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The effects of Coulomb interaction screening on electron–hydrogen-atom elastic and excitation scattering
around the n = 2 threshold have been investigated by using the R-matrix method with pseudostates. The elastic
and excitation collision strengths show dramatic changes when the interaction screening length D varies from
∞ to 3.8 a.u., as a result of the convergence of 1,3S Feshbach resonances to the varying 2s threshold and of the
transformation of 1,3P and 1D Feshbach resonances into shape-type resonances when they pass across the 2s and
2p threshold at certain critical value of D, respectively [S. B. Zhang et al., Phys. Rev. Lett. 104, 023203 (2010)].
The resonance parameters for a large number of D in the range D = ∞–3.8 a.u. are presented. It is observed that
the 1,3P and 1D resonance contributions to the elastic and excitation collision strengths decrease rapidly with
decreasing D after the resonance passes the critical D value. The contribution of a 1Se Feshbach resonance to the
elastic or excitation collision strength changes into a cusp after the resonance merges into its parent 2s state and
immerses into the background with the further decrease of D.
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I. INTRODUCTION

In many physical systems (dense plasmas, electrolytes,
solid-state matter) the Coulomb interaction between the
constituent charged particles becomes screened due to the
correlated many-particle interactions [1–3]. To the lowest
particle correlation order (pairwise correlations), the Coulomb
interaction screening reduces to the Debye-Hückel (Yukawa-
type) potential. For the interaction of an ion of charge Z with
an electron it has the form [1–3]:

V (r) = −Ze2

r
exp

(
− r

D

)
, (1)

where D is the screening length. In a plasma, D =
(kBTe/4πe2ne)1/2, with Te and ne being the plasma electron
temperature and density, respectively, and kB is the Boltzmann
constant. Obviously, in other many-particle systems, the
relation of the screening length to the parameters of the system
may have a different form.

In the context of hot, dense plasmas studies, a number of
theoretical investigations of atomic collision processes have
been carried out by using the interaction (1). Among those
involving electron impact, studies for the electron–hydrogen-
like ion excitation [4–8] and ionization [9] performed, mainly
within the Born and two-state close-coupling approximations.
These studies, however, have not addressed the question of
the effects of screened Coulomb interaction on the resonances
around the thresholds of excitation processes. These effects
have been investigated only recently [10] for the 1s → 2s

and 1s → 2p excitation in electron–hydrogen-atom collisions
around the n = 2 resonant energy region by employing the
R-matrix method with pseudostates (RMPS).

The most prominent features of the potential (1) is the lifting
of the Coulomb l degeneracy of hydrogenic energy levels and

the finite number of bound states supported by the potential
for any finite value of D (see, e.g., Ref. [11]). The hydrogenic
n-threshold now splits into n components, the energy differ-
ence between which increases with decreasing the screening
length D [12]. The finite number of bound states in the potential
(1) implies that with decreasing D the binding energies of nl
states decrease and the nl energy levels successively enter in
the continuum at certain critical screening values Dnl . The
numerical solution of Schrödinger equation with the potential
(1) [12] shows that the following relations for Dnl hold (at
least up to n = 7): Dn+1,l > Dnl and Dn,l+1 > Dnl . In the
context of the present work we should also emphasize that with
decreasing D the excitation threshold energies also decrease.
For a given n, the states with a lower l value have lower
thresholds for any fixed value of D. As a consequence of
the decrease of energies of bound states when D decreases,
the corresponding wave functions become increasingly more
diffuse, with obvious effects on the near-threshold processes.
We also mention that for the 1s, 2s, and 2p states, considered
in the present article, the Dnl values are 0.840, 3.223, and
4.541 atomic units, respectively [12].

In the present article we shall study the effects of the
Coulomb interaction screening on the elastic and excitation
collision strengths in electron–hydrogen-atom collisions in
energy region around the n = 2 thresholds by employing the
R-matrix method with pseudostates. The energy positions and
widths of resonances that characterize the elastic and excitation
processes in this region will be calculated for a large number
of D values in the range ∞–3.8 atomic units that allows
us to follow the dynamical evolution of collision strengths
when D varies. The effects of the phenomenon of crossover of
Feshbach into shape-type resonances at certain critical values
of D [10] on the behavior of elastic and excitation collision
strengths will also be investigated in greater detail.
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The organization of the article is as follows. In the next
section we describe the method of our RMPS calculations
with the interaction in the form (1), select the expansion
basis for different D, and perform a test of the sufficiency
of the basis for the collision case without screening. In Sec.
III we present the results of our calculations for the resonant
parameters for different values of D in the range D = ∞–3.8
atomic units. In Sec. IV we present and discuss the results
of our calculation for 1s → 2s, 1s → 2p excitation, and
1s → 1s elastic collision strengths, and in Sec. V we give our
conclusions.

Atomic units will be used if otherwise not stated explicitly.

