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Shaping coherent excitation of atoms and molecules by a train of ultrashort laser pulses
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We propose a mechanism to produce a superposition of atomic and molecular states by a train of ultrashort laser
pulses combined with weak control fields. By adjusting the repetition rate of the pump pulses and the intensity
of the coupling laser, one can suppress a transition while simultaneously enhancing the desired transitions. As
an example, various superpositions of vibrational states of the K2 molecule are shown.
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I. INTRODUCTION

Population transfer to a desired coherent superposition of
atomic and molecular states (i.e., a wave packet) has been
a major goal during the past three decades and continues to
be a challenge, for instance, for implementation of chemical
and biological processes [1–3], for fast quantum information
processing [4–7], and for nonlinear optics [8].

Besides extensions of π -pulse techniques [9–12] and of
brute-force optimal control [13], mechanisms to produce
superpositions of two states in atoms based on adiabatic pas-
sage (in nanosecond regime) have been proposed [12,14,15]
and demonstrated [16–18]. Extending such techniques to an
ultrafast regime and for molecular systems is of particular
interest. One can also mention the impulsive stimulated Raman
scattering spectroscopic technique that provides vibrational
structural information with high temporal and spectral reso-
lution [19–21]. This is an efficient approach to determine the
dynamics of vibrational molecular motion [22].

Recent progress has allowed the development of mode-
locked laser systems producing mutually phase-coherent ultra-
short laser pulses of high intensity with arbitrary controllable
amplitudes, of stable frequency, and of adjustable delay
time (see for instance [23,24]). Theoretical [25–27] and
experimental [28,29] analysis in a few level systems have
shown that a resonant π pulse (or generalized π pulse [11,12])
can be split into trains of fractional π pulses and can lead to
the accumulation of population in a target state for appropriate
delays. The main point is that weak pulses can then be used,
preventing detrimental destructive effects such as ionization.
For more complicated systems, populating some chosen states
among a set of levels, all within the broad ultrashort pulse
spectrum, is a major issue. However, one can exploit one of
the main properties of the associated frequency comb, that
is, its extremely small resolution, given by the width of the
comb’s teeth in the frequency domain, which is much better
than the one determined by the Fourier transform of a single
pulse in the train. A high degree of population transfer to
a single vibrational state of an electronic excited state has
been indeed numerically shown by a train of femtosecond
laser pulses by choosing the pulse repetition period as a
noninteger multiple of the vibrational period [30]. Recently
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a so-called piecewise adiabatic passage method, based on
the combination of adiabatic passage, trains of pulses, and
pulse-shaping techniques, has been proposed [31,32].

In this article, we propose an alternate robust and efficient
method for population transfer to a desired superposition in
multilevel systems using a train of pulses combined with
weak controlled lasers. We derive analytical formulas in the
impulsive and perturbative regimes for the ultrashort pump
pulses.

We consider a system of level configuration shown in Fig. 1
interacting with a train of ultrashort femtosecond laser pulses,
whose spectrum is wide enough to overlap all the upper states,
while a narrow-band weak laser couples, for example, the
upper level 1 with an auxiliary state 4. We consider three
upper levels for simplicity, but the proposed mechanism can
be directly extended to any number of upper-lying levels. By
adjusting the repetition rate of the pump pulses with respect
to the Rabi frequency �c of the coupling field, this scheme
enables one to cancel out the strong transition 0 → 1 from the
pump field, while enhancing the transitions 0 → i, i = 2, 3. To
give an insight into the proposed mechanism, let us consider
the interaction of the system with two consecutive identical
pump pulses in resonance on the transition 0 → 1, with a time
delay τd , which is longer than the pulse duration T . In the
low-intensity regime, the atomic state amplitudes C1,2,3 after
the first pump pulse are Cj ∼ θj = ∫

�j (t)ei�j dt � 1, j =
1, 2, 3, with �j the pump Rabi frequencies corresponding to
the respective 0 → j transitions [see Eqs. (2) and (3) for the
definition of the fields and the Rabi in this article]. At the end of
the second pulse they take the forms C1 ∼ θ1 + θ1 cos(�cτd )
and C2,3 ∼ 2θ2, showing that when the delay time τd is such
that

