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Ionization dynamics via ion-collection field of Rydberg atoms approaching metal surfaces
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The ionization dynamics of slow hydrogenlike Rydberg atoms (principal quantum number n � 1) approaching
solid surfaces is considered via an ion-collection electric field, using an appropriate etalon equation method. The
complex energy eigenvalue problem is solved in the critical region R ≈ Rc ≈ RI

c of the ion-surface distances R

in which the ionization process is mainly localized and the parabolic symmetry is preserved. The relatively simple
analytical forms for the parabolic rates enable us to elucidate the main features of the self-consistent ionization
dynamics of the projectiles with the time-dependent charges. The ionization distances RI

c are calculated and
an agreement of the averaged probability (for the atomic beam) with the corresponding experimental results is
discussed for the relevant parameters of the ion-surface system. The formulas are suggested for the simulation
of the experimental signal and for deducing the RI

c values from this signal.
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I. INTRODUCTION

Recently, an interesting problem concerning direct observa-
tion of ionization distances RI

c of Rydberg atoms approaching
solid surfaces has attracted considerable attention. This rela-
tively old problem was revisited in the experiments with xenon
Rydberg atoms [1–7] and hydrogen molecules [8] approaching
a solid surface (with hyperthermal velocities v � 1 a.u.) in the
presence of a weak external electric field F . The experiments
[1–7] produced a normalized number of the ionized atoms
as a function of the applied electric field F (ion signal). The
distances RI

c were deduced from the values of the minimal
electric field Fmin, which was sufficient to send back the ionized
projectile from the beam into detector, by using a simple
classical relation between the RI

c and the Fmin values [1]. On
the other hand, the ion signal was simulated by employing
the model ionization rates in the expression for the averaged
ionization probability P for the atomic beam [3]. We find that
the more accurate interpretation of the experimental results
(the RI

c values and the signal shape) can be obtained if the
quantum model of ionization is treated simultaneously with
the classical law of motion of the projectiles.

The first theoretical study devoted to the ionization dy-
namics in the presence of an external electric field has been
performed within the framework of the complex scaling
method (CSM) [9,10]. More recently, time-dependent wave-
packet propagation (WPP) studies have been proposed for the
same physical problem [11,12]. Along with the CSM and the
WPP method, ionization dynamics has been considered as a
decay process, using an appropriate etalon equation method
(EEM) [13]. According to the decay model, the ionization
occurs mainly via electron tunneling localized in the critical
region R ≈ Rc � 1 a.u., where the critical distance Rc is
the ion-surface distance at which the electron transitions
become classically allowed (i.e., when energy term touches the
potential barrier top). Using the EEM, the analytical solutions
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of complex energy eigenvalue problem were obtained for all
relevant ion-surface parameters. The ionization distances RI

c

were defined as ion-surface distances at which the ionization
probability per unit time (total rate) is maximal. It was
demonstrated that the ionization distances belong to the critical
region (RI

c ≈ Rc).
In the considered case of ionization, the advantage of

the EEM is in the fact that the solutions of the eigenvalue
problem can be expressed via the solutions of the appropriate
etalon equation, which has the same confluent turning points
as the original one. Thus, instead of using the expansion
over the basis wave functions, characteristic for CSM and
WPP method, the eigenfunctions of the EEM can be directly
exposed in the parabolic coordinates and classified by a set
of parabolic quantum numbers µ = (n1, n2,m). Moreover,
the corresponding complex energy spectrum can be obtained
directly, without explicit calculation of the eigenfunctions.

In the present article we apply the EEM [13] to study
some specific features of the ionization dynamics of the
atomic beam important for further understanding of the
experimental findings. We consider the decay of an atomic
projectile (a representative member of the corresponding
quantum subensemble of particles with a given initial velocity)
impinging the conducting solid surface in the presence of
the ion-collection electric field F . Within the framework of
the decay model the active electron is in a decaying state
�µ, while the projectile with the time-dependent charge
q(t) moves toward the surface at R-dependent perpendicular
velocity v⊥(R) = −dR/dt . Using the EEM, the parabolic
ionization rates �µ(R) = −2 ImEµ(R) and the corresponding
energy terms ReEµ(R) are obtained by means of complex
eigenenergies Eµ(R). We restrict our analysis to the high-
eccentric surface-oriented Rydberg states (principal quantum
number n = n1 + n2 + |m| + 1 � 1), characterized by lower
values of the parabolic quantum number n1 and m = 0.

The problem of calculating the ionization probability Pµ(R)
from the rates �µ(R) is resolved in a kind of self-consistent
procedure. This problem is nontrivial; namely, in the proposed
decay model, the probability Pµ(R) depends on the projectile
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motion via perpendicular velocity v⊥(R) and, simultaneously,
the motion of the projectile depends on the ionization
probability through the charge q(t) = ZPµ(R), where Z is
the initial core charge (in atomic units). The ensemble of
particles (atomic beam) is treated as a statistical mixture of
subensembles with a statistical function f (v⊥0). By taking into
account the fact that the field F collects only the projectiles
of the beam with v⊥0 < vc(µ,F ), we define the averaged
ionization probability Pµ(F ); the quantity vc(µ,F ) is the
characteristic function for the proposed ionization dynamics.
By using the appropriate expression P = Pµ(F ), we are in a
position to satisfactorily reproduce the experimental signals
without any fitting parameters.

From the ionization probabilities Pµ(R) we obtain the
total rates �̃µ = dPµ(R)/dt of the same narrow width as
those of the CSM [9,14] and the WPP method [11,12]
(about 50 a.u.), in contrast to the model rates (with widths of
about 250 a.u.) used for the simulation of experimental signal
in Ref. [3]. By means of the total rates, we get the improved
ionization distances RI

c in comparison to the values calculated
in Ref. [13]. We point out that in our previous EEM [13], the
perpendicular projectile velocity was taken as constant and the
localization of the ionization process has been investigated in
a direct, but somewhat approximative manner. Comparing the
EEM ionization distances with those that can be deduced from
the experiments [1,3], we find that the more accurate values
can be obtained if the measured mean fields F̄ (with the mean
initial perpendicular velocity v̄ from the atomic beam) are
used instead of the minimal fields Fmin combined with the
“minimal” value v⊥0 = 0.7 × 10−5 a.u. [1].

This article is organized as follows. In Sec. II we formulate
the problem within the framework of the decay model
and the EEM, exposing the basic equations for description
of the ionization dynamics. In Sec. III we present the
self-consistent expression for the ionization probability for
the projectile with the time-dependent charge, by including
the core motion. In Sec. IV we expose explicit results of the
proposed ionization dynamics. The EEM results obtained in
the constant perpendicular velocity approximation (v⊥ = v⊥0)
are compared with the theoretical predictions of the CSM
[9,14] and the WPP method [11,12]. The more general EEM
results valid for v⊥ = v⊥(R) are used for the calculation of
the ionization distances and averaged probabilities (signal),
which are compared with the experimental findings [1,3].
Some concluding remarks are given in Sec. V.