II. METHOD OF CALCULATIONS

A. RMPS with screened Coulomb interaction

The R-matrix method for electron-atom collisions has
been discussed in details by Burke et al. [13,14]. In an
R-matrix calculation, the configuration space is partitioned
into three regions: an internal region, an external region,
and an asymptotic region. In the internal region, the electron
exchange and correlation effects between the incident and
target electrons are important and the (N + 1)-electron
complex behaves in a way similarly to a bound system.
Consequently, the total wave function of the N + 1 electron
system is expanded in a configuration interaction (CI) basis
which takes the following form for each total orbital angular
momentum (L), spin (S), and parity (π ) (in the nonrelativistic

scattering these quantum numbers are conserved):

ψLSπ
k (XN+1) = Â

∑
ij

φ
LSπ

i (XN ; r̂N+1σN+1)r−1
N+1uij (rN+1)

× aLSπ
ijk +

∑
j

χLSπ
j (XN+1)bLSπ

jk , (2)

where Â is the antisymmetrization operator which accounts
for electron exchange between the target electrons and the

free electron. The functions φ
LSπ

i are formed by coupling
the target states with the spin-angle functions of the scattered
electron, uij are radial basis functions representing the scat-
tered electron, and χLSπ

j are square-integrable (L2) correlation
functions. The coefficients aLSπ

ijk and bLSπ
jk are obtained by diag-

onalizing the (N + 1)-electron Hamiltonian in the basis ψLSπ
k .

The (N + 1)-electron nonrelativistic Hamiltonian with the
interaction potential (1) has the form:

HN+1 =
N+1∑
n=1

[
− 1

2
∇2

n − Z

rn

exp(−rnD
−1)

+
N+1∑
m>n

1

rmn

exp(−rmnD
−1)

]
, (3)

where rn is the electron radius vector with respect to the atomic
nucleus having charge Z, rmn = |rm − rn| is the interelectron
distance and D is the interaction screening length. The
electron-electron interaction term in Eq. (3) can be expanded
as [15]:

Vee = exp(−rmnD
−1)

rmn

=

⎧⎪⎪⎨⎪⎪⎩
∞∑

λ=0

rλ
<

rλ+1
>

Pλ(cos θmn) D−1 = 0

−D−1
∞∑
l=0

(2λ + 1)jλ(iD−1r<)h(1)
λ (iD−1r>)Pλ(cos θmn) D−1 > 0

, (4)

where r> = max(rm, rn), r< = min(rm, rn), Pl, jl and h
(1)
l

are the Legendre polynomials, spherical Bessel functions, and
spherical Hankel functions of the first kind with complex
arguments, respectively.

In the external region, the electron exchange and correlation
effects between the incident and target electrons are negligible.
The scattered electron then moves in the long-range local
multipole potential of the target atom (or ion). The reduced
radial wave functions, Fi(r), describing the motion of scattered
electron, satisfy a set of coupled second-order differential

equations:[
d2

dr2
− li(li + 1)

r2
+ 2(Z − N )

r
exp

(
− r

D

)
+ k2

i

]
Fi(r)

= 2
λmax∑
λ=1

n∑
j=1

aλ
ij

rλ+1
Fj (r), r > a0. (5)

Here (Z − N ) is the residual target charge, n is the number of
channel functions, li and k2

i are the channel angular momentum
and energy, respectively, a0 is the boundary of the internal
region, and the long-range potential coefficients aλ

ij is:

aλ
ij =

⎧⎪⎪⎨⎪⎪⎩
〈φi |

N∑
m=1

rλ
mPλ(cos θm,N+1)|φj 〉 D−1 = 0

−D−1aλ+1
0 〈φi |

N∑
m=1

(2λ + 1)jλ(iD−1rm)h(1)
λ (iD−1a0)Pλ(cos θm,N+1)|φj 〉 D−1 > 0

. (6)
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We note that the interaction Vee for D−1 > 0 cannot be
expanded in multipoles exactly. At the boundary of the internal
region a0, however, this expansion can be considered as an
adequate approximation, since (i) at a0Vee is small and (ii) it
also provides a smooth connection of Vee at the boundary a0.

For the neutral atom, the residual target charge is (Z-N) =
0, so the boundary conditions in the asymptotic region are:

Fij ∼
r−∞

{
k

−1/2
i (sin θiδij + cos θiKij ) open channels

exp(−ϕi)δij closed channels
, (7)

where the second index j on Fij denotes the linear independent
solutions of Eq. (5), θi = kir − 1

2 liπ, ϕi = |ki |r , and Kij are
the elements of the real symmetric K matrix. The S and T

matrices are then defined in terms of the K matrix by

S = (1 − iK)−1(1 + iK), T = S − 1. (8)

The partial collision strength for a transition from an initial
state αiLiSi to a final target state αjLjSj , where αi and
αj represent the additional quantum numbers necessary to
completely define the target states, is given by


LSπ
ij = (2L + 1)(2S + 1)

2

∑
li lj

|Tij |2, (9)

and the total collision strength is given by


ij =
∑
LSπ


LSπ
ij . (10)

The total cross section for the transition i → j is related to

ij by

σi→j = πa2
0

k2
i (2Li + 1)(2Si + 1)


ij . (11)

The physical orbitals of hydrogen atom with the screened
Coulomb potential (1) have been calculated by the piecewise
exact power series expansions of the radial function [16], while
the pseudo-orbitals have been optimized by the CIV3 computer
code [17]. The used R-matrix code is a modified version based
on the Belfast [18,19] atomic R-matrix packages in which the
Coulomb interactions in the (N + 1)-electron nonrelativistic
Hamiltonian are replaced by Yukawa-type screened Coulomb
interactions.