�cτd = π (1 + 2k), (1)

with k an integer, the population on level 1 vanishes, while it
increases four times on states 2 and 3. The excitation ampli-
tudes of the two pump pulses add coherently for an appropriate
delay [25]. Hereafter, we assume that the upper-lying levels
are harmonic, such that the condition ωij τd = 2πkij applies,
with kij an integer and ωij = ωj − ωi the frequency splitting
between the upper levels of energies ωj . This condition is
essential to accumulating population in the upper states from
pulse to pulse. Therefore, as long as the pulse delay τd remains
well smaller than the atomic decoherence time, the second
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FIG. 1. Level scheme illustrating the excitation of three upper
states by the ultrashort pump laser. A cw coupling field drives the
auxiliary transition 1 → 4.

pulse allows the selective excitation of a superposition of
states 2 and 3. Our method does not suffer from a high
sensitivity to laser-field instabilities. We show below that the
efficiency of the process is preserved even when condition (1)
is not well satisfied.

The article is organized as follows. In the next section we
derive and solve the basic equations for the time evolution
of the state amplitudes in the impulsive and perturbative
regimes. In Sec. III we apply the proposed technique to produce
superpositions of states in an electronic state of the molecule
K2. Our conclusions are summarized in Sec. IV.

II. MECHANISM OF SELECTIVE EXCITATION

A. The model

In our scheme (Fig. 1), the upper states 1, 2, and 3 are
populated via a single photon excitation by a train of m

identical and nonoverlapping ultrashort laser pulses whose
spectrum is centered on the resonance with the transition 0 →
1 and is wide enough that upon interacting with each pulse,
states 1, 2, and 3 are excited simultaneously: T −1 ∼ � > ω31.
Here � is the spectral width of the laser fields and ω31 is the
frequency splitting of levels 1 and 3. We assume that
the narrow-band coupling field is in exact resonance with the
transition 1 → 4, with the pulse duration much longer than
that of the pump pulses T . In what follows, we neglect the
Doppler broadening because it is smaller than �.

The pump Ep(t) and coupling Ec(t) field amplitudes of
respective carrier frequencies ωp and ωc are of the form (in
complex notation)

Ep(t) =
m∑

i=1

Ei(t)e
iωpt , Ec(t) = Ec(t)eiωct , (2)

with the same shape f (t) for all m pump pulses that determines
the time dependence of Ei(t) = E0f [t − t1 − (i − 1)τd ] and
the delay τd between two consecutive pulses. The interaction
of the system with the pump and coupling fields is determined

by their Rabi frequencies at the corresponding transitions,

�(j )
p (t) = µj

h̄
Ei(t), �c(t) = µ14

h̄
Ec(t), (3)

where µij is the dipole matrix element of the transition
i → j = 1, 2, 3 and the notation µj ≡ µ0j . We consider
for simplicity a time-independent coupling field. Our results
generalize for a pulsed coupling field of much longer duration
than the pump field. In the rotating wave approximation with
respect to the pump field, the Hamiltonian of the system is
given by

H = −h̄

3∑
j=1

[
�(j )

p σj0 − �jσjj

] − h̄�1σ44 − h̄�cσ41 + H.c.,

(4)

where σij = |i〉〈j | are the atomic operators and �j = ωj0 −
ωp is the one-photon detuning of the pump field from the
0 → j, j = 1, 2, 3 transition. The state |ψ(t)〉 = ∑

i Ci(t)|i〉
of the atom satisfies the Schrödinger equation Ċi(t) =
− i

h̄

∑
k〈i|H |k〉Ck(t), which leads to the equations for the

atomic-state amplitudes

Ċ0(t) = i
∑
j=1,2

�(j )∗
p Cj (t), (5a)

Ċ1(t) = −i�1C1 + i�(1)
p C0(t) + i�cC4, (5b)

Ċ2,3(t) = −i�2,3C2,3 + i�(2,3)
p C0(t), (5c)

Ċ4(t) = −i�1C4 + i�∗
cC1, (5d)

with the initial conditions

C0(−∞) = 1, Cj 	=0(−∞) = 0. (6)

