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of atomic hydrogen and helium
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A relaxed form of a recent impact parameter coupled pseudostate approximation of McGovern et al. [Phys.
Rev. A 79, 042707 (2009)] for calculating differential ionization cross sections is proposed. This greatly eases
the computational burden in cases where a range of ejected electron energies has to be considered. The relaxed
approximation is tested against exact first Born calculations for antiproton impact on H and nonperturbatively for
the highly nonperturbative system of Au53+ incident upon He. The approximation performs well in these tests. It
is shown how, with a little further approximation, the relaxed theory leads to a widely used prescription for the
total ionization cross section. Results for differential ionization of H and He by antiprotons are presented. These
reveal the growing dominance of the interaction between the antiproton and the target nucleus at low impact
energies and show the changing importance of the role of the postcollisional interaction between the antiproton
and the ejected electron.
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I. INTRODUCTION

At the European Centre for Nuclear Research (CERN)
a large amount of effort is being devoted to the study of
antiproton collisions with atomic and molecular targets [1–3].
In addition, the Facility for Antiproton and Ion Research
(FAIR) [4] will soon be coming online and so antiproton
collisions are also of considerable interest to the FLAIR [5] and
SPARC [6] international collaborations.

There are a number of substantive reasons for studying
antiproton collisions: as a fundamental process in its own right
which presents to theory a stringent test which is “clean” in that
it does not involve the complication of identical fermions or
electron exchange between the projectile and the target; as an
important complement to the study of antihydrogen, which is
relevant to proposed fundamental antimatter tests of the CPT
invariance of relativistic quantum mechanics and the weak
equivalence principle of general relativity [7–10]; as an aid to
understanding antiproton reactions in the biological context of
antiproton radiotherapy [11].

So far, only measurements of total ionization cross sections
have been made, but there are plans for kinematically complete
differential ionization experiments [1,12]. Yet, even for total
cross-section measurements theoretical information on differ-
ential scattering at as detailed a level as possible is valuable in
planning the experiments [13].

In a recent publication [14] we developed a highly accurate
method for calculating differential ionization by antiprotons.
The technique was based on impact parameter pseudostate
close-coupling. A downside to the formulation was that
a new set of pseudostates had to be generated, and the
associated coupled equations re-solved, for each ejected
electron energy. The technique becomes tedious in cases
where a whole range of ejected energies is needed, which
is the case in many experimental situations, e.g., [15–17].
The question is, can we, without significant loss of accuracy,
relax the theory so that a single set of pseudostates, and

a single solution of the corresponding coupled equations,
can be used for all ejected energies of consequence. We
shall show that this seems to be the case and that the new
formulation leads to convenient formulas for differential cross
sections of interest. We shall also show how it justifies a
widely used prescription for the total ionization cross section
and what further approximations are needed to make this
connection.

Having established the viability of the relaxed approx-
imation, we proceed to calculate some cross sections of
experimental interest [13] for targets of H and He. Here we are
able to generate a more comprehensive picture of the collision
process than in Ref. [14], a picture that highlights the important
physical behavior.

We begin in Sec. II by describing the relaxation of the
approximation of Ref. [14]. In Sec. III we make a number of
tests of the relaxed theory and in Sec. IV we present some
results on antiproton ionization of H and He. Conclusions are
summarized in Sec. V. Throughout we use atomic units (a.u.)
in which h̄ = me = e = 1.

II. THEORY

A. The relaxed approximation

We start from the fundamental formula for the ioniza-
tion amplitude in the wave treatment (see Ref. [14] for
notation):

fion = − 1

2π
〈eikf ·Rψ−

κ |V |�+〉, (1)

where ψ−
κ is the singly ionized state of the atom [18], κ is the

momentum of the ejected electron relative to the target nucleus,
and kf is the final momentum of the projectile relative to the
target. By conservation of energy

k2
f = k2

0 − µ(κ2 + 2I ), (2)

1050-2947/2010/81(3)/032708(11) 032708-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.032708


M. MCGOVERN et al. PHYSICAL REVIEW A 81, 032708 (2010)

where k0 is the initial momentum of the projectile relative to
the target, µ is the reduced mass of the projectile and target,
and I is the ionization potential of the atom.