The resonance parameters have been determined by fitting
the eigenphase sum to the Breit-Wigner form:

δ(E) = δ0(E) + tan−1

(
�/2

Er − E

)
, (12)

where Er is the resonance position, � is the total width, and
δ0(E) is the background phase near the resonance. When the
background varies slowly over the resonance profile, � can be
determined from the relation [20]:

� = 2/δ′(Er ). (13)

In the general case, the point of maximum gradient δ′(E) serves
as definition for the position of the resonance, and the width
can be determined from Eq. (13). As in the case of the shape
resonance 1P ◦ of H−, the rapidly decreasing phase can greatly
distort or even destroy any resonance structure, rendering it
extremely difficult to ascertain whether a resonance is actually

there [21]. For such situations, an appropriate fitting method
has been proposed by Callaway [22,23] which employs the
relation

δ(E) = a

E − Eth

+ b + c(E − Eth) + tan−1

(
�/2

Er − E

)
.

(14)

In our calculations we have used an energy grid of 10−5 Ry
throughout the energy region considered, but in the vicinity
of narrow resonances we have refined it to 10−6 Ry or
even 10−7 Ry in order to determine accurately the resonance
parameters.

B. Calculations for the unscreened case: test of the sufficiency
of expansion basis

In order to check the sufficiency of the basis set used
in our RMPS calculations, we have first considered the
unscreened case by using 14 physical states (1s − 5s, 2p −
5p, 3d − 5d, 4f, 5f ) and four pseudostates (6s, 6p, 6d, 6f )
in the expansion (2) and calculated the 1s→1s elastic collision
strengths and resonance parameters below the n = 2 excitation
threshold, and the 1s → 2s and 1s → 2p excitation collision
strengths between the n = 2 and n = 3 excitation thresholds.
The results for the resonance parameters agree very well with
the variational results of Gien [24] and with the three eigenstate
expansion (supplemented by correlation terms) of Burke et al.
[25] (see Table I). The calculated results for the elastic collision
strengths are shown in Fig. 1 (upper panel) and they agree very
well with hyperspherical close-coupling calculation of Chen
et al. [26], as well as with the direct numerical calculations
of Wang et al. [27]. In the lower panel of Fig. 1 the collision
strengths for the 1s → 2s and 1s → 2p transitions of present
calculations are given, showing a very good agreement with the
18-state variational results of Callaway [23], the benchmark
calculations of Bartschat et al. [28] (using the convergent close
coupling, RMPS, and intermediate energy R-matrix methods),
and with the experimental data of Williams [29]. It should be
noted that the fitted position of the 1P ◦ shape resonance (not
included in Table I) is lower than that of Callaway [22,23] by
10−4 Ry only, but the general agreement is quite good.

TABLE I. Energy (Er (eV)) and width (� (meV)) of Feshbach
resonances converging on the n = 2 threshold. The energy
conversion 1 Ry = 13.605825 eV.

Present(14 + 4) Gien [24] Bruke et al [25]
2s+1Lπ Er � Er � Er �

1Se 9.557 48.3 9.558 47.24 9.560 47.5
10.176 2.48 10.177 2.43 10.178 2.19
10.203 0.16 10.203 0.14

3Se 10.147 0.02 10.147 0.02 10.150 0.02
10.203 – 10.201 0.001

1P◦ 10.176 0.04 10.176 0.04 10.177 0.04
3P◦ 9.739 5.88 9.738 5.83 9.740 5.94

10.193 0.14 10.193 0.13
1De 10.125 8.65 10.126 8.58 10.125 8.8
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FIG. 1. (Color online) Collision strengths for the unscreened case.
Upper panel: 1s-1s elastic collision strength below n = 2 excitation
threshold; lower panel: 1s→2s and 1s→2p excitation collision
strength between the n = 2 and n = 3 excitation thresholds. Red
lines: present RMPS results (14 physical states + 4 pseudostates);
black dots: 18-state basis variational calculations of Callaway [23];
black cross dots: RMPS results from the benchmark calculation of
Bartschat et al [28]; blue dots: direct numerical calculations of Wang
et al [27]; blue cross dots: hyperspherical close-coupling calculation
of Chen et al [26].

C. Selection of the basis for finite screening lengths

As mentioned in the Introduction, the finite number of
bound states supported by the potential (1) for a finite value
of the screening length D implies that with decreasing D the
energies of bound nl states decrease and for certain critical
values Dnl they merge with the continuum edge. For instance,
the Dnl values for the 5l states, included in our basis for the
unscreened case, lie in the range 19.772 a.u. (for 5s) to 28.257
a.u. (for 5f ) [12]. For the 4l states, this range is 12.687 a.u.
(for 4s) to 20.068 a.u. (for 4f ), while for the 3s, 3p, and
3d states, the Dnl values are 7.171, 8.872, and 10.947 a.u.,
respectively [12]. Obviously, with decreasing of D below 28
a.u., the states that have already merged with the continuum
edge have to be omitted from the part of physical states in
the basis adopted for the unscreened case (see the previous
subsection). It is also intuitively clear that it would be natural
to include in the pseudostate part of the basis the states that

have already merged with the continuum. Therefore, with
decreasing of D, the number of the physical states included in
the basis will gradually decrease, whereas that of pseudostates
should increase. In the context of the present study, the lowest
limits of the decrease of D are determined by the critical values
D2s = 3.223 a.u. and D2p = 4.541 a.u. at which the 2s and
2p states merge with the continuum [12] and below which the
1s → 2l transition does not exist.

