlation function is still fitted well with the algebraic
function. Eventually the algebraic scalings breaks down
and G(x, 7) develops exponential scaling, indicating vortex
unbinding. This regime of exponential scaling is reached for
V =80 (I) within the time interval shown in Fig. 9. For
V =70 (Il) and V = 50 (III) the time scale of the vortex
unbinding is longer then the time interval shown. For V = 20
(IV) the system equilibrates to the superfluid state. Because
in this case the exponent 7 is less than 1, vortices never
unbind and the algebraic scaling persists at all times. We
conclude from these examples that there can be a sizable
range of initial values of V, which generates the scenario of a
supercritical superfluid, and of dynamically suppressed vortex
unbinding. Furthermore, the algebraic scaling exponents that
can occur in the metastable state are well above criticality and
should be easily distinguishable from subcritical values. These
supercritical exponents can be detected using interference
experiments along the lines of Refs. [5,30].

B. Renormalization group approach

In this section we develop the renormalization group (RG)
approach to dynamical vortex unbinding. We find that the
dynamical evolution of the system can be related to the RG
flow of the equilibrium system. The idea of RG in real time
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is quite similar in spirit to the RG in imaginary time. Namely
our goal is to eliminate high-energy, high-momentum degrees
of freedom. In equilibrium, this is done by the means of usual
perturbation theory (or Gaussian integration), which is justified
because of the large energy gap separating high-energy states
from the low-energy degrees of freedom we are interested in.
In real time the idea of renormalization is quite similar. High-
energy (momentum) phonons are not very sensitive to slow
processes leading to vortex formations. Thus these phonons
can be well treated within the linearized approach. However,
due to nonlinearities such phonons slightly renormalize the
parameters governing dynamics of low-energy degrees of
freedom. This renormalization is precisely what we are
interested in. Note that technically in the RG procedure we
perform averaging of the equations of motion over short
times. Then odd powers of highly oscillating fields average
to zero while averaging of the even powers gives some con-
stant contribution. This contribution is precisely what renor-
malizes coupling constants governing the low temperature
dynamics.

We point out that typical RG flow diagrams contain mostly
nonequilibrium points, in fact, all except for the fixed points.
As we saw in the previous sections, one can associate an
effective temperature to the metastable state that emerges
after the dephasing of the phonon modes. In turn with this
effective parameter we can associate a location of the transient
state in the RG flow of the equilibrium system. This effective
temperature can then either gradually increase, until the system
starts to show exponential scaling, or the system can always
remain superfluid, if the algebraic scaling is subcritical and
the effective temperature always remains below Txr. This
behavior resembles the equilibrium RG flow of a Kosterlitz-
Thouless transition (which now occurs in real, not imaginary,
time), on which we elaborate in this section.

Instead of directly analyzing the rotor model to describe
the Kosterlitz-Thouless physics and vortex unbinding, we will
work with the dual Z; clock model (or equivalently 2D sine-
Gordon model), described by the action

S = /dzr <§(ax0)2 £ cose) . 31)
2 a?

For the details of the duality transformation see Ref. [33]. The
parameters of this model can be related to those of the XY
model by

1T 1T 32
- 8w TKT - 47'[2 JKT
2 = exp(=S.). (33)

where E, = S.T is the vortex core energy and A is a measure
of the relative temperature. We note that the action in Eq. (31)
has a high-momentum cutoff A, which is the inverse of the
short-range cutoff a (i.e., we set Aa = 1). To describe the
dynamics of this model we use the effective 2D sine Gordon
Hamiltonian