As in Ref. [14], let ψα be the set of atom (eigenstates and)
pseudostates. Assuming that the ψα approximate a complete
set for matrix element purposes, we write

〈eikf ·Rψ−
κ |V |�+〉 =

∑
α

〈ψ−
κ |ψα〉〈eikf ·Rψα|V |�+〉. (3)

The matrix elements

〈eikf ·Rψα|V |�+〉 (4)

are in general off-energy-shell, i.e.,

k2
f �= k2

0 + 2µ(ε0 − εα), (5)

where εα is the energy of the state ψα and where ψ0 is the
initial state of the atom. If the set ψα is chosen so that one
state from each symmetry (S-, P -, D-, etc.) has exactly the
energy

εα = κ2

2
+ I + ε0, (6)

then for these chosen states (4) will be on-energy-shell.
But also, as shown in Ref. [14], for the other states in
the set 〈ψ−

κ |ψα〉 will be negligibly small. As a result the
sum in (3) can then be confined to the specially constructed
states, i.e.,

〈eikf ·Rψ−
κ |V |�+〉�

∑
α

εα= κ2
2 +I+ε0

〈ψ−
κ |ψα〉〈eikf ·Rψα|V |�+〉

(7)

Now every term in the sum (7) is on-energy-shell. This means
that we can use the relationship

〈eikf ·Rψα|V |�+〉 = 2πv0i
mα−m0+1ei(m0−mα )φq

×
∫ ∞

0
J(mα−m0)(qtb)[āα(∞, b) − δα0]bdb

(8)

between the wave and impact parameter treatments which
is only valid on-energy-shell. In (8) v0 = k0/µ, mα is the
magnetic quantum number of the state ψα relative to k0 as
z axis, b is the impact parameter, āα(∞, b) is the impact
parameter amplitude for exciting the state ψα , and qt is the
transverse-momentum transfer whose magnitude, dropping
terms of order 1/µ, is given by

q2
t = q2 − µ2(κ2 + 2I )2

2
(
k2

0 + k2
f

) . (9)

An inconvenient aspect of the approximation (7) is that
a new set of pseudostates has to be constructed for each
ejected electron energy and the coupled impact parameter
equations re-solved to calculate the āα . We here investigate a
relaxation of the approximation in which we use (3) and (8) for
arbitrary κ and a given fixed set of pseudostates, even though
〈eikf ·Rψα|V |�+〉 may be off-energy-shell. The approximation

is therefore

fion = −iv0

∑
all α

〈ψ−
κ |ψα〉imα−m0ei(m0−mα )φq

×
∫ ∞

0
J(mα−m0)(qtb)[āα(∞, b) − δα0]bdb (10)

For H, and He in a frozen core treatment, the pseudostates
may be labeled by the hydrogenic quantum numbers nlm [14].
Then (10) becomes

fion = −
√

2

π
iv0

∑
l

(−i)leiηl

×
+l∑

m=−l

im−m0Blm(κ, qt )e
i(m0−m)φq Ylm(κ̂), (11)

where

Blm(κ, qt ) ≡
∑

n

bnl(κ)Cnlm(qt ) (12)

Cnlm(qt ) ≡
∫ ∞

0
J(m−m0)(qtb)ānlm(∞, b)bdb (13)

where ηl is the phase shift for the ejected electron scattering off
the ion with angular momentum l, Ylm is a spherical harmonic
[19], and bnl(κ) gives the distribution of the atom state ψnlm

over the continuum momentum κ of the ejected electron (see
Eqs. (53), (57), and (58) of [14]).