By checking the convergence of the results for each value
of D for which the RMPS calculations have been performed,
we have arrived at the basis sets given in Table II for different
groups of D values. The accuracy of calculated results with
these basis sets is on the level of that for the unscreened
case considered in the previous subsection. We should note
that when approaching the D2l values from above, the energy
of corresponding states becomes increasingly small, its wave
function extends to increasingly large distances, and the
backward integration from the asymptotic region toward the
inner region becomes increasingly unstable. This results in
practical limits to the lowest values of D which for the 2s and
2p state is 3.8 and 4.6 a.u., respectively.

III. RESONANCE PARAMETERS

The most pronounced resonances around the n = 2
threshold region in the unscreened case are the 1Se(1,2,3),
3Se,1 P ◦(1), 3P ◦(1,2), 1De Feshbach resonances and the
1P ◦(2) shape resonance, and these have been thoroughly
studied in the past. (The resonance with a given symmetry
having a larger number in the parentheses is closer to the
threshold.) We have calculated the energy positions and widths
of these resonances by using Eqs. (12)–(14). The variation
of the resonance positions and 1s → 2s, 1s → 2p excitation
energies when the screening length decreases from D = ∞
to D = 3.8 a.u. is shown in Fig. 2. The figure shows that
as the interaction screening increases the resonance positions
and the 1s → 2s, 1s → 2p excitation energies decrease.
This is a consequence of the fact that the gradient of the
decrease of the binding energy of 1s state when D decreases
is larger than that for the energies of 2s and 2p states.
Figure 2 also shows that the resonances disappear when D
deceases, and at D = 3.8 a.u., only the resonances 1Se(1) and
1P ◦(1) remain in the resonance spectrum (see also Fig. 3 and
Table III below).

TABLE II. Basis preparation for the R-matrix calculation for various screening length.

Screening Length Basis

�34 14 physical states (1s-5s, 2p-5p, 3 d-5 d, 4f, 5f) plus 4 pseudostates (6s, 6p, 6 d, 6f)
30–22 10 physical states (1s-4s, 2p-4p, 3 d, 4 d, 4f) plus 4 pseudostates (5s, 5p, 5 d, 5f)
21,20 9 physical states (1s-4s, 2p-4p, 3 d, 4 d) plus 5 pseudostates (4f, 5s, 5p, 5 d, 5f)
19,18 8 physical states (1s-4s, 2p-4p, 3 d) plus 6 pseudostates (4 d, 4f, 5s, 5p, 5 d, 5f)
17–12 6 physical states (1s-3s, 2p, 3p, 3 d) plus 8 pseudostates (4 l, 5 l, (l = s, p, d, f))
11,10 5 physical states (1s-3s, 2p, 3p) plus 7 pseudostates (3 d, 4 l, 5 l, (l = s, p, d, f))
9 4 physical states (1s-3s, 2p) plus 8 pseudostates (3p, 3 d, 4 l, 5 l, (l = s, p, d, f))
8–4.6 3 physical states (1 s, 2s, 2p) plus 9 pseudostates (3 l, 4 l, 5 l, (l = s, p, d, f))
4.55–3.8 2 physical states (1s, 2s) plus 7 pseudostates (2p, 3 l, 4 l, (l = s, p, d, f))
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(a)

(b)

(c)

FIG. 2. (Color online) Variation of the positions of Feshbach and
shape resonances and of the 1s→2s, 1s→2p excitation energies
when the screening length decreases.

The variation of resonance widths with D is shown
in Fig. 3. The figure shows that with decreasing D, the
widths of 1,3S Feshbach resonances decrease rapidly when
they approach the 2s threshold before they merge with the
parent 2s state. The widths of 1,3P Feshbach resonances also
considerably decrease when they approach the 2s threshold,
but after passing it their widths start to increase rapidly, a
signature of the shape resonance (see the D dependence of
the 1P ◦(2) shape resonance in Fig. 3). The phenomenon of
transformation of a 1,3P Feshbach resonance into a shape
resonance has been discussed in detail in Ref. [10]. As argued
there, this change of the character of the 1,3P ◦ resonances
results from two facts: the quasidegeneracy of 2s and 2p

thresholds, in which case the two-electron states are described
by the superpositions χS

± = 2snp ± (−1)S2pns (S is the total
electron spin) and the pronounced diffuse character of 2p

state for the relative small values of D. In the hyperspherical
coordinate representation, the states χS

± are eigenstates of the
adiabatic hyperspherical Hamiltonian [30], to which adiabatic
channel potentials US

± are associated. As shown in Ref. [31] for
1P ◦ states in the unscreened case, the hyperspherical potential
US=0

− supports only bound states below the n = 2 threshold
[corresponding to the 1P ◦(1) Feshbach resonance], while the
potential US=0

+ is not strong enough to support bound states
but exhibits a potential barrier above the threshold which
supports a quasibound state [corresponding to the 1P ◦(2) shape
resonance]. In the screened case, because with decreasing
D the wave functions become more and more diffuse, the
2p state can also mix with higher l states. Having in mind
that for finite D the 2s and 2p thresholds are separated, this
mixing produces a barrier in the US=0

− potential. Therefore,
after passing the 2s threshold the 1P ◦(1) state is prone to
underbarrier decay (i.e., becomes a shape resonance). The
mixing of 2p state with the d states is also responsible for
the change of character of 3P ◦(1,2) resonances related to the
hyperspherical potential US=1

+ . The critical screening lengths,

FIG. 3. (Color online) Variation of the widths of Feshbach and
shape resonances when the screening length decreases. Short dashed
lines represent the critical values of D where Feshbach resonances
pass across the 2s or 2p threshold.