A
H/T:/dzr Bor 2o+ L coso). (34
2 2 a?
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Here the parameter u is chosen, so that the dispersion of the
linearized XY model is recovered

o
AT
which we also write as w;, = v|k|, where the velocity v is given
by v = /uAT?2. The nonlinear term cos 6 in Eq. (34) describes
the vortex field. If this term is important (large g) then the field
6 localizes corresponding to a highly disordered phase of the
dual field ¢ (i.e., to the normal state). Conversely small g
corresponds to the superfluid algebraic regime. The starting
point of our RG analysis will be supercritical superfluid
state, which emerges after the short-time light cone dynamics.
Because the Kosterlitz-Thouless transition is classical in
nature occurring at high temperatures the quantum fluctuations
are no longer expected to be important and instead of the
Wigner function as the new initial condition we can use its
classical Boltzmann’s limit. The initial state for the vortex
dynamics, described by the effective temperature 7', is thus
fully characterized by the quadratures of the spectrum

i (35)

(B6k) = Ve 36)
. 1 5 k?
(pxpx) = — =AT"—. (37)
18 wy,
The equations of motion corresponding to the

Hamiltonian (34) are given by

d T
T =T + i_2 sinf, (38)
d
EQ =uTp. 39

We now apply the following renormalization procedure to
these equations. We rescale the spatial and temporal variables
asr —> r(l +dA/A)andr — t(1 + dA/A)andthe p field as
p — p(1 —dA/A). This implies that the momentum cutoff
Aisrescaledas A — A’ = A(1 — dA/A), so the momentum
degrees of freedom between A’ and A are removed. Without
the nonlinear term in Eq. (38) these rescalings leave the
equations of motion invariant. The linear dynamical evolution
can therefore be considered to be the noninteracting fixed point
of the RG. We now ask the question how this dynamical
evolution is affected by the nonlinear term. Specifically we
want to determine how the equations of motion behave at long
times and distances. For this, we go beyond the bare rescaling
and correct for the integrated-out degrees of freedom up to
second order in g. The resulting flow equations are of the
well-known BKT form

d 1
a8 _ (2 - —> g, (40)

dl A7)
dxr g’
= = 41
TR (41)

where / = In A and « is a nonuniversal prefactor. The RG step
generated the equations of motion at time ¢' and distance r’
from the equations at time ¢ and distance r, with renormalized
coefficients, according to Egs. (40) and (41). Therefore the
time dependence of the coefficients can be read off the solution
of the RG flow, by realizing that: dt/dl =1t or t = tye!. In
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" {f)(r,t) = —0qH(r,t,\, g)
2vt=lx| O(r,t) = OpH(r,t,\, g)
dl =dt/t =dr/r
y“;\(r,l) \dl {[‘)(Iﬂt’) = 78‘4H(r/7t/,>\’7g/)
\\\ (l",t’) H(r',t’) = ODH(rlﬁt/f/\lﬁg/)
t \v

FIG. 10. (Color online) Schematic representation of a renor-
malization step in the real-time RG approach. In each step we
renormalize simultaneously the space and time variables. This
“moves” the equations of motion from (r, r) to (r', #’). We correct
for the integrated-out degrees of freedom to second order in g, which
renormalizes the parameters g and A according to Egs. (40) and (41).

Fig. 10 we show a schematic representation of our RG process.
In the Appendix we discuss the derivation of the flow equations
and give their more complete form.

One conclusion from Eqs. (40) and (41) is that the critical
exponent of the dynamical process is equal to the one of the
equilibrium system. We see from Eq. (40) that the critical
value of A is A, = 1/8m, which corresponds to T = Tkt as
can be seen from Eq. (32). Another important observation is
that the RG equations (40) and (41) predict a nonequilibrium
analog of the BKT transition, where depending on the initial
fluctuations in the system, the vortex-antivortex pairs can
either unbind in the long time limit or remain bounded. This
transition, as in the equilibrium case, is characterized by ex-
ponentially divergent time and length scales. Physically these
divergencies correspond to a very slow process of equilibration
of vortices near the nonequilibrium phase transition.