B. Cross sections

From (11) the triple differential cross section (TDCS) in
the laboratory frame is given by

d3σL

dEd�ed�p

= 2

π
v0vf κm2

p

∑
l

∑
l′

il
′−lei(ηl−η

l
′ )

+l∑
m=−l

+l′∑
m′=−l′

im−m′

×Blm(κ, qt )B
∗
l′m′ (κ, qt )e

i(m′−m)φq Ylm(κ̂)Y ∗
l′m′ (κ̂), (14)

where mp is the mass of the projectile and ∗ denotes complex
conjugation.

Integration of (14) over d�e(≡ dκ̂) gives the double
differential cross section (DDCS)

d2σL

dEd�p

= 2

π
v0vf κm2

p

∑
l

+l∑
m=−l

|Blm(κ, qt )|2, (15)

again as observed in the laboratory frame. Usually more useful
than (15) is the DDCS d2σ/dEdq which is easily obtained
from (15) as

d2σ

dEdq
= 4κq

∑
l

+l∑
m=l

|Blm(κ, qt )|2. (16)
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Integrating (14) over d�p gives [20]

d2σ

dEd�e

= 4κ

∫ ∞

0
qtdqt

∑
l

∑
l′

il
′−lei(ηl−ηl′ )

×
+Min(l,l′)∑

m=−Min(l,l′)

Blm(κ, qt )B
∗
l′m(κ, qt )Plm(θe)Pl′m(θe),

(17)

where θe is the polar ejection angle of the electron and Plm

is an associated Legendre function [19], and where we have
taken the upper limit on qt to be ∞ since the largest possible
value of qt is of O(µ).

Integrating (15) with respect to E we obtain

dσL

d�p

= 2

π
v0m

2
p

∫ κmax

0
vf (κ)

[∑
lm

|Blm(κ, qt (κ))|2
]

κ2dκ

(18)

where, from (2),

κ2
max = k2

0

µ
− 2I. (19)

As indicated by the notations vf (κ) and qt (κ) in (18), vf and
qt are to be taken as functions of κ given by

vf (κ) =
√

v2
0 − (κ2 + 2I )

µ
(20)

and (9). In (9) q must be evaluated for fixed θL
p , where θL

p is
the laboratory scattering angle of the projectile. Now

q2 = k2
0 + k2

f − 2k0kf cos θp (21)

but where θp is the scattering angle of the projectile in the
relative coordinate system. With a little algebra it can be shown
that [20]

cos θp = −
(

mp

µ
− 1

)
v0

vf

(
1 − (

cos θL
p

)2)

+ cos θL
p

[
1+((

cos θL
p

)2 − 1
) (

mp

µ
− 1

)2
v2

0

v2
f

] 1
2

.

(22)

The results (2), (9), (20), (21), and (22) then define qt as a
function of κ for fixed θL

p , as required in (18).
By integrating (16) over dE = κdκ we can calculate

dσ/dq. We get

dσ

dq
= 4q

∑
l

+l∑
m=−l

∫ κmax(q)

0
|Blm(κ, qt (κ))|2κ2dκ, (23)

where qt is to be treated as a function of κ for fixed q defined
by (9). The upper limit κmax(q) is obtained from (9) by setting
qt = 0 and dropping terms of order 1/µ. We get

κmax(q) =
√

2v0q − 2I . (24)

By integrating (16) over q (equivalently qt ) at fixed κ we
get

dσ

dE
= 4κ

∑
l

+l∑
m=−l

∫ ∞

0
|Blm(κ, qt )|2qtdqt . (25)

By integrating (17) over E we obtain

dσ

d�e

= 4
∑

l

∑
l′

+Min(l,l′)∑
m=−Min(l,l′)

il
′−l

×
{∫ κmax

0
ei(ηl (κ)−ηl′ (κ))Dll′m(κ)κ2dκ

}
Plm(θe)Pl′m(θe),

(26)

where κmax is given in (19), quantities that depend on κ are
indicated by the addition of “(κ),” and where we define