Dc, for which the Feshbach resonances 1P ◦(1), 3P ◦(2), and
3P ◦(1) pass the 2s threshold, lie in the regions 30–29 a.u.,
48–45 a.u., and 6.3–6.2 a.u., respectively. The rapid increase
of the widths of these resonances for D < Dc observed in
Fig. 3 is a consequence of the decrease of 2s threshold and the
increase of diffuse character of bound and quasibound wave
functions when D decreases.

The width of 1De Feshbach resonance, for which the parent
state is 2p, in the region of D between the 2s and 2p thresholds
(19 a.u. � D � 14 a.u.) shows somewhat specific behavior:
after passing the 2s threshold (in the region 19 a.u. < D <

20 a.u.) it first continues to decrease (i.e., behaves like a
Feshbach resonance with respect to the 2p threshold) and
then starts to increase (i.e., behaves like a shape resonance
with respect to the 2s threshold). Only after passing the 2p

threshold in the region 13 a.u. < D < 14 a.u., it behaves like
a typical shape resonance with sharply increasing width. It
has been argued in Ref. [10] that the behavior of the width
of 1De resonance before and after passing the 2p threshold
can be taken as an indication of the existence of two barriers
in the system of US=0

± hyperspherical potentials. The χS=0
±

superpositions for the 1De resonance are made of the 2snd and
2pnp two-electron states.

The values of energy positions and widths of Feshbach
and shape resonances parameters around n = 2 excitation
threshold, as well as 2s, 2p excitation threshold energies for a
selected number of values of the screening length are given in
Table III. It should be noted that the widths of shape resonances
1P ◦(2), 3P ◦(1), and 1De become very large (larger than
0.015 Ry) for D � 7 a.u., D � 4.2 a.u., and D � 5.0 a.u.,
respectively, which makes their determination (as well as the
determination of resonance positions) rather uncertain. It is in-
teresting to note that the 3P ◦(1) shape resonance survives down
to 3.8 a.u. (the last D value of our investigations), i.e., in the
region D < D2p = 4.541 a.u., where it exists as a quasibound
state [32].
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TABLE III. Feshbach and shape resonance parameters around n = 2 excitation threshold for a selected number of values of the screening
length D (a.u.). Er : resonance energy (Ry); �: resonance width (Ry); Eth: 2s or 2p excitation threshold (Ry).

D (a.u.) ∞ 100 48 45 34

2s 2p 2s 2p 2s 2p 2s 2p 2s 2p

Eth(Ry) 0.750000 0.750000 0.749562 0.749658 0.748155 0.748555 0.747908 0.748360 0.746401 0.747172
2s+1Lπ Er � Er � Er � Er � Er �
1Se(1) 0.702420 3.55(−3) 0.702370 3.55(−3) 0.702185 3.66(−3) 0.702110 3.52(−3) 0.701805 3.53(−3)
1Se(2) 0.747940 1.82(−4) 0.747791 1.85(−4) 0.747071 1.69(−4) 0.746918 1.60(−4) 0.745891 1.32(−4)
1Se(3) 0.749879 1.19(−5) 0.749532 6.54(−6)
3Se 0.745763 1.40(−6) 0.745644 1.37(−6) 0.745085 1.28(−6) 0.744964 1.26(−6) 0.744146 1.16(−6)
1P◦(1) 0.747883 2.77(−6) 0.747736 2.97(−6) 0.747068 3.15(−6) 0.746930 3.09(−6) 0.746006 2.72(−6)
1P◦(2) 0.751120 1.72(−3) 0.750828 1.65(−3) 0.749921 2.09(−3) 0.749772 2.13(−3) 0.748856 2.34(−3)
3P◦(1) 0.715760 4.32(−4) 0.715699 4.31(−4) 0.715447 4.35(−4) 0.715383 4.31(−1) 0.715003 4.31(−4)
3P◦(2) 0.749176 1.02(−5) 0.748987 9.66(−6) 0.748114 6.52(−6) 0.747940 1.63(−5) 0.746772 4.25(−4)
1De 0.744146 6.36(−4) 0.74404 6.32(−4) 0.743615 6.19(−4) 0.743527 6.16(−4) 0.742954 5.98(−4)

D (a.u.) 30 29 28 24 21
2s 2p 2s 2p 2s 2p 2s 2p 2s 2p

Eth(Ry) 0.745421 0.746397 0.745113 0.746153 0.744773 0.745884 0.742985 0.744463 0.740963 0.742850
2s+1Lπ Er � Er � Er � Er � Er �
1Se(1) 0.701545 3.44(−3) 0.701465 3.43(−3) 0.701370 3.42(−3) 0.700860 3.39(−3) 0.700215 3.35(−3)
1Se(2) 0.745130 1.03(−4) 0.744882 9.44(−5) 0.744601 8.48(−5) 0.742984 1.12(−5)
3Se 0.743552 1.08(−6) 0.743358 1.05(−6) 0.743138 1.02(−6) 0.741912 8.76(−7) 0.740388 6.88(−7)
1P◦(1) 0.745326 2.07(−6) 0.745118 2.10(−6) 0.744854 2.81(−5) 0.74347 3.98(−4) 0.741944 1.09(−3)
1P◦(2) 0.748086 2.30(−3) 0.747868 2.40(−3) 0.747641 2.51 (−3) 0.746432 3.06(−3) 0.745111 3.43(−3)
3P◦(1) 0.714706 4.33(−4) 0.714615 4.33(−4) 0.714512 4.32(−4) 0.713936 4.29(−4) 0.713217 4.26(−4)
1De 0.742540 5.85(−4) 0.742407 5.82(−4) 0.742258 5.77(−4) 0.74143 5.51(−4) 0.740413 5.20(−4)