We can also use the RG flow to determine the time scale of
vortex unbinding by using

g™ ~ 1. 42)
When T is well above Tk, the time scale can be determined
from Eq. (40)
E./2
tt o~ e 43
exp (T — TKT) 43)

where E. = S.T. Away from the transition, the time scale of
vortex unbinding is therefore exponentially increased because
of the energy cost given by the vortex core energy. Very close
to the transition ¢* scales as

1* ~ explexp(—S./2)/y/1 = Txr/T]. (44)

The time scale is renormalized because of the critical scaling
in the vicinity of the transition.

VI. CONCLUSION

In conclusion, we studied the dynamics of the relative
phase of a bilayer of superfluids in 2D, after the hopping
between them was turned off rapidly. We find that, on short
time scales, the dynamics of the correlation function shows
a “light cone”-like behavior. Depending on the parameters
of the system, the light cone dynamics can result in a phase
that shows supercritical algebraic scaling and can therefore be
thought of as a superheated superfluid. On long time scales
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the system relaxes to a disordered state via vortex unbinding,
which constitutes a reverse-Kibble-Zurek mechanism. The
properties of the dynamical process can be understood with
a renormalization group approach. We find that the dynamical
evolution of the system resembles the RG flow of the equilib-
rium system. In particular, using the RG equations we found
two possible scenarios of the system reaching the steady state:
(i) If initial quantum and thermal fluctuations are weak the
vortices are irrelevant and long-time long-distance behavior
is governed by the algebraic fixed point. The only role of
vortices is then the renormalization of the superfluid stiffness
and the sound velocity. (ii) If the initial fluctuations are strong
then the vortices become relevant and proliferate resulting
in a normal (nonsuperfluid) steady state. In this case RG
gives the time scale of vortex unbinding, which exponentially
diverges as the system approaches the nonequilibrium phase
transition. The scaling that is given in Egs. (43) and (44) can
be interpreted as the extension of Kibble-Zurek scaling to
sudden quenches (also see Ref. [34]). The behavior of the
relative of the phase of two superfluids can be accurately
studied by interference experiments of ultracold atom systems
and therefore our predictions are of direct relevance to the
experiment. In particular, the divergence of the thermalization
time scale will suggest the feasibility of a nonequilibrium
detection of the phase transition.
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APPENDIX

In this Appendix we derive the RG Egs. (40) and (41), which
can also be written as a second-order differential equation
for 6

1 d° g .

——0 = AA6 + = sin6.

w dt? a?
To simplify the derivation, here and throughout the Appendix,
we formally change notations AT — A, uT — w,and g7 —
g. The idea of momentum shell RG is that we treat high
momentum components of # and p (or equivalently ) pertur-
batively, while not making any approximations about the low
momentum components. Our goal is to find renormalization
of the equations of motion governing the low momentum
components. So we split

O(r,t) = 0=(r, 1) + 07 (r, 1),

(AD)

(A2)

where the Fourier expansion of 6~ (r, ¢) only contains mo-
menta in the shell A'=A —5A < |k|] < A and 6<(r, 1)
contains all other Fourier components:

6=(r) = % ZX" exp(ik - r)fy, (A3)
1
07 (r) = — exp(ik - r)fy. (A4)
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We will treat 6~ (and correspondingly p~) perturbatively in
g since the nonlinear term should only weakly couple to the
high frequency field. We expand the high-momentum field as

07k, 1) = 67 (k, 1) + 67 (k, 1). (AS)

Here 67 (K, t) is the solution of the equations of motion, with
g set to zero

05 (k1) = wi Do Sin(@a) + 07y cos(wat),  (A6)
A

where w; = v|k| and the velocity v is v = 4/Au. In the next
leading order we have

o7 (k. 1) = % dtFy(k, 7)sinfws(f — )], (A7)
0
where
Fik, )= /dzr exp[—ik - r]sin[6; (r, T)], (AB)

and we used Aa = 1. Note that in the last equation in
the argument of the sinus we changed 6y to 6; because
the contribution from 6 is smaller by the factor A/A. So
we see that in the leading order in g the high momentum
component of 6 oscillates with time at very high frequency
wp. In the next order in g the high momentum component
also acquires a low frequency component (as we will discuss
below).