B. Solution in the impulsive regime

In the general case, Eqs. (5) do not provide an analytic
solution. However, in the regime of low intensity of the
coupling field with respect to the pump fields, �c � �p, and
in the impulsive (or sudden) approximation for the ultrashort
pump pulse by disregarding the detunings �jT � 1 [33], one
can determine the solution (see the Appendix). Equations (A3)
show the dependence of the state amplitudes after the (n + 1)st
pulse, depending on the amplitudes after the nth pulse (n =
1, 2, . . .). For the sequence of two pump pulses right after the
interaction with the second pump pulse, Eqs. (A3) lead to

C0(t+2 ) = cos2 θ − 1

µ2

[
µ2

1e
−i�1τd cos(�cτd ) + µ2

2e
−i�2τd

+µ2
3e

−i�3τd
]

sin2 θ (7a)

C1(t+2 ) = i
µ1

2µ
sin 2θ

{
1 + 1

µ2

[
µ2

1e
−i�1τd cos(�cτd )

+
3∑

k=2

µ2
ke

−i�kτd

]}
+ i

µ1

µ3
sin θ

[(
3∑

k=2

µ2
k

)

× e−i�1τd cos(�cτd ) −
(

3∑
k=2

µ2
ke

−i�kτd

)]
(7b)
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C2(t+2 ) = i
µ2

2µ
sin 2θ

{
1 + 1

µ2

[
µ2

1e
−i�1τd cos(�cτd )

+
3∑

k=2

µ2
ke

−i�kτd

]}
+ i

µ2

µ3
sin θ

{
µ2

1[e−i�2τd

− e−i�1τd cos(�cτd )] + µ2
3(e−i�2τd − e−i�3τd )

}
(7c)

C3(t+2 ) = C2↔3(t+2 ), (7d)

C4(t+2 ) = −µ1

µ
e−i�1τd sin θ sin(�cτd ), (7e)

with

θ = µ

h̄

∫
E(t)dt, µ =

(
3∑

k=1

µ2
k

)1/2

, (8)

and
∫
E(t)dt the area of each pump pulse (considered invariant

from pulse to pulse). When the upper-lying states 1, 2, and 3
are harmonic such that (i) ωij τd = 2πn, (ii) condition (1) is
fulfilled, and (iii) the pump pulses are resonant with one of any
transitions 0 → i (i.e., �i = 0), and implying �jτd = 2πnj

for all j (with nj an integer) from condition (i), these equations
take the simpler form

C0(t+2 ) = cos2 θ − µ2
2 + µ2

3 − µ2
1

µ2
sin2 θ, (9a)

C1(t+2 ) = 2i
µ1

µ

µ2
2 + µ2

3

µ2
sin θ (cos θ − 1), (9b)

C2(t+2 ) = i
µ2

µ

(
µ2

2 + µ2
3

µ2
sin 2θ + 2µ2

1

µ2
sin θ

)
, (9c)

C3(t+2 ) = C2↔3(t+2 ), C4(t+2 ) = 0. (9d)

This shows that, in order to cancel out the population transfer
to state 1 while increasing the population of states 2 and 3, only
the limit of weak pump excitation (θ � 1) is suitable since it
leads to cos θ − 1 = O(θ2).

C. Solution in the perturbative regime

If we consider that each pump pulse is weak, �jT � 1, we
can perturbatively calculate the solution of Eqs. (5) (without
invoking explicitly the shortness of the pump pulse). We obtain
with correction of order O(θ2):

C1(t+n+1) = iθ1 + e−i�1τd [C1(t+n ) cos(�cτd )

+ iC4(t+n ) sin(�cτd )], (10a)

Cj (t+n+1) = iθj + e−i�j τd Cj (t+n ), j = 2, 3 (10b)

C4(t+n+1) = e−i�1τd [iC1(t+n ) sin(�cτd ) + C4(t+n ) cos(�cτd )],

(10c)

with

θj = µj

h̄

∫
E(t)ei�j tdt (11)

the Fourier spectral component of the Rabi frequency of the
pump pulse at frequency �j . We remark that we recover
these Eqs. (10) from Eqs. (A3) using sin θ = θ + O(θ3) and

cos θ = 1 + O(θ2) except for the phase in the θj ’s that are
neglected in the impulsive regime.