D (a.u.) 20 19 18 17 14
2s 2p 2s 2p 2s 2p 2s 2p 2s 2p

Eth(Ry) 0.740090 0.742152 0.739085 0.741346 0.737918 0.740409 0.736551 0.739310 0.730695 0.734572
2s+1Lπ Er � Er � Er � Er � Er �
1Se(1) 0.699920 3.34(−3) 0.699560 3.31(−3) 0.699195 3.52(−3) 0.698605 3.23(−3) 0.696160 3.09(−3)
3Se 0.739687 5.99(−7) 0.738843 4.89(−7) 0.737819 3.45(−7) 0.736539 1.84(−7)
1P◦(2) 0.744482 3.56(−3) 0.743755 3.68(−3) 0.742782 4.07(−3) 0.741745 4.16(−3) 0.737087 5.62(−3)
3P◦(1) 0.712893 4.24(−4) 0.712490 4.21(−4) 0.712065 4.21(−4) 0.711453 4.15(−4) 0.708833 4.00(−4)
1De 0.739955 5.05(−4) 0.739402 4.87(−4) 0.738754 4.71(−4) 0.737962 4.81(−4) 0.734334 5.97(−4)

D (a.u.) 13 12 10 8 6.3
2s 2p 2s 2p 2s 2p 2s 2p 2s 2p

Eth(Ry) 0.727864 0.732265 0.724357 0.729395 0.714260 0.721047 0.696676 0.706221 0.668864 0.681968
2s+1Lπ Er � Er � Er � Er � Er �
1Se(1) 0.694855 2.96(−3) 0.69321 2.92(−3) 0.687865 2.66(−3) 0.677199 2.17(−3) 0.657593 1.47(−3)
1P◦(2) 0.734962 4.53(−3) 0.732222 6.80(−3) 0.723832 8.81(−3) 0.708455 0.01226
3P◦(1) 0.707468 3.94(−4) 0.705686 3.83(−4) 0.700136 3.49(−4) 0.689110 2.90(−4) 0.668765 1.62(−4)
1De 0.732359 6.38(−4) 0.729892 1.12(−3) 0.72259 2.96(−3) 0.709187 6.99(−3) 0.686261 0.01037

D (a.u.) 6.2 6 5 4.55 3.8
2s 2p 2s 2p 2s 2p 2s 2p 2s −

Eth(Ry) 0.666582 0.679928 0.661710 0.675551 0.629405 0.645422 0.608681 0.624461 0.559754 −
2s+1Lπ Er � Er � Er � Er � Er �
1Se(1) 0.655859 1.41(−3) 0.652093 1.30 (−3) 0.625312 6.54(−4) 0.606882 3.65(−4) 0.559720 1.49(−5)
3P◦(1) 0.666944 2.31(−4) 0.662843 5.91(−4) 0.635203 6.15(−3) 0.616835 9.91(−3) 0.570664 0.02187
1De 0.685216 0.01079 0.680200 0.01143 0.647662 0.01484

IV. DYNAMIC EVOLUTION OF EXCITATION AND
ELASTIC COLLISION STRENGTHS IN THE REGION

AROUND THE N = 2 THRESHOLDS

The pronounced variation of the resonance parameters
when the screening length of the potential varies (see
Figs. 2 and 3) will obviously produce significant changes
in the collision strengths of both excitation and elas-

tic processes in the energy region around the n = 2
thresholds.

A. 1s → 2s excitation collision strength

The dynamical evolution of 1s → 2s excitation collision
strength for a selected number of values of the screening length
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(a)

(b)

FIG. 4. (Color online) Dynamic evolution of 1s→2s collision
strength when the screening length D decreases from D = ∞ to D =
3.8 a.u.. 2s+1Lπ (n) denotes the dominant resonance (The screening
length increases from left to right).

between D = ∞ and D = 3.8 a.u. is shown in Figs. 4(a) and
4(b). In the inset of Fig. 4(a) the binding energies of 2s and
2p states are shown when D varies. Figure 4(a) shows that the
maximum of the 1s → 2s collision strength decreases with
decreasing D as long as some of the Feshbach resonances
contributing to the collision strength. This decrease is related
to the decrease of the amplitudes of 1s and 2s wave functions
with decreasing D (see, e.g., Ref. [12]), which also results
in broadening of the half-width of the maximum of collision
strength. The shift of the maximum of the collision strength to
lower energies when D decreases is consistent with the shift of
energy positions of all contributing resonances with decreasing
D (see Fig. 2).