Next we consider the equation of motion (A1) expanding it
up to the second order in 6~

1 d? g
——0(r, 1) =~ AAO(r, 1) + = cos[0=(r, 1)]07 (r, 1)
wdt? a?

> 2
+ 2 sino=r, 1) (1 - m) . (A9)
a 2

Because of the nonlinearity high-momentum modes couple to
the low-momentum modes leading to the renormalization of
the couplings governing the dynamics of the latter. The idea
of RG is to average equations of motion for low-momentum
(slow) components over the fast oscillations. The averaging is
trivially done in the last term of Eq. (A9). There it is sufficient
to use zeroth order in 8. Using that sin?(wpt), cos?(wpt) =
1/2 we find that averaging of the last term simply renormalizes

the coupling g
! Ep SA
% —_— ———
£ 8 4ar A )’

where Ej is the average energy of the mode k over the

period (we used the fact that A0 )2 = Ex). We note that
in a Boltzmann ensemble, we will have E, = 1 because
the energies here are in units of the temperature 7. With
this assumption we will recover the flow equation of the
equilibrium case.

Instead of this assumption, we proceed by noting that under
RG transformations coupling constants slowly change in time.
This implies that the adiabatic invariants per each mode are
approximately conserved, as discussed in Ref. [35]. For an
oscillator the adiabatic invariant is I, = E/wy. Thus we see
that the energy of the mode is proportional to the frequency.
Noting that at initial time Ei(r =0)=1 (in nonrescaled

(A10)
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units this will be Ex(r = 0) = Ty, where T is the initial
nonequilibrium temperature), one can rewrite Eq. (A10) as

follows
1 168A
g(1- —=22).
drvg K A

where we introduced the analog of the Luttinger-Liquid
parameter K = {/A/u. v is the velocity that is now given
by v = +/Au (note that in the original, not rescaled units,
v=TAw.

Next let us consider the second term in Eq. (A9). This term is
more subtle since if we use 6" the average over fast fluctuations
will give zero. So we need to use the first correction 8;, which
will be a correction at second order in g. We note that the
linear term in Eq. (A9) can also be expanded to second in
g, generating similar contributions. However, when written as
Eq. (A1), such a term a canceled by a corresponding term from
expanding d?6/dt*. Alternatively we can view Eq. (A9) as
written for the 6= component, this automatically ensures that
only the nonlinear term is responsible for the renormalization.

Let us look closer into the Eq. (A7). We are dealing with
the integral over the fast oscillating function of 7: sin(wy (f —
7)) and the slow oscillating function F. This integral can be
evaluated by integrating by parts

(Al1)

/ dt Fi(t) sinfwa(t — 7)]
0

— Fl(z-)w l
WA 0
D ont — D1 (A12)
WA Jo

Note that the second integral contains a large denominator
1/wy . In the first term only the limit T = ¢ gives a nonoscillat-
ing contribution to the integral. We can continue the expansion
in powers of 1/w,. Note that the next term proportional to F;
will contain only highly oscillatory parts and can be neglected.
So up to the third order in 1/w, we find

' . Fi(t) 1 d*Fi(1)
dtFi(t)sinfwa(t — T)] & - — 3 (A13)
0 WA Wy dt
Combining Egs. (A7), (A8), and (A13) we find
07 (k, 1) ~ f / d*r exp[—ik - r]sin[0=(r, 1)]
— 5| drexpl—ik - r]cos[0=(r, NIF=(x, 1),
AW}

(Al4)

where we used Aa = 1 again. Here we neglected by the term
proportional to [#<(r, t)]* because it leads to a subdominant
(in the RG sense) contribution. From this we find that

g de 'k-/ 2 kX .- 8
07 (r, )y~ = wrld X Sin[0=(x, 1)] —
{60 xhu e’ xe T sin[67(x. 1)] A2A2u
she
dzk ikr 2 _—ikx < H<
(Zn)ze d“xe cos[0=(x, )]0~ (x, 1).