1. Selective excitation to a single state [30]

To excite a single state, say state 1, no control field is
required, �c = 0, and the pump needs to be resonant with
the target state, �1 = 0. In that case, one can determine the
coefficients after n pulses from Eqs. (10):

C1(t+n ) = inθ1, (12a)

Cj=2,3(t+n ) = ie−i(n−1)�j τd/2 sin
(

n
2 �jτd

)
sin

(
1
2�jτd

) θj . (12b)

This shows that population in the target state accumulates
linearly as a function of the number of the ultrashort pulses.
Population does not coherently accumulate for large n in the
other state if one chooses �jτd well different from 2πk, with
k an integer. This effect is optimal when

�jτd = π (1 + 2k). (13)

The population transfer to state 1 is closer to 1 when the total
area of the pump pulses is 2π . (This value obtained here, 2π , is
due to the definition of the fields (2) and the Rabi frequencies
(3). This corresponds to a “π -pulse” transfer of a single strong
field.) The resulting selective excitation is thus very robust
with respect to �jτd .

2. Selective excitation to a superposition of states

To excite a superposition of states, one has to impose

�jτd = 2πkj , (14)

with kj an integer, which leads to

Cj=2,3(t+n ) = ie−i(n−1)πnθj . (15)

This condition can be satisfied when the upper-lying states
within the bandwidth of a single pulse are harmonic.

We now show that the control field allows the removal of the
transition to the state to which this control field is resonantly
coupled. We choose state 1 to have this feature (i.e., �1 = 0).
From Eqs. (10), we get after n pulses

C1(t+n ) = i cos

(
n − 1

2
�cτd

)
sin

(
n
2 �cτd

)
sin

(
1
2�cτd

) θ1, (16a)

C4(t+n ) = i sin

(
n − 1

2
�cτd

)
sin

(
n
2 �cτd

)
sin

(
1
2�cτd

) θ1. (16b)

The populations do not accumulate in states 1 and 4 if one
chooses �cτd well different from 2πk, with k an integer. This
effect is optimal when �cτd = π (1 + 2k) [see condition (1)].
The value for k = 0 corresponds to a π area (i.e., a “π/2
pulse”) for the control field in this model. We remark that such
a cancellation of the transfer to state 1 is thus expected to be
robust with respect to a precise area of the control field.

Thus, by choosing the number of the pump pulses, one can
achieve the coherent selective superposition of levels 2 and 3,
while keeping state 1 almost empty.

In Fig. 2(a) we show the results of a numerical integration of
Eqs. (5) obtained under the conditions mentioned previously
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FIG. 2. (Color online) Populations of atomic ground state (dash-
dotted, black) and upper levels 1 (solid, red), 2 (dotted, blue), and 3
(dashed, green) excited by a train of the pump pulses for µ2 = µ3 =
0.5µ1, T = 0.3ω21, and (a) �cτd = π , (b) �cτd = 0.3π .

using Gaussian shape f (t) = exp(−t2/T 2) for the pump
pulses. Very similar results are obtained when condition (1) is
significantly violated, as shown in Fig. 2(b). This demonstrates
the robustness of our scheme with respect to the coupling field
instabilities as predicted earlier in this article.

We apply the proposed mechanism in the next section to
produce a selective coherent superposition of vibrational states
in a molecular electronic state.

III. APPLICATION TO THE POTASSIUM DIMER

We consider the excitation of the potassium dimer K2 [34].
The molecule is supposed to be prepared in the ground
vibrational state v′′ = 0 of the electronic state X 1
+

g . The
excited state is chosen to be the first excited electronic state
A 1
+

u (of lifetime 28 ns). In the calculations the dependence
of the electric dipole moment on internuclear distance is
ignored according to the Franck-Condon principle, which is
well applicable for the diatomic molecules [35]. The pump
pulses are assumed to be transform limited of Gaussian
envelope f (t) = exp(−t2/T 2) with duration T = 150 fs and
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FIG. 3. (Color online) Populations of K2 of the ground state v′′ =
0 (dotted, black), the upper state v′ = 10 (solid, red), and the other
states v′ = 8, 9, 11, 12, 13 (dashed lines).

peak intensity Imax
p ∼ 1011 W/cm2. We assume the pump

pulses to be on resonance with the transition v′′ = 0 →
v′ = 10 (ωL � 11800 cm−1). The excited vibrational levels
v′ = 8, 9, . . . , 13 are within the spectrum of the pump field
and are expected to be populated. Our main goal is to suppress
the strongest transition v′ = 10 of the upper vibrational
levels.