Atomic units (e2 = h̄ = me = 1) will be used throughout
the article unless indicated otherwise.

II. FORMULATION OF THE PROBLEM

A. Decay model of ionization dynamics of atomic beam

We consider the ionization of a beam of slow hydrogenlike
Rydberg atoms (pointlike core charge Z = 1, mass M)
impinging a solid surface in a presence of a weak external
electric field F (directed from the solid to the vacuum, along
the z axis). The ionization dynamics will be analyzed within
the framework of an appropriate decay model in which the
quantum behavior of the electron transitions and the classical
motion of the projectiles are considered simultaneously.

The subensemble of particles with a given initial velocity
(with perpendicular component v⊥0) is represented by a
single projectile with an active electron in the parabolic
Rydberg state state �µ, where µ = (n1, n2,m) is the set of
parabolic quantum numbers and n = n1 + n2 + |m| + 1. The
electronic state �µ decays during the ionization with the
probability Pµ(R; v⊥0, F ), where R is the instant ion-surface
distance. Due to the quantum decay, the “electron cloud”
around the projectile core reduces so that the charge q of
the initially neutral representative member of the considered
subensemble is changing continuously in time; that is, q =
q(t) = qµ(R; v⊥0, F ). At the time t we have

q(t) = ZPµ(R). (1)

The charge q(t) moves in a presence of solid surface and
external field F with the perpendicular velocity v⊥ = v⊥(R),
satisfying the initial condition v⊥ = v⊥0. The presence of
different initial velocities of the atomic particles within the
beam is considered as a statistical mixture of subensembles,
via the statistical function (initial perpendicular velocity
distribution) f (v⊥0).

In Fig. 1 we present schematically the described decay
model of beam ionization and the corresponding experimental
situation [1–7]. The representative projectiles of the subensem-
bles with initial perpendicular velocities v⊥0 < vc(µ,F ),
after the ionization mainly localized at ionization distances
RI

c (µ, v⊥0, F ), will be collected by the external electric field
F and detected experimentally. The corresponding trajectories
are characterized by the minimal ion-surface distance Rmin.
The other particles from the atomic beam, after the ionization,
enter the near-surface region, where they are neutralized via

FIG. 1. Decay model of ionization dynamics of the beam of
atomic particles, with initial perpendicular velocity distribution
f (v⊥0), in the presence of a solid surface and an external electric
field F . Each trajectory corresponds to the representative member
of the subensemble of Rydberg atoms/ions with a given initial
perpendicular velocity v⊥0. The corresponding electronic state �µ

decays during the ionization with the probability Pµ(R; v⊥0, F ) and
the total rate �̃µ(R; v⊥0, F ) = dPµ/dt . Only the projectiles with
v⊥0 < vc(µ, F ), after the ionization [mainly localized at ionization
distance RI

c (µ, v⊥0, F )], will be collected by the external electric field
F and detected experimentally.
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Auger-type processes. Thus, the representative projectiles with
the initial perpendicular velocity v⊥0, can be collected only by
the electric fields F > Fc(µ, v⊥0).

The probabilistic description of the behavior of the repre-
sentative projectile means that the normalized number of the
particles from the beam (with a given initial perpendicular
velocity v⊥0), ionized in the interval [R,R + dR], is given
by −dPµ(R). The charge of the particular particle changes
in time in a discrete manner from q = 0 to q = 1; that is,
qR(t) = Z�(R − R), where the � function �(x) is defined
by �(x) = 0 for x < 0 and �(x) = 1 for x � 0. The time-
dependent charge q = q(t) given by Eq. (1) represents the
subensemble average over different ionic trajectories; namely,

〈qR(t)〉 = −
∫ ∞

0
Z�(R − R)dPµ(R)

= −Z

∫ ∞

R

dPµ(R) = ZPµ(R) = q(t). (2)

In Fig. 1, each trajectory is the representative for the manifold
of trajectories for the particles ionized at different ion-surface
distances. The corresponding beam broadening is taken into
account in the proposed decay model as an average effect
(see discussion in Sec. IV D).

B. Decay model of the electronic state: Etalon equation method

The quantum model of electron transitions during the
ionization is adapted to the critical region R ≈ Rc � 1 a.u. of
ion-surface distances R. The critical distance Rc is defined as
the distance from the surface at which the electron tunneling is
in the very vicinity of the potential barrier top, created between
the core and the polarized surface. The ionization distance RI

c ,
at which the ionization (per unit time) is the most probable,
belongs to the critical region; that is, RI

c ≈ Rc. We formulate
the problem within the framework of the decay model, using
our recently developed EEM [13] to solve the complex energy
eigenvalue problem. The choice of potentials relevant to the
EEM is extensively discussed in Sec. II A of the Ref. [13]. See
also the discussion in Ref. [15].

According to the model, the decaying Rydberg state �µ

of the active electron is considered as an eigenfunction of the
Hamiltonian Ĥ (R),

Ĥ (R)�µ(R) = Eµ(R)�µ(R), (3)

corresponding to the complex eigenenergy [13]

Eµ(R) = ReEµ(R) − i

2
�µ(R), (4)

where �µ is the ionization rate. By µ in Eq. (3) we denote
the set of approximately good parabolic quantum numbers;
that is, we assume that the parabolic symmetry is preserved
at intermediate stages of the ionization. That is the case for
the experimentally investigated high eccentric Rydberg states,
for which the electron transitions are mainly localized in a
narrow cylindrical region around the ion-surface axis, so that
the corresponding eigenvalue problem (3) can be solved by
separating the variables in the parabolic coordinates ξ = rA +
zA, η = rA − zA, and ϕ = arctan(y/x), where rA and zA are
the electronic coordinates respective to the atomic core [13].
We shall consider only the decay of the surface-oriented states

(lower values of parabolic quantum number n1), with m = 0,
which makes our further theoretical analysis more simple,
since the “nonadiabatic” transitions are unimportant in that
case.

The specific feature of the proposed EEM is that the
energies ReEµ(R) and the ionization rates �µ(R) can be
obtained without explicit calculation of the wave function
�µ(R). Details of solving the complex energy eigenvalue
problem [Eq. (3)] in the critical region R ≈ Rc are given
in Ref. [13]. For the ion-surface distances R � Rc, and for
sufficiently small fields, the ionization rates are very small and
unimportant for the calculation of the ionization probabilities.
The behavior of the energy terms in this region is more
interesting, because this behavior could be used in the analysis
of the validity of the proposed ionization model. In this far
asymptotic region the energy terms can be expressed in the
following explicit form [13]:

E0,µ ≈ − Z2

2n2
+ 3

2Z
Fn(n1 − n2) + 2Z − 1

4R

− 3

8

(Z − 1)

ZR2
n(n1 − n2) + FR. (5)

C. Ionization probability Pµ(R)

The full quantum description of the ionization process
requires a multichannel model, which includes both the
resonant ionization and the neutralization processes, as well as
the Auger and radiative processes. Also, the electronic state can
be considered as an eigenfunction �µ of the complex energy
eigenvalue problem only if the “adiabatic” conditions are
satisfied for all relevant ion-surface distances R. We find that
the one-channel ionization model described by the decaying
state �µ is sufficiently accurate for the particular case analyzed
in the present article.