shell
(A15)
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‘We now consider the term (g/az) cos[0=(r, )]0 (r, 1)

% cos[0=(r, 67 (r, 1)

2 2

~ 8 dk . 2 —ikx L o <

~ )\‘—a2 We r/d xe XE Sln[@ (X, t) —6 (I‘, t)]
shell
2 2
8 d°k ik-r/ 2 7ik~x1 <

_c | == d —0=<(x, 1), Al6

e (2n)2€ xe S (x, 1) (A16)

shell

where we neglected terms such as sin[260 =(r, ¢)]. Because we
are integrating over the high-momentum shell this integral will
be suppressed unless x is close to r. This suggests a change of
variables X = r + § and Taylor expanding 6=(x, t) in powers
of =(x, 1) ~ 0=(r, 1) + 0=(r, 1) + 16,&5 %L Then

dre drg
C, g2 8A Ci g% A .
8 cosl0=(r, 0107 (r, 1) ~ 28 0B pg  TL 87 OBy
a? 8T A A 4 A2 A
(A17)
where
o) C,
A—; = fdzéJo(AE), i /dZSEZJO(Aé). (A18)

When we need to substitute these expressions back into
Eq. (A9), we find that the term containing A6 renormalizes
the coupling A as

Cs g% A

oo A 2800

8w A A
In addition there is an extra term proportional to # generated
in Eq. (A9), which renormalizes p

1 1 C; g% 8A

n n + 4 A2 A
Finally we restore the cutoff by rescaling k — k(1 —
SA/A), r >r(1+38A/A), t > t(1+S5A/A), and p —
p(1 —8A/A). This rescaling additionally renormalizes the
coupling g: g — g(1 +256A/A). Combining this result with
Egs. (A11), (A19), and (A20) we find the following renormal-
ization group equations

(A19)

(A20)

dg 1 1
g2 ) A21
ar ¢ < 47 v K) (421)
dK 1 2
dv 2
T ngv (C—200), (A23)

where [ = In A. We can read off from Eq. (A23) that if the
system contains a fixed velocity, for example in relativistic
systems, we need to have C, = 2C to enforce that the velocity
is invariant under the flow.

Note that if the initial system is already close to the critical
point then the RG equations above simplify to

2 o ofr- ! (A24)
a ¢ 4zr )’
dr  Cp g?
T _Zg_ (A25)
dl 87 A
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which are equivalent to Egs. (40) and (41). Note that a more
complete set of RG equations (A21)—(A23) have the same uni-
versal predictions of the dynamical phase transitions and expo-
nential divergence of the time scales as the simplified equations
above. Also note that the real RG equations bear close
analogy to the flow equations in imaginary time characterizing
the equilibrium Kosterlitz-Thouless transition [36]. Thus the
nonequilibrium KT transition discussed here is characterized
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by exponentially divergent length and time scales. Physically
these long scales characterize a very slow process of vortex
unbinding and equilibration at long distances. Note that the
RG equations (A21)-(A23) also implicitly take into account
renormalization of the temperature in the system. This comes
from the fact that creating vortex-antivortex pairs removes the
energy from the phonon degrees of freedom. We are going to
investigate this issue in more detail in a separate publication.

[1] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten,
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75,
3969 (1995); M. H. Anderson, J. R. Ensher, M. R. Matthews,
C.E. Wieman, and E. A. Cornell, Science 269, 198 (1995); C. C.
Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys. Rev.
Lett. 75, 1687 (1995).

[2] M. Greiner et al., Nature (London) 415, 39 (2002).

[3] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 (2004); M. W. Zwierlein, C. A. Stan, C. H. Schunck,
S.M. F.Raupach, A.J. Kerman, and W. Ketterle, ibid. 92,120403
(2004); M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim,
C. Chin, J. H. Denschlag, and R. Grimm, ibid. 92, 120401
(2004); T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang,
F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkelmans,
and C. Salomon, ibid. 93, 050401 (2004).