Dll′m(κ) ≡
∫ ∞

0
Blm(κ, qt )B

∗
l′m(κ, qt )qtdqt . (27)

In Ref. [14] we used the prescription

σion =
∑

all nlm

gnlσnlm (28)

to calculate the total (single) ionization cross section. Here
σnlm is the cross section for exciting the state ψnlm and

gnl = 2

π

∫ ∞

0
|bnl(κ)|2κ2dκ (29)

is the fraction of this state overlapping the continuum. The
approximation (28) is a more refined version of that normally
used, e.g., Refs. [21–24], where gnl is taken to be unity for
states ψnlm with energy εnl above the ionization threshold and
zero otherwise. No direct connection between the differential
theory and the prescription (28) was established. We now
show how (28) follows from the relaxed approximation (11)
and what further approximations are needed to make the
connection. We can start from any of (18), (23), (25) or (26)
[20]. We choose (25). Integrating (25) over E we get

σion = 4
∑

l

+l∑
m=−l

∫ ∞

0
κ2dκ

[∫ ∞

0
|Blm(κ, qt )|2qtdqt

]
. (30)

Technically, the upper limit of the κ integration is given by
(19) but since this is of O(µ1/2) we can, to all intents and
purposes, take it as ∞. Now consider∫ ∞

0
|Blm(κ, qt )|2qtdqt

=
∑

n

∑
n′

bnl(κ)b∗
n′l(κ)

∫ ∞

0
Cnlm(qt )C

∗
n′lm(qt )qtdqt .

(31)

From (13)∫ ∞

0
Cnlm(qt )C

∗
n′lm(qt )qtdqt

=
∫ ∞

0
qtdqt

∫ ∞

0
bdb

∫ ∞

0
b′db′ × J(m−m0)(qtb)

× J(m−m0)(qtb
′)ānlm(∞, b)ā∗

n′lm(∞, b′). (32)
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Using the Hankel transform result [25]∫ ∞

0
Jν(qtb)Jν(qtb

′)qtdqt = 1

b
δ(b − b′) (33)

(32) becomes ∫ ∞

0
ānlm(∞, b)ā∗

n′lm(∞, b)bdb. (34)

Using (31) and (34) in (30) we therefore get

σion = 4
∑

l

+l∑
m=−l

∑
n

∑
n′

[∫ ∞

0
ānlm(∞, b)a∗

n′lm(∞, b)bdb

]

×
[∫ ∞

0
bnl(κ)b∗

n′l(κ)κ2dκ

]
. (35)

So far no approximations have been made. Now, from Eq. (53)
of [14]∫ ∞

0
bnl(κ)b∗

n′l(κ)κ2dκ = π

2

∫
〈ψnlm|ψ−

κ 〉〈ψ−
κ |ψn′lm〉dκ .

(36)

If the continuum eigenstates ψ−
κ formed a complete set, which

they do not since we need the bound eigenstates for a complete
set, (36) would give∫ ∞

0
bnl(κ)b∗

n′l(κ)κ2dκ = π

2
δnn′ . (37)

Let us now make the approximation that (37) holds for n �= n′.
Then using (29), (35) becomes

σion = 4
∑
nlm

[∫ ∞

0
|bnl(κ)|2κ2dκ

] [∫ ∞

0
|ānlm(∞, b)|2bdb

]

=
∑
nlm

gnlσnlm. (38)

The result (28) is therefore established with a little further
approximation beyond that used for the differential cross
sections. Where the pseudostates ψnlm and ψn′lm lie almost
completely in the continuum (gnl ≈ 1), which is mostly the
case, this further approximation will be negligible.

