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Localization of spin mixing dynamics in a spin-1 Bose-Einstein condensate
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We propose to localize spin mixing dynamics in a spin-1 Bose-Einstein condensate by a temporal modulation
of spin exchange interaction, which is tunable with optical Feshbach resonance. Adopting techniques from
coherent control, we demonstrate the localization and freezing of spin mixing dynamics, and the suppression
of the intrinsic dynamic instability and spontaneous spin domain formation in a ferromagnetically interacting
condensate of 87Rb atoms. This work points to a promising scheme for investigating the weak magnetic spin
dipole interaction, which is usually masked by the more dominant spin exchange interaction.
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Dynamic localization is ubiquitous in nonlinear systems,
both for classical dynamics as in an inverted pendulum with a
rapidly modulating pivot [1] or an ion in a Paul trap [2], and
for quantum dynamics like a one- or two-dimensional soliton
in a Bose-Einstein condensate (BEC) when the attractive
interaction strength is rapidly modulated [3–6]. It is often used
to stabilize a dynamically unstable system.

Spin mixing dynamics of a spin-1 atomic condensate are
dynamically unstable [7] when the spin exchange interaction
is ferromagnetic, (i.e., favoring a ground state with all atomic
spins aligned). When confined spatially, the unstable dynamics
is known to cause formation of spin domain structures [8,9].
For many applications of spinor condensates, from quantum
simulation to precision measurement [10], it is desirable that
spin domain formation is suppressed. In addition, atomic
spin dipolar interactions, although weak when compared
to typical spin exchange interactions, induce intricate spin
textures that are difficult to probe when masked by spin
domain structures. Thus, the suppressing and freezing of the
undesirable dynamics from spin exchange interaction is also
important for investigating the effect of dipolar interaction
[11,12].

Compared to conventional magnets in solid states, a
spin-1 BEC has one unsurpassed advantage: its spin exchange
interaction between individual atoms can be precisely tuned
through optical (as well as magnetic) Feshbach resonances
[13–17]. By adjusting the two s-wave scattering lengths a0

and a2, of two colliding spin-1 atoms via optical means,
the spin exchange interaction strength, characterized by c2 =
4πh̄2(a2 − a0)/3M with M the mass of the atom, is tunable.
Analogous to an inverted rigid pendulum with a rapidly
oscillating pivot, a fast temporal modulation of the spin
exchange interaction can localize the spin mixing dynamics,
equivalent to a suppressing or nulling of the spin exchange
interaction.

This study is devoted to a theoretical investigation of spin
dynamics in a spin-1 BEC under the temporal modulation of
the spin exchange interaction. As an application, we illustrate
the suppression of the dynamic instability and the resulting
prevention of spin domain formation in a condensate with
ferromagnetic interaction. The proposed scheme to control
the spin exchange interaction will potentially provide a

substantial improvement to the accuracy of several envisaged
magnetometer setups and to enable cleaner detections of
dipolar effects.

For both spin-1 atoms 87Rb and 23Na, popular experimental
choices, their spin-independent interaction strength, charac-
terized by c0 = 4πh̄2(2a2 + a0)/3M , is two to three orders of
magnitude larger than |c2| [18–20]. This ensures the validity of
single spatial mode approximation (SMA) [21–23] when the
number of atoms is small and the magnetic field is low. The spin
degrees of freedom and the spatial degrees of freedom become
separated within the SMA. This allows one to focus on the
most interesting spin dynamics free from density-dependent
interactions.

Within the mean field framework, the spin dynamics of a
spin-1 condensate under the SMA is described by [24]

ρ̇0 = 2c

h̄
ρ0

√
(1 − ρ0)2 − m2 sin θ,

(1)

θ̇ = 2c

h̄

[
(1 − 2ρ0) + (1 − ρ0)(1 − 2ρ0) − m2√

(1 − ρ0)2 − m2
cos θ

]
,

where ρi (i = +, 0,−) is the fractional population of com-
ponent |i〉, (

∑
i ρi = 1), m = ρ+ − ρ− is the magnetization

in a spin-1 Bose condensate, a conserved quantity. θ is the
relative phase [24]. φ(�r) is a unit normalized spatial mode
function under the SMA determined from a scalar Gross-
Pitaevskii equation with an s-wave scattering length of a2.
As before, the effective spin exchange interaction is given by
c(t) = c2(t)N