The most significant changes in the structure and values of
1s → 2s collision strength, however, take place in the regions
of D where 1,3P and 1D Feshbach resonances change their
character. Thus, the sharp peak in the collision strength in
Fig. 4(a) for D = 45 a.u. at Er = 0.74794 Ry corresponds to

the 3P ◦(2) resonance just after its transformation to shape
resonance. With decreasing D, this peak moves to lower
energies, its half-width becomes larger (see the curves for
D = 40 and 34 a.u.), in accordance with the parameters of this
resonance shown in Figs. 2 and 3, and its amplitude decreases
rapidly.

The contribution of 1P ◦(1) resonance to the collision
strength is generally small (see Fig. 4), but it still produces
the clearly visible sharp peaks in the collision strength curves
for D = 29 and 28 a.u. at Er = 0.745118 Ry and Er =
0.744854 Ry, respectively. The sharp peak in the collision
strength in Fig. 4(b) for D = 6.2 a.u. at Er = 0.666944 Ry
is due to the new born 3P ◦(1) shape resonance resulting from
the transformed 3P ◦(1) Feshbach resonance at the 2s threshold
(lying somewhere between 6.3 and 6.2 a.u.). The amplitude of
this resonance decreases rapidly with decreasing D, with its
width increasing also rapidly (see also Fig. 3). This resonance
dominates the 1s → 2s collision strength for D � 6.2 a.u..

The sharp peaks on the right-hand-side of Fig. 4(b) are due
to the 1De resonance contribution, which acquires its maximum
amplitude for D = 14 a.u. and then starts to decrease with
decreasing D, disappearing in the background for D < 7 a.u..

The relatively small but sharp peaks (cusps) observed in the
collision strength (see Fig. 4) represent the effects of virtual
states [33]. The cusps seen in the collision strengths for D =
19 a.u. and D = 18 a.u. [see the inset in Fig. 4(b)] are related
to the effect of virtual 1P◦ state. Similar virtual state effects
appear also in the 1Se channel for D � 27 a.u. and D � 4 a.u.,
as can be observed in Figs. 4(a) and 4(b), respectively. Virtual
states above the 2s threshold appear in the 3P◦ and 1P◦ channels
for D � 34 a.u. [see Fig. 4(a)] and D � 21 a.u. [see Figs. 4(a)
and 4(b)], respectively. For some D values more than one cusp
can be seen in the collision strength (e.g., for D = 24, 23 and
22 a.u.).

The effects of virtual states in the collision strength is
illustrated in Fig. 5, where the 1s → 2s partial wave collision
strength of S, P, and D waves (upper panel) and their
eigenphase sums (lower panel) are shown for D = 24 a.u..
There are four virtual states for this value of D in the considered
energy range: 1Se and 3Se at the 2s excitation threshold and

FIG. 5. (Color online) Eigenphase sum and 1s→2s partial wave
collision strengths for S, P and D waves for D = 24 a.u..
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FIG. 6. (Color online) Dynamic evolution of 1s→2p collision
strength when the screening length D decreases from D = ∞ to
D = 4.6 a.u. (The screening length increases from left to right).

1P ◦ and 3P ◦ at the 2p excitation threshold. It can be seen from
the lower panel of this figure that the eigenphase sum of the
1Se Feshbach resonance is cut short at the 2s threshold due to
the opening of 2s channel; this produces a peak in the 1s → 2s

collision strength just above the 2s excitation threshold. On the
other hand, the 3P ◦ Feshbach resonance is totally destroyed
by the virtual state for partial wave 3P ◦, which can be clearly
observed as a cusp peak in the 1s → 2s collision strength at
the 2p excitation threshold (at E = 0.74481 Ry).

We should note that similar virtual state effects have also
been observed in the electron–helium excitation cross sections
in the n = 2 thresholds region [34,35], where the Coulomb
degeneracy is lifted. However, while in the helium atom
case the n = 2 level splitting is fixed, the screened potential
(1) contains a continuously varying parameter that allows
us to study the effects of the screening on the resonances
and virtual states near n = 2 excitation thresholds to the full
extent.

B. 1s → 2 p excitation collision strength

Dynamical evolution of the 1s → 2p excitation collision
strength for a number of selected screening lengths between
D = ∞ and D = 4.6 a.u. is shown in Fig. 6. Only two
resonant states contribute to the 1s → 2p collision strength
in the considered energy range: the 1P ◦(2) shape resonance
for D > 14 a.u. and the 1De shape resonance for D �
13 a.u.. The amplitude of the 1De resonance acquires its
maximum at D = 12 a.u.. For the smaller D values, the 1De

resonance peak decreases rapidly (its half-width becoming
increasingly larger) and for D = 5 a.u., it disappears into the
background.

C. 1s → 1s elastic collision strength

The 1s → 1s elastic collision strength below the n = 2
excitation threshold when the screening length D decreases
from D = ∞ to D = 3.8 a.u. is shown in Fig. 7. The dominant

resonances and cusps are also marked in the figures. The
significant changes in the structure and values of the collision
strength are obviously related to the changes of the resonance
parameters when D decreases.

As Fig. 7(a) shows, the Feshbach 1Se(3) resonance gives
an important contribution to the elastic collision strength.
However, when D becomes less than 100 a.u., this resonance
converges to its parent state 2s and virtual state begins to play
important role in the elastic collision near the 2s threshold.
This virtual state manifests itself as a cusp in the collision
strength. With the further decrease of D this cusp merges into
the background. A similar behavior shows also the 1Se(2)
Feshbach resonance [see Figs. 7(a) and 7(b)]; the cusp appears
after 1Se(2) merges with the 2s threshold, i.e., when D is
less than 24 a.u.. Furthermore, Figs. 7(a)–7(e) show that the
1Se(1) Feshbach resonance plays important role in the elastic
process in the entire range of screening lengths considered
here.