First of all, for R ∈ [Rmin,∞], the Auger-type processes are
negligible, because these two-electron processes are localized
at smaller ion-surface distances. The radiative processes
can be neglected as less probable in comparison to the
nonradiative ones. Also, taking into account that the energy
terms Eµ = min(ReEµ,E0,µ) of the considered Rydberg states
are positioned above the Fermi level of the solid at all
relevant ion-surface distances R, we conclude that the resonant
neutralization of the previously ionized projectiles by the
electron back capture from the solid is also impossible. The
criterium of validity of the “adiabatic” approximation within
the decay model is somewhat ambiguous, because the states
�µ correspond to the complex eigenenergies Eµ. We assume
that the approximation is sufficiently accurate outside of the
energy terms crossing region. By analyzing the behavior
of the energy terms Eµ, we concluded that the “adiabatic”
approximation is satisfied for R ∈ [RI

c (µ),∞].
Therefore, the ionization probability Pµ(R), that is, the

probability that the incident atom (the representative member
of the subensemble of particles from the atomic beam with
a given initial velocity) is ionized at ion-surface distance R,
can be obtained using the one-channel rate equation approach
and the supposition of classical law of ionic motion. The
probability for an incidence atom to survive the passage to a
distance R from surface is given by the quantity 1 − Pµ(R). As
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a solution of the rate equation, for the ionization probability
Pµ(R) of the occupied electronic state µ = (n1, n2,m) we
obtain the relation

Pµ(R) = 1 − exp

[
−

∫ ∞

R

�µ(R)

v⊥(R)
dR

]
, (6)

valid for R > Rmin(µ, v⊥0, F ), where Rmin is the minimal ion-
surface distance for a given µ, v⊥0, and F (see Fig. 1). The
intermediate stages of ionization are characterized by the total
ionization rates

�̃µ(R) = dPµ

dt
= −v⊥(R)

dPµ(R)

dR
. (7)

The positions of the maxima of the total ionization rates can
be considered as ionization distances RI

c (µ, v⊥0, F ); that is,
(d�̃µ/dR)RI

c
= 0.

III. SELF-CONSISTENT EEM EXPRESSION FOR THE
IONIZATION PROBABILITY

A. EEM ionization probability Pµ(R) with inclusion
of core motion

The probability Pµ(R), defined by Eq. (6), depends on
the ionic motion via perpendicular velocity v⊥(R). At the
same time, the motion of the atomic projectile (representative
member of the considered subensemble) depends on the
ionization probability via the charge q = q(t) = ZPµ(R).
Therefore, a kind of self-consistent procedure is necessary
for solving the problem.

The charge q moves toward the surface in the external
electric field F . For the physical conditions considered in the
present article, the dynamical response of the conducting solid
surface reduces to the classical image forces. Thus, the charge
q experiences the classical image acceleration and at the same
time the opposite effect of the external electric field. According
to Eq. (1) the velocity v⊥(R) depends on Pµ(R), and vice versa,
the Pµ(R) depends on v⊥(R) according to Eq. (6).

We resolve the problem by including the R-dependent
expression for the perpendicular velocity into the expression
for the ionization probability iteratively. That is, in the ith
iterative step (i = 0, 1, 2, . . .) we assume that

P (i)
µ (R) = 1 − exp

[
−

∫ ∞

R

�µ(R)

v
(i)
⊥ (R)

dR

]
, (8)

where, for i = 1, 2, . . . ,

v
(i)2
⊥ (R) = v2

⊥0 − 2FZ

M

∫ ∞

R

P (i−1)
µ (R)dR

+ Z2

2M

∫ ∞

R

P (i−1)2
µ (R)

R2
dR, (9)

and, for i = 0, v
(0)
⊥ = v⊥0 is the initial perpendicular velocity.

We point out that the accurate treatment of the projec-
tile motion is essential for the analysis of the ion signal
(Sec. IV D).

Two important facts concerning the motion of the represen-
tative projectile follow from the proposed iterative procedure.
First, for a given v⊥0 and F > Fc, from the relation v⊥(Rmin) =
0, we obtain the minimal ion-surface distance Rmin; in the

iterative step for which the iterative procedure is practically
finished (i = if ), we get

1 = 2FZ

Mv2
⊥0

∫ ∞

Rmin

P
(if −1)
µ (R)dR

− Z2

2Mv2
⊥0

∫ ∞

Rmin

P
(if −1)2
µ (R)

R2
dR. (10)

Second, the critical electric field Fc(µ, v⊥0), that is, the
minimal field necessary for collecting the projectiles with a
given initial perpendicular velocity v⊥0, can be obtained from
Eq. (10) as a minimal F for which this equation has a real
and positive solution for Rmin. The fact that for all v⊥0 the
critical field Fc(µ, v⊥0) exists means that for all F there exists
a maximal value vc(µ,F ) of the v⊥0 for which the projectiles
can be collected by the field F (see Fig. 1).

The iterative procedure gives the final expressions for the
ionization probabilities and the corresponding total rates. From
these values one can derive the accurate expressions for the
ionization distances RI

c . These values enable us to formulate
the steplike approximation for the ionization probability.

B. Steplike probability P step
µ (R)

Within the framework of a steplike approximation for the
subensemble of particles with a given initial velocity, one can
assume that �µ = 0 for R > RI

c and �µ = ∞ for R < RI
c .

In this approximation, prior to ionization, the ionic core of
the representative projectile is completely screened by the
active electron; that is, q(t) = 0, so that v⊥(R) ≈ v⊥0 for
R > RI

c . At R = RI
c the atomic projectile is completely and

instantaneously ionized, so that q(t) = Z = 1 for R < RI
c .

Note that RI
c = RI

c (µ, v⊥0, F ).
In the considered steplike approximation we have

P step
µ (R) = �

(
RI

c − R
)
. (11)

Now, for i = if and P
(if −1)
µ = P

step
µ , the law of motion of the

ionic projectile, given by Eq. (9), can be expressed explicitly.
For R < RI

c we have

v2
⊥(R) ≈ 2

M

(
a + Z2

4R
+ ZFR

)
, (12)

where a = T⊥0 − Z2/4RI
c − ZFRI

c < 0, Z = 1, and T⊥0 =
Mv2

⊥0/2 is the initial “perpendicular” projectile kinetic energy.
Using the condition v⊥(Rmin) = 0, the distances Rmin of the
projectile’s closest approach to the surface can be obtained
from Eq. (12) [or Eq. (10) in the steplike approximation]. We
get

Rmin = − a

2ZF
+ 1

2ZF

√
a2 − Z3F . (13)

The critical field Fc, that is, the minimal electric field for which
Rmin exists (a2 − Z3F � 0), is given by Fc ≈ (