∫
d�r|φ(�r)|4, albeit the time dependence, with

N the total number of trapped atoms. Although the system
dynamics Eq. (1) does not conserve the total spin energy,

E(t) = c(t)ρ0[(1 − ρ0) +
√

(1 − ρ0)2 − m2 cos θ ], (2)

due to the temporal modulation, the transversal spin squared
f 2

⊥ = f 2
x + f 2

y = 2E(t)/c(t) remains conserved and is deter-
mined solely by the initial condition. Because E(t) and c(t) are
modulated exactly in the same manner, replacing θ with f 2

⊥,
Eq. (1) is further simplified to

(ρ̇0)2 = 4c2

h̄2 f 2(ρu − ρ0)(ρ0 − ρd ), (3)
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where ρu,d = f 2
⊥(1 ±

√
1 − f 2)/2f 2 with f 2 = f 2

⊥ + m2

ρu(d) takes the +(−) sign, denoting the largest (smallest)
value of ρ0 along the orbit and satisfies ρ̇0|ρu,d

= 0. It is
straightforward to find the solution,

ρ0(t) = ρu + ρd

2
+ ρu − ρd

2
sin

[
γ +

∫ t

0
β(s)ds

]
, (4)

where β(t) = ±2c(t)f/h̄ is the frequency of the periodic spin
evolution and the ± sign denotes the forward and backward
evolutions, respectively, and

γ = atan

(
ρ0(0) − [(ρu + ρd )/2]√
[ρu − ρ0(0)][ρ0(0) − ρd ]

)
,

is given by the initial values of ρ0 and θ . The above solution
[Eq. (4)] is valid for an arbitrary temporal modulation
function c(t).

To control the spin dynamics, we consider several simple
but practical modulations in the following. Based on these ex-
amples, we demonstrate that spin dynamics with a modulated
c is very different from the free dynamics and understand how
a temporal modulated c(t) affects the spin dynamics.

First, we consider a sinusoidal modulation with c(t) =
d cos(�t). d and � are, respectively, the modulation amplitude
and frequency. The solution Eq. (4) then becomes

ρ0(t) = ρu + ρd

2
+ ρu − ρd

2
sin[γ + η sin(�t)], (5)

with η = ±2df/h̄�. The corresponding results are illustrated
in Fig. 1 for � = 0, 1/2, 1, and 2. The case of � = 0 is simply
the free evolution without modulation with a period T0 =
2π/β determined by the initial condition [25]. For other cases,
irrespective of the values for �, the frequency of oscillation is
always � and the corresponding period is 2π/�. As shown in
Fig. 1, the oscillation amplitudes show two distinctive regions:
one for � � �c ≡ 2df/πh̄ (i.e., η � π ) where the amplitude
is the same with or without modulation; another for � > �c

(i.e., η < π ) where the amplitude decreases with modulation
frequency �. In this latter region, it is easy to check that
A = (ρu − ρd )(1 − cos η)/2 for the case shown in Fig. 1.

Figure 2 illustrates the orbits for the corresponding spin
dynamics. A full orbit is occupied if � < �c but only
partial orbits are occupied when � > �c. The occupied
portion deceases when � increases. Spin dynamics for the
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FIG. 1. (Color online) (Left) Time-dependent fractional popula-
tion ρ0(t). The black dotted line refers to the free evolution without
modulation, while the blue (dash-dotted), red (dashed), and blue
(solid) lines are for � = 1/2, 1, and 2, respectively. The parameters
and initial conditions are h̄ = 1, d = −1, m = 0, ρ0(0) = 0.7, θ (0) =
0, and �c ≈ 0.58. (Right) The dependence of oscillation amplitude
A of ρ0 on the modulation frequency �.
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FIG. 2. (a) Orbits without modulation; orbits with modulation for
(b) � = 1/2, (c) � = 1, and (d) � = 2. Parameters are the same as
in Fig. 1.

first half-period is reversed during the second half-period
evolution, irrespective of the values for � �= 0. This reversal
is responsible for a more robust modulated dynamics against
various noises as noises are not reversed and their effect can
be averaged zero according to coherent control theory [26].