The derivation of the result (38) from (18) leads to an
interesting and “sensible” formula [20]. First note from (22)
that fixed θL

p implies fixed θp to within corrections of O(1/µ).
From (9) it can be shown that

q2
t = 2k2

0

(
1 + O

(
1

µ

))
(1 − cos θp) + O

(
1

µ

)
. (39)

Now Blm(κ, qt ) becomes negligible whenever either κ or qt

become “large.” From (20) and (39) this implies that we may
as well take vf (κ) = vf (0) and qt (κ) = qt (0) and κmax = ∞
so that (18) becomes

dσL

d�p

= 2

π
v0vf (0)m2

p

∫ ∞

0

(∑
l,m

|Blm(κ, qt (0))|2
)

κ2dκ.

(40)

Then, making the approximation (37) for n �= n′ we get

dσL

d�p

= v0vf (0)m2
p

∑
nlm

gnl|Cnlm(qt (0))|2. (41)

Using the same arguments that led from (18) to (40), we
might equally well take vf (0) to be vnl and qt (0) to be (qt )nl,

where

vnl = knl

µ
(42a)

k2
nl = k2

0 + 2µ(ε0 − εnl) (42b)

q2
nl = k2

0 + k2
nl − 2k0knl cos θp (42c)

(qt )
2
nl = q2

nl − 2µ2(ε0 − εnl)2

k2
0 + k2

nl

, (42d)

these being the values of vf , q2, and q2
t appropriate to

excitation of the discrete (pseudo)state ψnlm. Then recognizing
that the laboratory differential cross section for exciting the
state ψnlm is (see Ref. [14])

dσL
nlm

d�p

= v0vnlm
2
p|Cnlm((qt )nl)|2, (43)

we obtain the “sensible” result

dσL

d�p

=
∑
nlm

gnl

dσL
nlm

d�p

(44)

from which (28) follows trivially by integration over �p.

III. TESTING THE RELAXED APPROXIMATION

We begin with a first Born test. This has been made by
using the first Born approximation āB1

nlm(∞, b) to ānlm(∞, b)
to calculate the functions Cnlm(qt ) of (13). Following [14] we
label this approximation IPMB1. We have then compared the
results of IPMB1 with exact first Born calculations (EXB1).
For simplicity, we have confined the test to an atomic hydrogen
target where there is an exact analytic expression for the
first Born TDCS (see Ref. [14]). We have used the 165
state basis set of [14] for the pseudostates in IPMB1. As
described in Ref. [14], this set has been constructed so that
the n = 10 states have an energy of 5 eV exactly. As a result,
the relaxed approximation (10) will coincide with the more
rigorous approximation (7) whenever the ejected energy is
5 eV. In order to keep the comparison within reasonable bounds
we tested only the single and double differential cross sections
and then, of necessity, only for a selection of impact energies
(2, 10, and 30 keV) and ejected electron energies (1, 5, 10, 20,
30, and 50 eV). We take the view that calculations of the more
detailed TDCS will usually be made using the more robust
approximation (7).

The full results of our first Born test are reported in [20].
Suffice it to say that, generally, we got very good agreement
between IPMB1 and EXB1. In Figs. 1 and 2 we show two
typical examples. Only in the colored online versions of these
figures is it obvious that there are two sets of curves, IPMB1
and EXB1, present.

We have also tested the relaxed approximation under
extreme nonperturbative conditions, namely for Au24+ and
Au53+ impact on He at 3.6 MeV/amu. The full set of tests may
be viewed in Ref. [20]. Again, within the context of the test, we
found very good performance of the relaxed approximation.
The worst case we encountered is shown in Fig. 3. The nature
of the test was to take two sets of pseudostates, each of 165
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0 1 2 3 4
Momentum transfer (a.u.)

0

2

4

6

8

dσ
/d

q 
(a

.u
.)

2 keV

10 keV

30 keV

FIG. 1. (Color online) First Born single differential cross section
dσ/dq for antiproton impact ionization of H at impact energies
of 2, 10, and 30 keV: red solid curve, EXB1; blue dashed curve,
IPMB1.

states. One set was adapted to electron ejection at 4 eV, the
other to ejection at 10 eV (these were similar to the 5-eV set
of He states used in Ref. [14]). We performed full coupled
pseudostate calculations with both and made comparisions of
d2σ/dEdq and d2σ/dEd�e for ejected energies of 4 and
10 eV and of dσ/dq, dσ/dE, and dσ/d�e. It is the latter
which is shown in Fig. 3 for Au53+ impact. While we now
see a difference between the two results, that difference is
comparatively small.