√
Z/2RI

c +√
T⊥0/ZRI

c )2 [9]. We note that the approximative character
of the former expression is in the assumption that RI

c is
independent of F . For F = Fc, we have that a2 − Z3F = 0, so
that the corresponding minimal ion-surface distance is given
by the following simple relation: Rmin = √

Z/4Fc.
In the steplike approximation, the electric field Fc is

directly related with the ionization distance RI
c and v⊥0. Thus,
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if the field Fc could be measured, one can calculate the
ionization distances RI

c from the following simple classical
relation [1–7]:

RI
c = T⊥0

4Fc

⎛
⎝1 +

√
1 + 2

√
Fc

T⊥0

⎞
⎠

2

. (14)

Expressing the v⊥0 via Fc, from Eq. (14) we obtain the explicit
expression for the velocity vc via F :

vc =
√

2ZRI
c F

M
−

√
Z2

2MRI
c

. (15)

Equation (15) is obtained under the assumption that the RI
c

value used in the steplike model is almost independent on
v⊥0. Note that in the analyzed experiments [1–7] the measured
values of minimal fields Fmin would correspond to the Fc only
for a monoenergetic atomic beam.

The steplike approximation can also be formulated for
the particular member of the particle subensemble, which
is ionized at arbitrary distance R from the surface: In that
case we have P

step
µ (R) = �(R − R). The trajectory of the

considered particle is also characterized by the minimal
ion-surface distance Rmin,R , which is now given by Eq. (13),
in which we replace RI

c with R. The quantity Rmin,R exists for
v⊥0 < vc,R(R, F ), where the quantity vc,R(R, F ) is given by
Eq. (15) for RI

c → R. It means that the considered particular
member of the subensemble will be collected by the field F , if
it is ionized at distanceR > Rc,R(v⊥0, F ), where Rc,R(v⊥0, F )
is given by Eq. (14) for Fc → F .

IV. RESULTS

A. Intermediate stages of ionization in the
constant-velocity approximation

As a first step toward a direct comparison with experimental
signals, we consider the ionization rates �µ(R) and energies
ReEµ(R), as well as the ionization probabilities Pµ(R) and
total rates �̃µ(R), at intermediate stages of the process
(for R ≈ Rc). In order to compare our predictions with other
available theoretical models (CSM and WPP), in some cases
the principal quantum numbers n and the values of the
external electric fields F will be out of the range relevant
for experiments. In exposing the EEM vs CSM and the WPP
method results, the ionization probabilities and the total rates
are calculated in the zero approximation (i = 0), assuming that
v⊥ ≈ v⊥0.

In Fig. 2 we present the EEM ionization rates �µ(R) and
energy terms ReEµ(R) for n = 13, 15, 17, and 20, for n1 =
m = 0, and for two values of the external electric field: F = 0
and F = 10−6 a.u. The values of the rates and energies at
the ion-surface distances Rc are indicated by circles. From
Fig. 2(a) we recognize that the ionization rates corresponding
to different values of the principal quantum number n are
localized at different ion-surface distances R; obviously, the
curves corresponding to higher n are positioned at larger R.
The energy terms presented in Fig. 2(b) show the decreasing
behavior with decreasing R, for R ≈ Rc. At larger R the energy
terms are given by the asymptotic expression E0,µ, given by
Eq. (5). These terms (not shown) monotonically increase with

FIG. 2. (a) Ionization rates �µ(R) and (b) energy terms ReEµ(R)
for n = 13, 15, 17, and 20, for n1 = 0 and m = 0, in the external
electric fields F = 0 and F = 10−6 a.u. (solid and dotted curves,
respectively). Circles indicate the positions of critical distances Rc.

decreasing R (see Figs. 3(c), 4(c), 5(c), and 6(c) in Ref. [13]).
The energy levels presented in Fig. 2(b) (and also the levels
E0,µ) are positioned far above the Fermi level of the conducting
surfaces (the typical value of the solid work function is φ =
5 eV; i.e., φ = 0.184 a.u.).

The presence of an electric field shifts the rates toward
the larger ion-surface distances R [compare the dotted and
the solid curves in Fig. 2(a)], while the energy terms shift
upward with the increase of F [compare the dotted and the
solid curves in Fig. 2(b)]. The obtained rates and energy terms,
for the two considered electric fields, can be compared with the
corresponding CSM quantities. In our previous article [13] it
was demonstrated that the EEM rates and energy terms follow
the results of the available CSM (n = 10 and F �= 0 [9,10],
n = 10 and F = 0 [16], and n = 15 and F = 0 [14]).

The ionization probabilities Pµ(R) and the total rates
�̃µ(R), scaled by v⊥0, for two different values of the external
electric field (F = 0 and F = 10−6 a.u.) are given in Fig. 3.
For the initial perpendicular velocity the value v⊥ = v⊥0 =
10−5 a.u. was taken. In Fig. 3(b) we also present the CSM
total rate calculated from the available data for the ionization
rate for n = 15 and F = 0 [14]. With increasing n both
the probabilities and total rates are shifted toward the larger
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FIG. 3. (a) Ionization probabilities Pµ(R) and (b) total rates
�̃µ(R)/v⊥0 for n = 13, 15, 17, and 20, for n1 = 0 and m = 0, in
the external electric fields F = 0 and F = 10−6 a.u. (solid and
dotted curves, respectively). The perpendicular ionic velocity is
v⊥ = v⊥0 = 10−5 a.u. The dot-dashed curve in (b) is the total rate
for n = 15 and F = 0, calculated from the CSM rate [14].

ion-surface distances R; this effect is well known and recog-
nized within all the theoretical approaches and models. The
inclusion of the external electric field shifts the probabilities
and total rates toward the larger ion-surface distances R

(compare the dotted and the solid curves in Fig. 3). The
positions of maxima of the total rates presented in Fig. 3(b)
determine the ionization distances RI

c in the zero-order (i = 0)
approximation.

In Figs. 4(a) and 4(b) we present the total ionization
rates �̃µ(R)/v⊥0 (solid curves), for the Rydberg states µ =
(n = 7, n1 = 0, m = 0) and µ = (n = 10, n1 = 0–2, m =
0), respectively, for the external electric fields and initial
perpendicular atomic velocities relevant for comparison with
the WPP results (dashed curves) [11,12]. Also, in Fig. 4(b)
we present the total rates calculated from the available CSM
ionization rates results (dot-dashed curves) [9]. We point out
that the considered velocities are significantly larger than that
used in Fig. 3, and also in Sec. IV D, where we compare
the EEM with the available experiments. From the figure we
see that in all cases the EEM curves are positioned at larger

FIG. 4. Total ionization rates �̃µ(R)/v⊥0 (solid curves) for (a)
n = 7, n1 = 0, m = 0, F = 1.2 × 10−6 a.u., and v⊥0 = 5 × 10−3 a.u.,
and (b) n = 10, n1 = 0, 1, and 2, m = 0, F = 10−6 a.u., and v⊥0 =
1.4 × 10−3 a.u. Dashed curves are the WPP method results for (a)
the Xe(n = 7) ions [11] and (b) the H(n = 10) ions [12]; dot-dashed
curves in (b) are the total rates calculated from the CSM rates [9].

ion-surface distances in comparison to the WPP predictions
and at smaller distances compared to the positions of the CSM
rates. However, the EEM, WPP, and CSM rates are all bell
shaped and of similar widths (≈50 a.u.). This indicates that all
considered theoretical models imply strong localization of the
ionization process, with well-defined positions of maxima of
total ionization rates.