Next we consider a periodic square function modulation
with

c(t) =
{

d, n(w + τ ) � t < n(w + τ ) + w,

0, n(w + τ ) + w � t < (n + 1)(w + τ ),
(6)

for n = 0, 1, 2, . . . . The spin dynamics is halted completely
if n(w + τ ) + w � t < (n + 1)(w + τ ) and is unmodulated if
n(w + τ ) � t < n(w + τ ) + w. The corresponding plots for
ρ0 and θ display interesting step-like features as shown in
Figs. 3(a) and 3(b).

The modulation dynamics considered above offers many
interesting possibilities. A direct application is to remove a
dynamical instability observed in a ferromagnetically interact-
ing spin-1 condensate [7–9,27,28]. This instability is removed
whenever the imaginary part of the eigenfrequency for the
corresponding Bogoliubov excitation becomes zero in a mod-
ulation cycle. We show this instability is indeed suppressed
in the following for the cosine modulation c2(t) = d cos(�t).
This suppression inhibits the spontaneous formation of spin
domains.
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FIG. 3. (Color online) (a) Time-dependent fractional population
ρ0 and (b) time-dependent relative phase θ for the periodic square
modulation Eq. (6) with τ = w = 1/4 and d = −1.
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We now consider our system of a homogeneous 87Rb
spin-1 condensate starting from an off-equilibrium initial
state [7]. The averaged spin �f = 〈Fx〉x̂ + 〈Fy〉ŷ + 〈Fz〉ẑ is
conserved where Fx,y,z are spin-1 matrices. Starting from any
stationary point, the evolution of the collective excitations
takes a compact form,

ih̄
∂ �x
∂t

= M(t) · �x, (7)

where �x = (δ�+, δ�0, δ�−, δ�∗
+, δ�∗

0 , δ�∗
−)T with devia-

tions δ�j and δ�∗
j from the stationary solution [7].

The general solution to Eq. (7) is �x(t) = U (t, 0)�x(0)
where U (t2, t1) = T exp[−(i/h̄)

∫ t2
t1

dsM(s)] with T the time
ordering operator. For periodic modulation, the solution
during t ∈ [pT, (p + 1)T ] is further simplified to �x(t) =
U (t, pT )(UT )p �x(0), where p = 0, 1, 2, . . . indexes the num-
ber of periods. T = 2π/� is the period of modulation, and
UT = U (T , 0) = T exp[−(i/h̄)

∫ T

0 dsM(s)] is the evolution
operator for a complete period. |�x(t)| will grow (decay)
exponentially with p if the modulus of UT are larger (smaller)
than unity. Diagonalizing UT and rewriting it as UT =
V † exp(−iT F )V , where the Fluoquet operator F is a 6-by-6
diagonal matrix, the criteria for stable dynamics reduces to
a vanishing imaginary part of Fq (q = 1, 2, . . . , 6). Unstable
dynamics arises if the imaginary part is not zero, while stable
dynamics emerges if the imaginary part of all Fq is exactly
zero.

The inset of Fig. 4 shows the imaginary part of a typical
spectrum for the system under a cosine modulation of c2.
We focus on the most unstable mode which in principle
dominates the unstable dynamics. Compared to the modulation
free results (in dashed lines), we find the most unstable mode
(in double contours) is not only suppressed in amplitude but
also shifted to larger wave vector. The dependence of k− on
the modulation frequency � is illustrated in Fig. 4. The almost
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FIG. 4. (Color online) The dependence of the wave vector k− for
the most unstable mode on the modulation frequency �. The inset
illustrates the imaginary part of a typical Bogoliubov spectrum under
modulation (blue double contours). For comparison, black dashed
lines denote the results without modulation.

independence of k− on � at small values contrasts with a
strong monotonic increase at large values of �.

The emergence of spin domains is prohibited due to the
modulation. On one hand, the suppression of F implies
a smaller effective spin exchange interaction thus a longer
effective spin healing length ξ ; on the other hand, the up-shift
of k− means shorter wave length λ = 2π/k−. If the unstable
mode wave length (potentially domain width) is smaller than
the spin healing length, the condensate is able to heal by itself.
The domain structure would never appear if ξ exceeds λ.

Because of the modulation, however, the resulting dynamics
becomes completely different from the case of c2 = 0 or
no spin dynamics at all. The modulation does not stop spin
mixing dynamics, (i.e., as we continue to observe spin waves)
which is nominally disguised in experiments by the sponta-
neously formed spin domains [8,9]. Furthermore, we expect
the modulated spin dynamics to be robust against various
experimental noises because the periodic modulation effec-
tively cancels uncorrelated noises from alternating modulation
periods.