In conclusion, on the basis of the tests so far made, we
believe that the relaxed approximation is very viable. However,
it must be recognized that these tests are, of necessity,
somewhat limited and so caution needs to be exercised until
wider experience with the relaxed approximation is obtained.

0 0.5 1 1.5 2 2.5 3 3.5
Momentum transfer  (a.u.)

0

10

20

30

40

50

60

70

d2 σ/
dE

dq
 (

a.
u.

)

1 eV
5 eV

10 eV

20 eV 30 eV

50 eVx2
x5

x10
x20 x40

FIG. 2. (Color online) First Born cross section d2σ/dEdq for
antiproton impact ionization of H at an impact energy of 30 keV and
for ejected electron energies ranging from 1 to 50 eV: red solid curve,
EXB1; blue dashed curve, IPMB1. The curves for 5 eV and above
have been scaled up by the indicated factors.

0 60 120 180
Ejection angle (degrees)

0

10

20

30

40

50

60

70

dσ
/d

Ω
e (

a.
u.

) Au
53+

FIG. 3. (Color online) dσ/d�e for Au53+ impact ionization of He
at 3.6 MeV/amu as calculated in the full impact parameter coupled
pseudostate approximation [26]: black solid curve, using the 165
pseudostate set adapted to 4 eV ejection; red dashed curve, using the
165 pseudostate set adapted to 10 eV ejection.

IV. RESULTS

We report results for antiproton impact ionization of H and
He using the relaxed approximation (11). For our full impact
parameter coupled pseudostate calculations (CP) we have used
the 165 state sets described in Ref. [14]. As a benchmark, we
also make some comparisions with corresponding first Born
numbers. In the case of H, the first Born results are exact
(EXB1), in the case of He they have been obtained from the
first Born version of (11) (IPMB1) using the 165 pseudostate
set. We have chosen the more interesting lower impact energies
to illustrate our calculations: 2, 10, and 30 keV for H; 3, 12,
and 60 keV for He.

A. Atomic hydrogen target

In Fig. 4 we show the double differential cross section
(DDCS) d2σ/dEdq at an impact energy of 2 keV and for

0 10 20 30
Momentum transfer (a.u.)

0

1

2

d2 σ/
dE

dq
 (

a.
u.

)

FIG. 4. (Color online) Cross section d2σ/dEdq for antiproton
ionization of H at an impact energy of 2 keV and for an ejected
electron energy of 5 eV: solid curve, CP approximation; dashed curve,
EXB1 approximation.
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an ejected electron energy of 5 eV [27]. We see that with
increasing momentum transfer q the CP cross section initially
falls rapidly but then quickly reaches a sharp minimum
followed by a large maximum and a sustained cross section
out to momentum transfers as large as 30 a.u.. By contrast,
the corresponding first Born cross section just declines rapidly
with increasing q. The difference between the two results is
attributed to the interaction between the projectile and the
target nucleus in the CP approximation and its absence from
the first Born approximation (FBA). In its initial fall the
CP approximation is like the FBA and so in this stage it is
presumed that long range effects, which are taken into account
in the FBA, are dominant. However, the quick divergence of the
two approximation with increasing q attests to the rapid onset
of nuclear dominance. In Fig. 5(a) we show the same CP cross
section at 2 keV but now for a range of ejected energies up to
8 eV. In this picture we see a more dramatic representation of
the changeover from long range to nuclear scattering, namely
a pronounced crease in the cross-section surface. However, as
Fig. 5(b) shows, by 10 keV the crease has disappeared and
it is no longer possible to see a visual separation between
long range and nuclear scattering, they have merged into a
continuum. Figure 5(c), for an impact energy of 30 keV, is
similar to Fig. 5(b) but shows a more rapid rate of fall of cross
section with both ejected energy and q.