With the increase of n1 the total rates shift toward the
smaller ion-surface distances R [see Fig. 4(b)]. In some cases
this shift is larger than the shift induced by the external electric
field F .

B. Simultaneous treatment of the ionization and
the projectile motion

In order to perform a direct comparison of our EEM pre-
dictions with the experimental findings (ionization distances
and ion signals), it is necessary to include the fact that the
perpendicular velocity v⊥ of the representative projectile, with
charge q = q(t) = ZPµ(R), is changing during the ionization.
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The results of the iterative procedure for the simultaneous
treatment of the ionization probability and the projectile
motion, expressed by Eqs. (8) and (9), is illustrated in
Figs. 5(a) and 5(b). We present the probabilities P (i)

µ and the

perpendicular velocities v
(i)
⊥ in the ith iterative step (i = 0, 1

and 2) as a function of the ion-surface distances R for the
Rydberg state with principal quantum number n = 17, and
for some characteristic values of the external electric field F

[the values of the field are given in Figs. 5(a) and 5(b)]. For
the initial perpendicular velocity we take the value v⊥0 ≡ v̄ =
1.4 × 10−5 a.u., which represents the mean velocity of the
experimental beam [3].

It can be seen that the iterative procedure rapidly converges.
The probabilities for i = 2 are slightly shifted toward the larger
ion-surface distances R in comparison to the zero-order (i = 0)
curves [see Fig. 5(a)]; thus, RI (i)

c
>∼ RI (0)

c . From Fig. 5(b) we
recognize that the minimal ion-surface distances Rmin [zero
of the function v⊥ = v⊥(R)] exists for the electric fields
F = 4 × 10−7 a.u. and F = 5 × 10−7 a.u., whereas the field
F = 3 × 10−7 a.u. is insufficient to collect the ions with
the considered initial perpendicular velocity (represented by
one projectile within the framework of the considered decay
model). The critical field for the given Rydberg state and
velocity is Fc = 3.4 × 10−7 a.u. Also, comparing Figs. 5(a)
and 5(b), an important fact that Pµ(Rmin) ≈ 1 can be observed.

In Fig. 5(c) we present the minimal ion-surface distances
Rmin via F for the Rydberg state µ = (n = 17, n1 = 0,
m = 0). We consider the closest approach to the surface
of the (representative) projectiles for three characteristic
initial perpendicular velocities: v⊥0 = 0.7 × 10−5 a.u, v⊥0 =
1.4 × 10−5 a.u., and v⊥0 = 2.1 × 10−5 a.u. The curves are
obtained within the framework of iterative procedure (i = 2),
by solving Eq. (10). We point out that each curve begins at
F = Fc(µ, v⊥0).

In Fig. 6 we expose the relation (for i = 2) between
the critical velocity vc and the external electric field F ,
characteristic for the ionic motion treated simultaneously with
the surface ionization (decay of the state µ). We recall that
the value vc(µ,F ), for the given µ and F , represents the
maximal value of the initial perpendicular velocity v⊥0, for
which the solution of Eq. (10) exists in a real domain. The
graph shown in Fig. 6 (for F = Fc and vc = v⊥0) also gives the
critical field Fc(µ, v⊥0): the minimal field for which Rmin exists
for the given µ and v⊥0. The relation between the quantities
vc and F , that is, the Fc and the v⊥0, play an essential role in
our theoretical explanation of the experimental signal. We note
that the critical velocities vc(µ,F ) are close to those obtained
by the steplike model formula for the ensemble [Eq. (15)] if
the decay model values for RI

c are assumed.

C. Ionization distances

The ionization distances RI
c we obtain by treating the proba-

bilities and the total rates in the if order. Due to the screening of
the core charge for R > RI

c , the obtained ionization distances
are very close to those in the zero order (i = 0).

In Fig. 7(a) we present the ionization distances RI
c , via an

external electric field F , for the Rydberg states µ with n = 13,
15, 17, and 20, and n1 = m = 0. The quantities RI

c are obtained
from the relation (d�̃µ/dR)RI

c
= 0, within the framework of

FIG. 5. Decay of the Rydberg state µ = (n = 17, n1 = 0, m =
0). (a) Ionization probabilities P (i)

µ (R) for i = 0, 1, and 2 of the
representative atomic projectile (Z = 1) impinging the solid surface
with the initial perpendicular velocity v⊥0 = 1.4 × 10−5 a.u in the
external electric field F . (b) The corresponding velocities v

(i)
⊥ (R).

The curve for the critical field F = Fc = 3.4 × 10−7 a.u. separates the
types of projectile motion. Each curve for F > Fc intersects the R axis
at R = Rmin. (c) Minimal ion-surface distances Rmin via F for v⊥0 =
0.7 × 10−5 a.u., v⊥0 = 1.4 × 10−5 a.u., and v⊥0 = 2.1 × 10−5 a.u.
Each curve begins at F = Fc(µ, v⊥0).

the EEM in the i = 2 iterative step. The results are presented
for characteristic values of the initial perpendicular ionic
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FIG. 6. Critical velocity vc(µ, F ) via an external electric field
F for ionization of the representative atomic projectiles (Z = 1)
prepared in the state µ = (n, n1 = 0, m = 0), where n = 13, 15, 17,
and 20. For vc = v⊥0 and F = Fc, we get the critical electric field
Fc(µ, v⊥0).

velocities for the experimental beam: v⊥0 = 0.7 × 10−5 a.u,
v⊥0 = 1.4 × 10−5 a.u., and v⊥0 = 2.1 × 10−5 a.u. Each curve
begins at F = Fc(µ, v⊥0). We point out that the presented
ionization distances are more accurate in comparison to the
EEM values calculated in Ref. [13].

The obtained RI
c values can be compared with the ionization

distances deduced from the experimentally available minimal
values Fmin of the applied electric field F , necessary for
collecting the ionized particles of the projectile beam [1–7].
In the cited experiments, the initial atomic states have been
prepared by the laser field, which was polarized perpendicular
to the surface to selectively populate the m = 0 state. Two
different initial states have been considered: the Rydberg state
with n1 ≈ 0 (“Stark state” oriented toward the surface; the
most “red state”) and in the state with n1 ≈ n − 1 (Rydberg
state oriented from the surface toward the vacuum; the most
“blue state”). As already discussed, the present EEM, without
inclusion of the nonadiabatic effects, is suitable for explanation
of the first situation, the case n1 ≈ 0.