Finally, we confirm the above conclusions for a trapped
spin-1 condensate with full numerical simulations. We adopt
experimental parameters as in Ref. [7]: The initial condi-
tions are as in the experiment [8], with 87Rb condensates
[ρ0(0) = 0.744, θ (0) = 0, N = 2.0 × 105, and m = 0], in a
trap Vext(�r) = (M/2)(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) with ωx = ωy =

(2π )240 Hz and ωz = (2π )24 Hz. The modulation function
is c2(t) = d cos(�t) with d = c2, and � = ωz which is about
3 times larger than the free spin evolution frequency 2π/T0.
Two cases will be considered: (1) The modulation is applied
immediately (ρ0 oscillates around ρu); (2) The modulation is
turned on at t = 6 (1/ωz) (ρ0 oscillates around ρd ).

The results from numerical simulations are shown in Fig. 5.
With modulation, the spin dynamics is clearly localized as ρ+

FIG. 5. (Color online) (a) Localization of the spin dynamics for
a trapped spin-1 condensate in three cases: (i) modulation starts
at t = 0 (red dashed line); (ii) no modulation (black dash-dotted
line); and (iii) modulation starts at t = 6 (blue solid line). Spatial
distribution m(z) = ∫

dr2πr(|�+(r, z)|2 − |�−(r, z)|2) at different
times for the above three cases: (b) case (i); (c) case (iii); (d) case
(ii). az = √

h̄/Mωz. Trivial and flat m(z) at early times (t < 250) has
been omitted. Dynamical instability- induced spontaneous domain
formation is prohibited by the modulated spin exchange interaction.
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(same for ρ−) oscillates with a smaller amplitude around its
initial value, in contrast to the large amplitude unmodulated
result [Fig. 5(a)]. In addition, the unmodulated dynamics
shows domain structures after t ≈ 300, due to the intrinsic
dynamical instability, while for both modulated cases, no
spin domains are observed. Thus temporal modulation of spin
exchange interaction does suppress the intrinsic dynamical
instability and prohibit spontaneous domain formation. In our
extensive numerical simulations, we find that when additional
white noises are added, spin domains are found to arise
quicker for the unmodulated case; yet for the two cases with
modulations, almost the same behaviors are observed as if no
noise were added.

Although the lifetime of the condensate at optical Feshbach
resonance is reduced dramatically in 87Rb gases [15], we
notice that there exists at least one magic window of relative
frequency, for example, between resonance β and γ in
Fig. 7 of Ref. [15], where the condensate lifetime lasts
several hundred milliseconds and c2 changes sign. On the
other hand, the spin domain emerges in a timescale typically
shorter than 100 ms [29]. Therefore, the suppression of

the domain formation in 87Rb condensate is experimentally
feasible.

In summary, we propose to localize the spin mixing
dynamics in a spin-1 condensate by temporally modulating
the spin exchange interaction. For condensed atoms, the
modulation can be facilitated with the technique of optical
Feshbach resonance [13,15]. We demonstrate the suppression
of the intrinsic instability, thus the inhibition of spontaneous
spin domain formation in a ferromagnetically interacting
spin-1 Bose condensate, such as 87Rb condensate in the F = 1
manifold. In addition, the effective freezing of spin mixing
dynamics due to spin exchange interaction provides a cleaner
approach to investigate magnetic spin dipolar interaction effect
in a 87Rb Bose condensate [11,12].

ACKNOWLEDGMENTS

W. Z. acknowledges support from the 973 Program (Grant
No. 2009CB929300), the National Natural Science Founda-
tion of China (Grant No. 10904017), and the Program for New
Century Excellent Talents in University.

[1] L. D. Landau and E. M. Lifshitz, Mechanics (Pergamon, Oxford,
1960).

[2] G. Horvath, R. Thompson, and P. Knight, Contemp. Phys. 38,
25 (1997).

[3] H. Saito and M. Ueda, Phys. Rev. Lett. 90, 040403
(2003).

[4] F. Abdullaev and R. Kraenkel, Phys. Lett. A272, 395
(2000).

[5] F. K. Abdullaev, J. G. Caputo, R. A. Kraenkel, and B. A.
Malomed, Phys. Rev. A 67, 013605 (2003).
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