Here we solve numerically Eqs. (5) with the amplitudes
corresponding to those of the vibrational states. We have
included all the relevant vibrational states of the problem,
using the preceding parameters, and with the requirement
that the conditions (1) and ω9′10′ = 2πkτd are fulfilled, where
ω9′10′ is the frequency splitting of the vibrational states
v′ = 9 and v′ = 10 of the upper electronic state. For ω9′10′ =
67.3 cm−1 the delay time between the subpulses is τd � 3 ps.
Note that frequency splitting of the upper-lying levels is almost
equidistant. The coupling field couples the state v′ = 10, of

FIG. 4. Histogram of the vibrational population distribution after
excitation without (top) and with (bottom) the coupling field.
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FIG. 5. Histogram of the vibrational population distribution after
excitation by the same pulses used in Fig. 4 but of duration 600 fs.

largest dipole moment element among the states within the
bandwidth of a single pump, with an auxiliary electronic
state of the potassium dimer (e.g., b3�u). Figure 3 shows
the dynamics of the populations of the vibrational levels when
it is excited by a train of identical pulses. To calculate the
populations, we have used the Franck-Condon factors and the
corresponding eigenfrequencies, which are well known for
vibrational levels of K2 molecules [34]. The chosen values
of the parameters, �c � 0.2ω9′10′ � �max

p � 0.6ω9′10′ and
θ2(∞) ∼ 0.15, provide all the necessary conditions for the
analytical analysis made in the previous section to be valid.
As is seen in Fig. 3, after the interaction of the molecule with
eight pulses, all the population is distributed between the upper
vibrational levels v′ = 8, 9, 11, 12, 13 (dotted lines), while
the level v′ = 10 (red, solid line) stays almost unpopulated.
To have a more complete picture of the process, Fig. 4
displays the histogram of the population distribution in the

FIG. 6. Histogram of the vibrational population distribution when
the states v′ = 8, 10, 12, 13 are coupled to auxiliary states by coupling
fields.

upper-lying states. In the absence of the coupling field the
population is distributed between all upper vibrational states
(Fig. 4, top). However, if the coupling field is on (Fig. 4,
bottom), the strongest transition is dramatically suppressed.
Adapting the duration of the pulses allows one to modify
the shape of the superposition, reducing the population of
the upper states, as is shown in Fig. 5. Here the duration
of the pump pulses are taken to be four times larger than
that of the cases considered previously. To suppress some
components of the superposition, one can apply other fields
coupled to the undesired states from different auxiliary states.
As an example, in Fig. 6 the levels v′ = 8, 10, 12, 13 are
coupled with other molecular states, which leads to a coherent
superposition of only two states v′ = 9, 11. Thus, we have
shown that the coupling fields allow the decreasing of the
populations of the undesired states and the enhancement of the
populations of the other states well within the bandwidth of a
single pump.

IV. CONCLUSION

In this article we have proposed a robust and simple
mechanism for the coherent excitation of the molecule or
atom to a superposition of preselected states by a train of
femtosecond laser pulses, combined with narrow-band weak
laser fields coupling the undesired states well within the
bandwidth of a single pulse to auxiliary states. The coupling
fields allow the cancellation of specific transitions from the
ground state to a set of states i when they induce a coherence
between each state i and an auxiliary state. It is required to
have the same number of auxiliary states as the numbers of
states i that have to be canceled.

We have shown the principles of this method for a system
of a few states. We have calculated in detail the amplitudes
of the states after each pulse of the train in the limit of short
pulses with arbitrary strength (impulsive limit) and in the limit
of weak pulses with arbitrary duration. We have shown that
the accumulation of population into the desired states occurs
in a controlled way under the conditions of a weak pulse
regime, taking advantage of the extremely small resolution
of the corresponding comb and of excited states featuring an
harmonic ladder and well within the bandwidth of a single
pulse of the train. The combination of the pulse train with
weak control fields allows the selective accumulation of a
given superposition among the states satisfying the preceding
conditions. This technique is robust with respect to precise
areas of the control fields.