In Fig. 7(b) with solid squares we show the EEM ionization
distances corresponding to the experimental values of the
minimal external electric field Fmin(µ) for the projectile beam
of the atomic particles prepared in the state µ = (n, n1 = 0,
m = 0); for these states n2 = n − 1. According to Ref. [1], the
values Fmin(µ) for n = 13, 15, 17, and 20 are Fmin(n = 13) =
5.6 × 10−7 a.u., Fmin(n = 15) = 3.0 × 10−7 a.u., Fmin(n =
17) = 1.9 × 10−7 a.u., and Fmin(n = 20) = 2.0 × 10−7 a.u.
We consider the ionization distances for the initial perpendic-
ular velocities v⊥0 = 0.5 × 10−5 a.u., v⊥0 = 0.4 × 10−5 a.u.,
v⊥0 = 0.3 × 10−5 a.u., and v⊥0 = 0.4 × 10−5 a.u. for the
Rydberg states with n = 13, 15, 17, and 20, respectively. For
the chosen values of the quantity v⊥0, the fields Fmin represent
the critical fields Fc; that is, v⊥0 = vc(µ,Fmin) (see Fig. 6).
Note that in Ref. [13], the ionization distances in all cases was
for the initial perpendicular velocity v⊥0 = 10−5 a.u.

In the steplike approximation the RI
c values for F = Fmin

and v⊥0 = vc(µ,Fmin) are expressed by Eq. (14) [1]. These

FIG. 7. (a) Ionization distances RI
c via an external electric field F

for the initial perpendicular projectile velocities v⊥0 indicated in the
figure. Each curve begins at F = Fc(µ, v⊥0). (b) Ionization distances
RI

c for the minimal fields F = Fmin obtained experimentally and for
v⊥0 = vc(µ, Fmin) taken from Fig. 6; the EEM and the steplike model
values are represented by the solid and open squares, respectively.
Circles represent the “experimental” data [Eq. (14) for F = Fmin

and v⊥0 = 0.7 × 10−5 a.u.] [1]. (Inset) Solid squares and circles are
the ionization distances obtained by the EEM and from Eq. (14),
respectively, for the experimental values F = F̄ [3] and v⊥0 = v̄ =
1.4 × 10−5 a.u.

ionization distances, shown as open squares in Fig. 7(b), are
relatively close to those predicted by the EEM (solid squares).
We point out that Eq. (14) for the experimental values Fmin

in the combination with v⊥0 ≈ 0.7 × 10−5 a.u. has been used
in Ref. [1] for the calculation of the ionization distances. The
so-obtained values [circles in Fig. 7(b)] are larger than the
EEM values.

The discussion presented in this section leads to the
conclusion that the considered experiments [1–7] could be
used for deducing the ionization distances from Eq. (14)
with the measured minimal fields F = Fmin, provided that
the values v⊥0 = vc(µ,Fmin) are also known. However, these
values are not available experimentally, which induces a
difficulty in a direct correlation between the experiments (ion
signal) and the ionization distances. By measuring the mean
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electric field F̄ (see Sec. IV D) instead of Fmin, and calculating
the RI

c for the mean velocities v̄ by Eq. (14), the error in
deducing the RI

c values from the experiment can be minimized.
The agreement of the so-calculated RI

c values (circles) and the
EEM predictions (solid squares) is demonstrated in the inset
in Fig. 7(b), in which we present the cases n = 17 and n = 20,
for which the experimental mean values F̄ are available.
The experiment [3] gives the values F̄ = 3.7 × 10−7 a.u.
and F̄ = 2.0 × 10−7 a.u. for n = 17 and n = 20, respectively,
while the mean initial perpendicular velocity of the beam is
v̄ ≈ 1.4 × 10−5 a.u.

D. Ion signal

Using the results of Secs. IV A and IV B, we are in a position
to analyze the experimental signals; among the available
experimental results [1–7], we consider only those that concern
the normalized ion signal for the interaction of Rydberg atoms
with conducting, absolutely flat surfaces [3]. Also, our analysis
of the signal is restricted to the Rydberg atoms prepared in the
state µ = (n, n1 = 0, m = 0).

We find that the fraction of the incident Rydberg atoms,
finally collected by the field F and detected in experiments,
that is, the normalized ion signal as a function of the applied
field, can be compared with the averaged probability,

Pµ(F ) =
∫ vc(µ,F )

−∞
f (v⊥0)Pµ(Rmin; v⊥0, F )dv⊥0. (16)

The function f (v⊥0), satisfying the relation∫ ∞
−∞ f (v⊥0)dv⊥0 = 1, represents the initial distribution

of the perpendicular velocity v⊥0. By the upper bound
vc(µ,F ) in the integral in Eq. (16) we take into account
the previously discussed fact that (for the given µ and F ),
only the ions with v⊥0 < vc are detected. Extension of the
range of integration in Eq. (16) to −∞ is for convenience.
We note that at minimal ion-surface distances Rmin we
have Pµ(Rmin; v⊥0, F ) ≈ 1 in the range of integration in
Eq. (16) and for the majority of the considered electric fields
(see Fig. 5).

By Eq. (16) we express the normalized number of collected
ions obtained within the framework of the decay model,
considering the atomic beam as a statistical mixture of
subensembles of particles with a given initial velocity. That
is, we perform an averaging over the v⊥0 of the normal-
ized number of collected particles from the corresponding
subensemble. Each subensemble is represented by a single
moving projectile, consisting of the active electron in the
Rydberg state �µ and the ionic core with charge Z = 1.
Due to quantum decay of the electronic state �µ, with the
probability Pµ(R; v⊥0, F ) given by Eq. (8), the projectile
charge q(t) = qµ(R; v⊥0, F ) is changing continuously in time:
q(t) = ZPµ(R) = 〈qR(t)〉 [Eqs. (1) and (2)]. The character
of the motion of the representative projectile determines the
probability of detection (normalized number of collected ions).

On the other hand, we can consider the behavior of
the particular members of the subensemble, characterized
by the quantities RcR(v⊥0, F ) and vcR(R, F ) defined in
Sec. III B, assuming that the number of particles ionized in the
interval [R,R + dR] is given by −dPµ(R). In the considered
case, the normalized number of collected particles from the

subensemble and the ensemble are, respectively, given by
− ∫ ∞

RcR
dPµ(R) = Pµ(RcR; v⊥0, F ) and [3–7]

Pµ(F ) =
∫ ∞

−∞
f (v⊥0)Pµ(RcR; v⊥0, F )dv⊥0. (17)

In the steplike approximation for the subensemble, the ioniza-
tion probability is expressed by Eq. (11), so that Pµ(RcR) =
�(RI

c − RcR) = �(vc(µ,F ) − v⊥0), where the critical
velocity vc(µ,F ) = vcR(RI

c , F ) is expressed via the
ionization distance RI

c by Eq. (15). Therefore, taking into
account that [for the appropriate RI

c (µ, v⊥0, F ) value] the
quantity vc(µ,F ) expressed by Eq. (15) is close to the critical
velocity vc(µ,F ) calculated in our decay model, we see that
Eq. (17) turns into Eq. (16).