Figure 6 shows the CP results for d2σ/dEd�e. At all three
impact energies we see strong backward repulsion of low-
energy ejected electrons, the more so with reducing impact
energy.

Figure 7 shows dσ/dq at the selected impact energies
both in the CP approximation and in the first Born EXB1
approximation. The area under these curves gives the total
ionization cross section shown in Fig. 2 of Ref. [14]. At
2 keV, Fig. 7(a), the EXB1 cross section is dwarfed by the
CP aproximation as we would expect from the total ionization
cross section where EXB1 is very small in comparision with
CP. As discussed above, the difference beween the two is due to
nuclear scattering. The effect of nuclear scattering is also seen
in Figs. 7(b) and 7(c) for impact energies of 10 and 30 keV,
respectively. The result of the nuclear interaction is to give a CP
cross section which exceeds EXB1 with increasing momentum
transfer even though the total ionization cross section in EXB1
may be signifcantly larger than the corresponding CP cross
section, which is the case at 30 keV (see Fig. 2 of Ref. [14]).
Where the EXB1 total ionization cross section is comparable
to or larger than CP, as is the case at 10 or 30 keV, this means
that the EXB1 differential cross section must substantially
exceed its CP counterpart at the lower momentum transfers
since it has to be squeezed into a smaller momentum range;
see Figs. 7(b) and 7(c). It should be noted that, unlike the cross
section d2σ/dEdq which is finite at minimum momentum
transfer (see Figs. 4 and 5), the cross section dσ/dq is zero
at its minimum momentum transfer of q = I/v0 (see (23)
and (24)).

Figure 8 shows dσ/d�e. At 2 keV the CP approximation
shows dσ/d�e to be strongly peaked for backward ejection,
as we would expect from Fig. 6(a). However, by 10 keV the
CP cross section, while still largest at the backward direction,
is more flat. By 30 keV the CP dσ/d�e displays a shallow
maximum just above 60◦, a shallow minimum just below

FIG. 5. (Color online) d2σ/dEdq for antiproton ionization of H
at impact energies of (a) 2 keV, (b) 10 keV, and (c) 30 keV, as calculatd
in the CP approximation.

120◦, and a small rise toward the backward direction. At first
sight, this might not be immediately expected from Figs. 6(b)
and 6(c) with their large backward peaked cross sections at
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FIG. 6. (Color online) d2σ/dEd�e for antiproton ionization of
H at impact enegies of (a) 2 keV, (b) 10 keV, and (c) 30 keV, as
calculated in the CP approximation.

low ejection energies. However, we shall see below that with
increasing impact energy the higher ejected electron energies
are proportionately a larger contribution to the cross section. In
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FIG. 7. (Color online) dσ/dq for antiproton ionization of H at
impact energies of (a) 2 keV, (b) 10 keV, and (c) 30 keV: solid curve,
CP approximation; dashed curve, EXB1 approximation.

the integral over all ejected electron energies that transforms
d2σ/dEd�e into dσ/d�e, therefore, the contribution from
the higher energies tones down that from the low ejected
energy region. The first Born approximation, not shown (see
Ref. [20]), is unrealistic at the impact energies of Fig. 8. It has
a forward peak and decreases monotonically with increasing
angle.