[4] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973);
V. S. Berezinskii, Sov. Phys. JETP 34, 610 (1972).

[5] Z. Hadzibabic, P. Kriiger, M. Cheneau, B. Battelier, and J. B.
Dalibard, Nature (London) 441, 1118 (2006).

[6] P. Clade, C. Ryu, A. Ramanathan, K. Helmerson, and W. D.
Phillips, Phys. Rev. Lett. 102, 170401 (2009).

[7] C. D. Fertig, K. M. O’Hara, J. H. Huckans, S. L. Rolston, W. D.
Phillips, and J. V. Porto, Phys. Rev. Lett. 94, 120403 (2005);
T. Stoferle, H. Moritz, C. Schori, M. Kéhl, and T. Esslinger,
ibid. 92, 130403 (2004).

[8] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E.
Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999);
K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, ibid.
84, 806 (2000); Z. Dutton, M. Budde, C. Slowe, and L. V. Hau,
Science 293, 663 (2001).

[9] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock,
A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev.
Lett. 83, 5198 (1999); B. P. Anderson, P. C. Haljan, C. A. Regal,
D. L. Feder, L. A. Collins, C. W. Clark, and E. A. Cornell, ibid.
86, 2926 (2001); J. Denschlag, J. E. Simsarian, D. L. Feder,
C. W. Clark, L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley,
K. Helmerson, W. P. Reinhardt, S. L. Rolston, B. 1. Schneider,
and W. D. Phillips, Science 287, 97 (2000).

[10] T. Kinoshita, T. Wenger, and D. S. Weiss, Nature (London) 440,
900 (2006).

[11] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore,
and D. M. Stamper-Kurn, Nature (London) 443, 312
(2006).

[12] 1. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[13] C. Raman, M. K&hl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz,
Z.Hadzibabic, and W. Ketterle, Phys. Rev. Lett. 832502 (1999).

[14] E. Altman and A. Auerbach, Phys. Rev. Lett. 89, 250404 (2002);
R. A. Barankov, L. S. Levitov, and B. Z. Spivak, ibid. 93, 160401
(2004); P. Calabrese and J. Cardy, ibid. 96, 136801 (2006);
J. Stat. Mech: Exp. (2007) PO6008; K. Sengupta, S. Powell, and
S. Sachdev, Phys. Rev. A 69, 053616 (2004); C. Kollath, A. M.
Liauchli, and E. Altman, Phys. Rev. Lett. 98, 180601 (2007);
E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, and V. Z.
Enolskii, Phys. Rev. B 72, 220503(R) (2005); D. J. Reilly, J. M.
Taylor, E. A. Laird, J. R. Petta, C. M. Marcus, M. P. Hanson, and
A. C. Gossard, Phys. Rev. Lett. 101, 236803 (2008); G. Roux,
Phys. Rev. A 79, 021608 (2009); V. Gritsev, E. Demler, M. D.
Lukin, and A. Polkovnikov, Phys. Rev. Lett. 99, 200404 (2007);
S. R. Manmana, S. Wessel, R. M. Noack, and A. Muramatsu,
ibid. 98, 210405 (2007); A. Iucci and M. A. Cazalilla, e-print
arXiv:0903.1205; P. Barmettler, M. Punk, V. Gritsev, E. Demler,
and E. Altman, Phys. Rev. Lett. 102, 130603 (2009).

[15] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,
854 (2008); P. Reimann, Phys. Rev. Lett. 101, 190403 (2008);
M. Rigol, ibid. 103, 100403 (2009).