Note that the averaged probability given by Eq. (17)
can be expressed in the form in which the beam
broadening is exposed more explicitly: Pµ(F ) =∫ ∞

0

∫ vcR(R,F )
−∞ f (v⊥0)[−dPµ(R)/dR]dv⊥0dR. By replacing

the quantity vcR(R, F ) with the appropriate mean
vcR(RI

c , F ) = vc(µ,F ), and using for the critical velocity
vc(µ,F ), the value obtained within the framework of the
decay model, again we get the expression (16). Since
vcR(R, F ) ≤

> vc(µ,F ) for R≤
> RI

c , and taking into account
that the integration over R is localized in a narrow interval
around the R = RI

c , we see that the applied averaging does
not significantly change the quantity Pµ. Thus, the influence
of the beam broadening is included in our expression (16) for
the averaged probability as an appropriate mean effect.

In the present article we shall demonstrate that the expres-
sion (16), with the quantities vc(µ,F ) and Pµ(Rmin, v⊥0, F )
obtained by the simultaneous treatment of the electron state
and the projectile motion, reproduces the main features of the
experimental signals without any fitting parameter.

1. Discrete velocity distribution

The simplest, but still instructive simulation of the experi-
mental signal by expression (16) can be obtained for a discrete
initial perpendicular velocity distribution

f (v⊥0) =
N∑

i=1

fiδ(v⊥0 − v⊥0i), (18)

where δ(x) is the Dirac δ function and the “statistical” weights
fi satisfy the relation

∑N
i=1 fi = 1. In this simple model, since

Pµ(Rmin; v⊥0, F ) = 1, the averaged probabilityPµ(F ) is given
by

Pµ(F ) =
N∑

i=1

fi�(vc(µ,F ) − v⊥0i). (19)

In the former equation we have �(vc(µ,F ) − v⊥0i) = �(F −
Fc(µ, v⊥0i)).

To illustrate the results for discrete velocity distribution, one
can take only the three representative velocities (N = 3) from
the incident atomic beam: v⊥01 = 0.7 × 10−5 a.u., v⊥02 =
1.4 × 10−5 a.u., and v⊥03 = 2.1 × 10−5 a.u. The velocity
v⊥02 = v̄ represents the mean velocity of the beam, and the
velocities v⊥01 and v⊥03 determine the width 2	 of the initial
perpendicular velocity distribution: v⊥03 − v⊥01 = 2	. For
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the corresponding weights fi , we take the following values:
f1 = 2/10, f2 = 6/10, and f3 = 2/10. Therefore, using the
notation Fi = Fc(µ, v⊥0i), i = 1, 2, 3, from Eq. (19), we get
Pµ = 0 for F < F1, Pµ = f1 = 0.2 for F1 � F < F2, Pµ =
f1 + f2 = 0.8 for F2 � F < F3, and Pµ = f1 + f2 + f3 = 1
for F � F3.

In the special case N = 1 of the monoenergetic beam of
the atomic particles in state µ with the initial perpendicular
velocity v⊥0, we have

Pµ(F ) = �(F − Fc(µ, v⊥0)). (20)

The signal rapidly appears for the field F = Fc(µ, v⊥0); for
this value of the external electric field, all atomic projectiles
will be ionized and collected. The same situation holds for
all F > Fc(µ, v⊥0). In the idealized “experiment” with a
monoenergetic beam, the minimal electric field Fmin coincides
with the critical field Fc(µ, v⊥0). Thus, the simple steplike
relation (14) gives the correct ionization distances.

In Fig. 8(a) we simulated the experimental signal using the
discussed discrete initial perpendicular velocity distribution f

with three representative velocities, considering the ionization
of the atomic particles prepared in the Rydberg state µ = (n =
17, n1 = 0, m = 0). The corresponding averaged probability
Pµ(F ) given by Eq. (19) is shown as a dashed line. The values
of the fields Fi = Fc(µ, v⊥0i) in expression (19) are taken from
Fig. 6. The probabilityPµ(F ) is compared with the normalized
experimental signal [symbols in Fig. 8(a)] [3].

From Fig. 8(a) we see that the minimal electric field Fmin =
2.0 × 10−7 a.u. obtained experimentally from the signal is less
than the critical electric field Fc(µ, v⊥01) at which the signal
begins in the considered discrete velocity approximation. For
that reason, as it was discussed in Sec. IV C, for the accurate
calculation of RI

c by Eq. (14) with the Fmin value, it is necessary
to use the lower initial perpendicular velocity (v⊥0 < v⊥01), or
to calculate the RI

c values using, for example, the quantities F̄

and v̄. The qualitative agreement of the theoretical signal for
discrete distribution f with the available experimental data,
recognized in Fig. 8(a), can be used as a simple proof that
relation (16) reflects the main physical features of the signal.

2. Gaussian velocity distribution

A more appropriate distribution f that can be used in the
analysis of the signal under the real experimental conditions
is the Gaussian distribution centered at v̄⊥0 = v̄, with the half
width 	

f (v⊥0) = 1

	
√

π
exp

[
− (v⊥0 − v̄)2

	2

]
. (21)

The typical values for the atomic beam used in experiment
are v̄ = v⊥02 = 1.4 × 10−5 a.u. and 	 = (v⊥03 − v⊥01)/2 =
0.7 × 10−5 a.u. [3].

Inserting Eq. (21) into Eq. (16), and taking into account
that Pµ(Rmin; v⊥0, F ) ≈ 1, we obtain the averaged ionization
probability in the simple form

Pµ(F ) = 1

2

[
1 + erf

(
vc(µ,F ) − v̄

	

)]
, (22)

where erf(x) is the error function. From Eq. (22) we recognize
that the experimental signal appears as a consequence of a

FIG. 8. Averaged ionization probabilities Pµ(F ) for (a) the
H(n = 17) and (b) the H(n = 20) atomic projectiles for n1 = 0 and
m = 0 via the external electric field F . The dashed curve in (a)
corresponds to the discrete initial perpendicular velocity distribution;
the solid curves correspond to the Gaussian distribution f . Symbols
(� and ◦) represent the experimental data for Xe(n = 17) and
Xe(n = 20) [3].

specific entanglement of the initial velocity distribution f

(described by the quantities v̄ and 	) and quantum decay
of the projectile. We recall that in the present article the
ionization (decay) and the ionic motion have been considered
simultaneously; the critical velocity vc(µ,F ) in Eq. (22)
reflects the main properties (existence of Rmin) of the projectile
motion in the external electric field F , governed by the
probability Pµ(R). For a vary narrow distribution f , that is,
for 	 → 0, from Eq. (22) we get Pµ(F ) = 0 for F < Fc(µ, v̄)
and Pµ(F ) = 1 for F � Fc(µ, v̄); that is, we get the averaged
probability expressed by Eq. (20).