It should be noted that the 3Se Feshbach resonance is very
narrow and does not contribute significantly to the collision
strength. When D becomes less than 22 a.u., the 3Se merges
into the huge background of the 1De resonance having a close
resonance position with 3Se.

The contribution of 3P o (2) Feshbach resonance to the
elastic collision strength is also significant, but it decreases
rapidly when D becomes smaller than 48 a.u. [see Figs. 7(a)
and 7(b)] when it transforms into shape resonance. After this
transition, the width of 3P o (2) resonance increases rapidly
with decreasing D and the associated peak in the collision
strength becomes increasingly broader. When D becomes
smaller than about 34 a.u., the 3P o (2) resonance disappears
into the background.

The positions of 1P o (1) and 1Se(2) Feshbach resonances
are very close to each other but the width of the former is much
smaller than that of the latter for all D before 1P o (1) transforms
into a shape resonance at about D = 29 a.u. (see Figs. 2 and 3).
The 1P o (1) narrow contribution peak in collision strength is
superimposed to the broad contribution peak of 1Se(2). After
1P o (1) changes its character (at D ≈ 29 a.u.), its contribution
to the collision strength becomes very small and is immersed
into the broad peak of 1Se(2).

Figures 7(d) and 7(e) show that the contribution of 3P ◦(1)
Feshbach resonance to the collision strength is very significant
and quasiunchangeable with decreasing D until it undergoes
a change of its character at about D = 6.3 a.u.. After this
transition, its contribution to the collision strength decreases
rapidly and with the further decrease of D it immerses into the
background and disappears.

As Figs. 7(a)–7(c) show, the 1De Feshbach resonance also
gives a significant and quasi-invariable contribution to the
elastic collision strength when D decreases until it passes
across the 2s threshold at about D = 20 a.u.. With the
further decrease of D in the range 19 a.u. � D � 14 a.u.,
the contribution of this resonance to the collision strength
gradually decreases [see Fig. 7(c)]. At D ≈ 14 a.u., the
1De resonance passes across the 2p threshold and becomes
a typical shape resonance; its contribution to the collision
strength quickly merges into the background with the further
decrease of D, as observed in Fig. 7(c). The observed quasi-
invariant contribution of 1De Feshbach resonance to the elastic
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FIG. 7. (Color online) Dynamic evolution of 1s→1s elastic collision strength when the screening length varies from D = ∞ to D =
3.8 a.u.. 2s+1Lπ (n) denotes the dominant resonance (The screening length increases from left to right).

collision strength for D � 20 a.u. is a consequence of the
diffuse character of dominant one-electron states involved in
two-state configuration mixing which are less sensitive to the
variation of D.

We note that for D � 6 a.u., the elastic collision strength
is dominated by the contribution from the 1Se (1) Feshbach
resonance [see Fig. 7(e)]. We further note that for D �
4.541 a.u., only the 1s and 2s states remain in the discrete
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spectrum of H atom [12] and, consequently, the doubly excited
states resulting in Feshbach resonances must be of the S type.

V. CONCLUSIONS

In the present work we have studied the effects of screened
Coulomb interaction on the electron–hydrogen-atom elastic
and excitation scattering processes around the n = 2 excitation
thresholds by using the RMPS method, modified for interac-
tions of type (1). The lifting of the Coulomb l degeneracy
by the potential screening (resulting in separation of 2s and
2p thresholds) and the decrease of the number of bound states
in the screened Coulomb potential (resulting in reduction of the
number of resonant states) profoundly affect the dynamics of
near-threshold elastic and excitation processes. Furthermore,
the phenomenon revealed in Ref. [10] of transformation of
Feshbach 1,3P and 1D resonances to shape-type resonances
when the screening length D crosses over the 2s and 2p

threshold, respectively, dramatically affects the dynamical
evolution of elastic and excitation collision strengths when
D varies. These changes are related to the changes of the
positions and widths of resonances when D varies, for which
we presented a detailed information in the range D = ∞ to
3.8 a.u., obtained by using the eigenphase sum method. With
decreasing D the energy position of resonances decreases.
Their widths also decrease with decreasing D, particularly
sharply for the 1,3S resonances, when they approach the
2s threshold for a certain D value, but those of 1,3P and

1D resonances increase sharply after they become shape
resonances by crossing the corresponding threshold at certain
critical value of D.

The evolution of elastic and 1s → 2s, 1s → 2p excitation
collision strengths in the near-threshold energy region is
presented in the range D = ∞ to 3.8 a.u.. The significant
changes observed in the structure and magnitude of collision
strengths as D varies (see Figs. 4, 6, and 7), a result of the
convergence of 1,3S Feshbach resonances to the varying 2s

threshold and the transformation of 1,3P and 1D Feshbach
resonances into shape-type resonances when they pass across
the 2s and 2p threshold at certain critical value of D,
respectively. We mention that cusps in the collision strengths
appear when the 1,3S and 1,3P , 1D resonances approach the
2s and 2p threshold, respectively.

The electron–hydrogen-atom elastic and excitation colli-
sion processes with screened Coulomb interactions in the
n = 3 resonant energy region will be considered in forthcom-
ing papers.
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