The main point here is that the use of multiple weak
pulses to produce superpositions of state allows one to
prevent unwanted destructive effects such as ionization that
usually occur when using strong fields. Furthermore, the state
superposition can be, in principle, generated in an ultrafast
way by the train of pulses.

We have applied this technique to produce superpositions
of vibrational states in an excited electronic state of the K2

molecule where these states feature locally harmonic ladders.
We remark that these predictions of selective coherent

excitation could be measured experimentally by a sensitive
method such as the one developed in [36].
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The technique developed in this article could find var-
ious modern applications where superpositions of states
are involved, for instance, in studying and controlling the
molecular dynamics through the design of specific wave
packets [37].
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APPENDIX: GENERAL SOLUTION IN THE
IMPULSIVE REGIME

We integrate Eqs. (5) over the time of interaction with the
nth pump pulse in the impulsive approximation, disregarding
the detunings �jT � 1 and where to a good approximation
the weak �c terms can be neglected. This yields a simple
solution right after the nth pump pulse at time t = t+n
(considered interacting at t = tn) from the solution right before
the pulse at time t = t−n :

C0(t+n ) = C0(t−n ) cos θ + iC̄−
n sin θ (A1a)

Cj (t+n ) = Cj (t−n ) + i
µj

µ
C0(t−n ) sin θ + µj

µ
C̄−

n (cos θ − 1),

j = 1, 2, 3 (A1b)

C4(t+n ) = C4(t−n ), (A1c)

where µ =√∑3
k=1 µ2

k; θ = µ

h̄

∫
E(t)dt , with

∫
E(t)dt the area

of each pump pulse (considered invariant from pulse to pulse;
and C̄−

n = [
∑3

k=1 µkCk(t−n )]/µ. After the nth pulse turned off,
the amplitudes C0, C2, and C3 evolve freely up to t ∼ tn + τd ,
τd � T :

C0(t) = C0(t+n ), (A2a)

Cj (t) = e−i�j (t−tn)Cj (t+n ), j = 2, 3, (A2b)

while C1(t) and C4(t), tn+1 > t > tn are found from Eqs. (5)
with the initial values (A1b) and (A1c) as

C1(t) = e−i�1(t−tn){C1(t+n ) cos[�c(t − tn)]

+ iC4(t+n ) sin[�c(t − tn)]}, (A2c)

C4(t) = e−i�1(t−tn){iC1(t+n ) sin[�c(t − tn)]

+C4(t+n ) cos[�c(t − tn)]}. (A2d)

We iterate the above procedure for all the ultrashort pump
pulses:

C0(t+n+1) = C0(t+n ) cos θ + i

µ
sin θ{µ1e

−i�1τd [C1(t+n )

× cos(�cτd ) + iC4(t+n ) sin(�cτd )]

+
3∑

k=2

µke
−i�kτd Ck(t+n )},

(A3a)

C1(t+n+1) = i
µ1

µ
C0(t+n ) sin θ + e−i�1τd [C1(t+n ) cos(�cτd )

+ iC4(t+n ) sin(�cτd )]

[
1 + µ2

1

µ2
(cos θ − 1)

]

+ µ1

µ
(cos θ − 1)

3∑
k=2

µk

µ
e−i�kτd Ck(t+n ),

(A3b)

C2(t+n+1) = i
µ2

µ
C0(t+n ) sin θ + e−i�2τd C2(t+n )

×
[

1 + µ2
2

µ2
(cos θ − 1)

]
+ µ2

µ
(cos θ − 1)

×
{

µ1

µ
e−i�1τd [C1(t+n ) cos(�cτd )

+ iC4(t+n ) sin(�cτd )] + µ3

µ
e−i�3τd C3(t+n )

}
,

(A3c)

C3(t+n+1) = C2↔3(t+n+1), (A3d)

C4(t+n+1) = e−i�1τd [iC1(t+n ) sin(�cτd ) + C4(t+n ) cos(�cτd )].

(A3e)

Equation (A3d) means that the amplitude C3 has the same
expression as C2 (A3c) but exchanging the indices 2 and 3.
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