[16] A. Polkovnikov, Phys. Rev. B 72, 161201(R) (2005); W. H.
Zurek, U. Dorner, and P. Zoller, Phys. Rev. Lett. 95, 105701
(2005); J. Dziarmaga, ibid. 95, 245701 (2005); R. W. Cherng and
L. S. Levitov, Phys. Rev. A 73, 043614 (2006); A. Polkovnikov
and V. Gritsev, Nature Physics 4, 477 (2008); A. Altland and
V. Gurarie, Phys. Rev. Lett. 100, 063602 (2008); C. De Grandi,
R. A. Barankov, and A. Polkovnikov, ibid. 101, 230402 (2008);
K. Sengupta, D. Sen, and S. Mondal, ibid. 100, 077204 (2008);
D. Sen, K. Sengupta, and S. Mondal, ibid. 101, 016806 (2008);
U. Divakaran, V. Mukherjee, A. Dutta, and D. Sen, J. Stat. Mech.
(2009) P02007; D. Chowdhury, U. Divakaran, and A. Dutta,
Phys. Rev. E 81, 012101 (2010); K. Sengupta and D. Sen,
Phys. Rev. A 80, 032304 (2009); A. P. Itin and P. T6rma4,
e-print arXiv:0901.4778; D. Rossini, A. Silva, G. Mussardo,
and G. E. Santoro, Phys. Rev. Lett. 102, 127204 (2009);
F. Pollmann, S. Mukerjee, A. G. Green, and J. E. Moore, e-print
arXiv:0907.3206; K. Rodriguez, A. Argiielles, and L. Santos,
e-print arXiv:0905.3312; A. Bermudez, D. Patane, L. Amico,
M. A. Martin-Delgado, Phys. Rev. Lett. 102, 135702 (2009).

[17] S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and
J. Schmiedmayer, Nature (London) 449, 324 (2007).

[18] A. A. Burkov, M. D. Lukin, and E. Demler, Phys. Rev. Lett. 98,
200404 (2007).

[19] R. Bistritzer and E. Altman, PNAS 104, 9955 (2007).

033605-12



LIGHT CONE DYNAMICS AND REVERSE KIBBLE-ZUREK ...

[20] I. E. Mazets and J. Schmiedmayer, e-print arXiv:0806.4431.

[21] L. Mathey, A. Polkovnikov, and A. H. Castro Neto, EuroPhys.
Lett. 81, 10008 (2008).

[22] M. A. Cazalilla, A. Tucci, and T. Giamarchi, Phys. Rev. A 75,
051603(R) (2007).

[23] T. W. B. Kibble, J. Phys. A 9, 1387 (1976); Physics Today 60,
47 (2007).

[24] W. H. Zurek, Nature (London) 317, 505 (1985).

[25] L. Mathey and A. Polkovnikov, Phys. Rev. A 80, 041601(R)
(2009).

[26] S. Sachdev, Quantum Phase Transitions, (Cambridge University
Press, Cambridge, England, 1999).

[27] P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, and C. W.
Gardiner, Adv. Phys. 57, 363 (2008).

[28] A. Polkovnikov, Phys. Rev. A 68, 053604 (2003).

PHYSICAL REVIEW A 81, 033605 (2010)

[29] A. Polkovnikov, e-print arXiv:0905.3384.

[30] A. Polkovnikov, E. Altman, and E. Demler, Proc. Natl. Acad.
Sci. USA 103, 6125 (2006).

[31] E. H. Lieb and D. W. Robinson, Commun. Math. Phys. 28, 251
(1972).

[32] P. Calabrese and J. Cardy, Phys. Rev. Lett. 96, 136801 (2006);
J. Stat. Mech.: Theor. and Exp. (2007) PO6008.

[33] X.-G. Wen, Quantum Field Theory of Many-Body Systems
(Oxford University Press, Oxford, 2004).

[34] C. De Grandi, V. Gritsev, and A. Polkovnikov, Phys. Rev. B 81,
012303 (2010).

[35] L. D. Landau and E. M. Lifshitz, Mechanics, (Butterworth-
Heinemann, Oxford, 1982).

[36] T. Giamarchi, Quantum Physics in One Dimension, (Clarendon
Press, Oxford, 2004).

033605-13