Finally, Fig. 9 shows dσ/dE. At 10 and 30 keV the CP
cross section, like the first Born cross section (not shown,
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FIG. 8. (Color online) dσ/d�e in the CP approximation for
antiproton ionization of H at impact energies of 2 keV (solid curve),
10 keV (dashed curve), and 30 keV (dash double-dot curve).
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FIG. 9. (Color online) dσ/dE in the CP approximation for
antiproton ionization of H at impact energies of 2 keV (solid curve),
10 keV (dashed curve), and 30 keV (dash double-dot curve).
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FIG. 10. (Color online) Cross section d2σ/dEdq for antiproton
ionization of He at an impact energy of 3 keV and for an ejected
energy of 5 eV: solid curve, CP approximation; dashed curve, first
Born IPMB1 approximation.
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FIG. 11. (Color online) d2σ/dEdq for antiproton ionization of
He at impact energies of (a) 3 keV, (b) 12 keV, and (c) 60 keV, as
calculated in the CP approximation.
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FIG. 12. (Color online) d2σ/dEd�e for antiproton ionization of
He at impact energies of (a) 3 keV, (b) 12 keV, and (c) 60 keV, as
calculated in the CP approximation.

see Ref. [20]) is concave downward. This is a feature of the
higher impact energy regime. By contrast, at 2 keV, the CP
cross section is mainly convex upward at the lower energies. It
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(a

.u
.)

x 3

x 10

FIG. 13. dσ/dq in the CP approximation for antiproton ioniza-
tion of He at impact energies of 3 keV (solid curve), 12 keV (dashed
curve), and 60 keV (dash double-dot curve).

should be noted that, with increasing impact energy, the higher
ejected energies are proportionately a larger contribution to
dσ/dE.

B. Helium target

In Figs. 10 to 15 we show results for a He target at impact
energies of 3, 12, and 60 keV. Since He is experimentally a
more feasible target than H, it is the target whose differential
scattering is most likely to be first studied. We see the same
kind of patterns as in Figs. 4 to 9 for H. In Figs. 10 and 11(a) for
d2σ/dEdq we observe the same “crease” in the low-energy
3-keV cross section as was seen in the 2-keV cross section for
H [Figs. 4 and 5(a)], once more associated with the transition
from dominant long-range interaction to dominant short-range
nuclear scattering. Figure 12 for d2σ/dEd�e mirrors Fig. 6
for H, except that there is more structure in the He cross
section. Whether this increased structure is real or an artifact
of the frozen core approximation in unclear at this moment.
The greater structure in the He results is again reflected in the
comparison between Figs. 14 and 8 for dσ/d�e.
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FIG. 14. dσ/d�e in the CP approximation for antiproton ioniza-
tion of He at impact energies of 3 keV (solid curve), 12 keV (dashed
curve), and 60 keV (dash double-dot curve).
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FIG. 15. dσ/dE in the CP approximation for antiproton ioniza-
tion of He at impact energies of 3 keV (solid curve), 12 keV (dashed
curve), and 60 keV (dash double-dot curve).

V. CONCLUSIONS

In this article we have investigated a relaxed form (10)
of the approximation introduced in Ref. [14]. The relaxation
involves the assumption that off-energy-shell amplitudes for
exciting pseudostates may be replaced by their on-energy-shell
counterparts with little loss of accuracy. Whereas the original
approximation of Ref. [14] required the generation of a new
set of pseudostates for each ejected electron energy, and the

solution of corresponding coupled equations each time, the
relaxed approximation needs only a single set of pseudostates,
and a single solution of the coupled equations, a considerable
saving in computation in situations where a range of ejected
energies is required. In a number of tests, both at the first Born
and coupled pseudostate levels, we have found that the relaxed
approximation appears to lead to little loss of accuracy.

We have also shown how the relaxed approximation leads,
with a little further approximation, to the prescription (28) for
the total ionization cross section. This prescription, usually
in a cruder form where gnl = 1 for pseudostates above the
ionization threshold and gnl = 0 otherwise, is often used in
the calculation of total ionization cross sections.

Finally, we have applied the relaxed approximation to
antiproton ionization of H and He to generate results of
present [13] and future [12] experimental interest. The cal-
culations nicely illustrate two important effects, the role of the
interaction between the antiproton and the target nucleus at
low energies, Figs. 5 and 11, and the effect of postcollisional
interaction between the antiproton and the outgoing ejected
electron, Figs. 6 and 12.
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