In Fig. 8 we present the averaged ionization probabilities
Pµ(F ) expressed by Eq. (22) (solid curves), using the values
vc(µ,F ) from Fig. 6. In Figs. 8(a) and 8(b) we consider the
cases n = 17 and n = 20 (for n1 = 0 and m = 0), respectively,
for which the normalized experimental signals are available
(symbols in Fig. 8) [3]. In the experiments, the signal vanishes
for F > Fthr; in Ref. [3] this effect has been connected with
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the finite time window for detection of the ionized particles
and a direct (field) ionization for F > Fthr. The theoretical
curves begin at F = Fmin, reaching the unit value P = 1
for some characteristic larger fields. The mean field F̄ can
be defined by the relation Pµ(F̄ ) = 1/2. The theoretical
curves increase more rapidly with increasing F than the
experimentally obtained curves (signal), but the values Fmin

and F̄ [exposed explicitly in Figs. 8(a) and 8(b)] are in accord
with experimental data.

The obtained qualitative agreement with experimental
signals, and the agreement for the values Fmin and F̄ with the
experimental ones, indicate that the EEM and the proposed
formula (16) for the ion signal provide an explanation of all
specific features of the ionization dynamics of the considered
Rydberg states. The analysis of the present article also suggests
that the experimental values Fmin must be combined with
the values vc(µ,Fmin) if the expression (14) is used for the
calculation of the ionization distances RI

c , the main physical
information about the intermediate stages of the process. As
the values vc(µ,Fmin) are not known experimentally, one can
combine the experimentally available values F̄ and v̄ for more
accurate derivation of the quantities RI

c from the signal.

V. CONCLUDING REMARKS

In this article we consider the ionization dynamics of
the beam of atomic particles impinging a conducting solid
surface in the presence of a weak external electric field
F . The recently developed EEM [13] has been applied to
describe the intermediate stages of the electron transitions in
the ion-surface system. In the present article, a kind of self-
consistent procedure is proposed to include the ionic motion
in the problem: The ionization probability Pµ(R) and the
perpendicular velocity v⊥(R) = −dR/dt of the representative
projectile of subensemble with a given initial velocity are
calculated simultaneously.

The results are obtained for high-eccentricity Rydberg
states of the active electron and in the region of low ionic
velocities. The classification of the states by the parabolic
quantum numbers µ = (n1, n2,m) follows the intermediate
parabolic symmetry of the system. The accuracy of the
EEM is tested by comparing with the available theoretical
and experimental results. We compare our results with the
WPP method [11,12] and the CSM one [9,14]. The normal-
ized experimental signal [3] is compared with the averaged
ionization probability Pµ(F ). An agreement with both the
theoretical and the experimental results means that the EEM,
which belongs to the class of asymptotic methods, provides
very useful information, providing that it is ab initio formu-
lated in the critical region R ≈ Rc ≈ RI

c of the ion-surface
distances.

According to the analysis of the present article, the
experimental signal appears as the consequence of a specific
entanglement of the initial velocity distribution f within
the projectile beam and the character of the (representative)
projectile motion in the external electric field F , governed by
the probability Pµ(R), which is expressed by the parameter
vc(µ,F ). The theoretical analysis of the present article gives
the ionization distances RI

c for all v⊥0 and F . These values are
in accord with the values deduced from the steplike formula

(14), providing that the values of the external electric field F

are combined with the values v⊥0 = vc(µ,F ) of the incident
perpendicular velocity.

The same formula could be used for deducing the ionization
distances RI

c from the fields F = Fmin (known from the
experimental signal) if the corresponding values vc(µ,Fmin)
are known. Because those values are not known, we suggested
that the sufficiently accurate RI

c values can be obtained from
Eq. (14) for the combination of the mean fields F̄ and
the mean values v̄ of the initial perpendicular velocities,
both known experimentally. In the further elaboration of this
problem, the normalized experimental signals for Rydberg
states other than those considered in Ref. [3] would be of
interest. We point out that if the normalized experimental
signal is simulated by Eq. (22), one can fit the critical velocity
by the function vc = α

√
F − β; from the coefficients α and

β thus deduced from the experiment, the ionization distances
(for Z = 1) can be calculated from the relation RI

c = α/2β

[see Eq. (15)].
A few additional concluding comments may be relevant

for further investigations of the signal and the related RI
c

problem, from both the theoretical and the experimental points
of view.

First, the used EEM is developed for the pointlike projec-
tiles and the conducting solid surfaces. On the other hand,
the experiments were performed with Xe Rydberg atoms and
for the variety of different solid surfaces: the conducting
surfaces [1–3], the dielectric surfaces [4], the surfaces with
localized stray fields [6], and the robust surfaces [7]. In the
case of conducting surfaces, the considerations of the present
article can be adapted to the real experimental conditions by
taking into account the polarization of the ionic core of an
Xe atom. This polarization is due to the internal electronic
structure of the atom (quantum defects associated with the
low-l states) and also to the applied external electric field F

and the influence of the polarized solid. All these effects can be
taken into account via effective core charge Zeff �= 1, or more
exactly via the appropriate effective potentials. Recently, it
was demonstrated that the core polarization induces a shift of
the rates toward the smaller ion-surface distances [17], which
means that the EEM predictions with polarization of the ionic
cores taken into account will be in a better agreement with the
WPP findings. The influence of the type of the solid surface
to the ionization process can be also included in the model via
the analytical continuation of the function �µ from the barrier
into the solid region.

Second, the proposed theoretical explanation of the ex-
perimental signal can be applied to different ion-surface
geometries and/or different projectile beams. Our preliminary
calculations show that the change of the angle of incidence
(due to the shift of the distribution f ), results in the shift of the
averaged probability Pµ. On the other hand, the increase of
the width 	 of the distribution f results in the less rapid
increase of the function Pµ with increasing F , etc. By
modeling the position and the shape of the distribution f , one
can obtain the better agreement of the averaged probability
with the experimental signal and vice versa.

Third, the ionization distances RI
c of the atomic projectile

for parabolic quantum numbers n1 � n − 1 and m = 0 were
not discussed in the present article. These Rydberg states
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can also be consistently treated within the EEM exposed
in the present article, because they are of the “low-l” type.
However, the electron transitions between adiabatic decaying
states must be taken into account in that case. We point
out that some experimental data [2] indicate that the RI

c

values of high-lying Xe(n) Stark manifolds are similar for
n1 = 0 and n1 = n − 1 for m = 0. A first theoretical analysis
of this fact, based on the model of avoided crossings,
already exists [2,18], but the analysis using the EEM energy
terms and rates can provide a more consistent explana-
tion (because the terms obtained in the present article are
molecularlike).

Finally, for lower values of the applied filed, the experi-
mental signal can be simulated more accurately by taking into
account the fact that in some cases the ionization is incomplete;
that is, Pµ(Rmin; v⊥0, F ) < 1. The theoretical explanation of
the behavior of the signal in the near-threshold region of the
applied electric field (F <∼ Fthr) requires additional analysis.
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