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Full quantum-scattering calculations are reported for low-energy near-threshold inelastic collision cross
sections for H + Na. The calculations include transitions between all levels up to and including the ionic
state (ion-pair production) for collision energies from the threshold up to 10 eV. These results are important for
astrophysical modeling of spectra in stellar atmospheres. Results for the 3s-3p excitation are carefully examined
using three different quantum chemistry input data sets, and large differences are found near the threshold. The
differences are found to be predominantly due to differences in the radial coupling rather than potentials and
are also found not to relate to differences in couplings in a simple manner. In fact, of the three input couplings,
the two that are most similar give the cross sections with the largest differences. The 3s-3p cross sections show
orbiting resonances which have been seen in earlier studies, while Feshbach resonances associated with closed
channels were also found to be present in the low-energy cross sections for some transitions.
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I. INTRODUCTION

The measurement of abundances of chemical elements
in stellar atmospheres, as interpreted from stellar spectra, is
of fundamental importance in modern astrophysics. Inelastic
collision processes in the stellar atmosphere where the spec-
trum is formed are important in determining properties of the
nonequilibrium gas and these properties must be known in
order to interpret such spectra accurately. In the atmospheres
of hot (�7500 K) stars where hydrogen is ionized, the collision
processes are dominated by electrons. However, in cooler
(around 4000–7500 K) F-, G-, and K-type stars like the sun,
collisions with neutral hydrogen atoms could become impor-
tant due to their sheer number, as atoms typically outnumber
electrons by around four orders of magnitude in regions
where the spectral lines are formed. In old, metal-poor stars
of similar temperature, which are particularly important for
understanding the very early stages of the universe, atoms can
outnumber electrons by a couple more orders of magnitude.
For atmospheres of these temperatures, kT ≈ 0.2–0.6 eV for
both neutrals and electrons, characteristic collision energies
are comparable to typical atomic transition energies, and thus
low-energy near-threshold collisions are most important.

The possible importance of collisions with neutral hydrogen
was first pointed out by Steenbock and Holweger [1] in the
context of their study of the nonequilibrium formation of the
spectral lines of Li. This led to an experimental study [2] of
H + Na(3s) → H + Na(3p) at low energies (15–1500 eV),
though not down to the threshold due to experimental
difficulties. They compared the measurements with Landau-
Zener model predictions and from the general agreement

concluded that the essential mechanism was the nonadiabatic
transition associated with the avoided ionic crossing. Revised
experimental data, including results down to 10 eV, were
presented in [3].

This work has been followed by a number of theoret-
ical studies involving some of the present authors. First,
quantum-scattering calculations were performed for H +
Na(3s) → H + Na(3p, 4s) down to the threshold [3] and
good agreement with the experimental results was found.
However, the calculations showed that while the Landau-Zener
model provides a reasonable description of the coupling
mechanism at collision energies above 10 eV, it fails at lower
energies. At these lower energies, which are most relevant
for stellar-atmosphere applications, the cross sections were
calculated to be several orders of magnitude higher than those
predicted by the Landau-Zener model. It was also concluded
that the precision of the quantum-chemical data, particularly
the nonadiabatic radial-coupling data, was the stumbling block
before highly reliable calculations of the cross sections near
the threshold could be calculated.

This work on H + Na was followed by calculations for H +
Li [4] where for the lowest four states a full quantum-scattering
treatment was used, whereas for the remaining six higher
states, up to and including the ionic limit, order-of-magnitude
estimates were made using a multichannel Landau-Zener
model. These calculations were based on quantum-chemical
data calculated by some of the present authors [5]. This was
followed by astrophysical application [6], where it was found
that direct excitation collisions H + Li(nl) → H + Li(n′l′)
were unimportant, yet the ion-pair production and mutual
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neutralization process H + Li(3s) ⇀↽ H− + Li+ was found
to be rather important, resulting in changes in spectral line
strengths of around 20% in cool, metal-poor, subgiant stars.

In this paper we revisit low-energy H + Na collisions,
because data for transitions between all possible Na levels
are needed for astrophysical modeling, while the earlier
experimental and theoretical studies dealt primarily with the
resonance transition. We concentrate on the transitions in the
singlet system of NaH because the presence of an ionic channel
causes cross sections in the singlet system to dominate those
in the triplet. Singlet low-energy H + Na collisions are also of
interest as a standard benchmark case, since a number of sets
of quantum-chemical data are available, allowing us to study
in more detail the sensitivity of these very small near-threshold
cross sections to the potentials and couplings from different
calculations. Recent work [7] has demonstrated that, for the
3s-3p excitation, the singlet results near the threshold can
differ markedly due to small differences in the nonadiabatic
radial coupling.

II. QUANTUM-CHEMICAL DATA

This study of inelastic Na + H collision processes is carried
out in the framework of the standard Born-Oppenheimer
approach. The problem is treated in two steps: (i) the quantum-
chemical fixed-nuclei electronic structure calculations and (ii)
the nonadiabatic nuclear dynamics. The treatment can be
performed in the adiabatic, the diabatic, or the hybrid (mixed
diabatic-adiabatic) representations. All three representations
are used in this paper. The quantum-chemical calculations
result either in adiabatic potentials and nonadiabatic couplings
or in a diabatic Hamiltonian matrix, depending on the
representation used. Although the low-lying NaH adiabatic
1�+ potentials have been calculated in many papers, the
number of complete sets of quantum-chemical data is very
limited. The available potentials and couplings are discussed
in the next section.

A. Available potentials with couplings

Three sets of quantum-chemical data, including nonadia-
batic couplings for the singlet NaH system, have been used in
this work:

1. Pseudopotential calculations with two active electrons.
For the lowest ten 1�+ states, these are described by Dickinson
et al. [8]. The wave functions have been transformed from the
adiabatic representation to a diabatic representation, which is
discussed further in Sec. II B. Adiabatic and diabatic potentials
were calculated for these ten 1�+ states, along with the
diabatic Hamiltonian matrix.

2. Ab initio calculations using the multireference single-
and double-excitation configuration-interaction (MRD-CI)
method. Adiabatic potentials for the X, A, and C 1�+ states,
B 1� state, a, c, and d 3�+ states, and the b 3� state were
obtained, as well as all radial and rotational couplings between
them [3].

3. Ab initio calculations using a full-valence complete
active-space self-consistent field, followed by a multirefer-
ence configuration-interaction (MRCI) calculation. The radial

coupling between the X and A 1�+ states was obtained, along
with the corresponding adiabatic potentials [7].

The pseudopotential calculations have the advantage of
covering the largest number of states, namely, all 1�+ states
up to and including the ionic state. As discussed in the
introduction, this wide coverage is vital for astrophysical
application. Spectroscopic results calculated using these X

and A potentials compare very well with experimental data
(see Sec. II C).

On the other hand, inelastic cross sections, which are
the main interest of this paper, are determined primarily by
the nonadiabatic couplings, rather than the potentials. The
strength of both the MRD-CI and the MRCI data is that
they both have been obtained by ab initio methods and
have neither adjustment nor smoothing except for smooth
corrections in the asymptotic region (R > 20a0, where R

denotes the internuclear separation), in particular, to obtain
correct dissociation limits. The MRD-CI calculations have
been used, along with triplet calculations, in previous work [3]
and the resulting cross sections for 3p and 4s excitation
yield reasonable agreement with the measurements, which are
available for energies between 10 and 600 eV [3].

The MRCI calculation was intended primarily to provide
an independent check on the X-A radial coupling and was
performed in the range R = (1.5–12)a0 [7]. It was shown that at
low collision energies even a slight variation of a nonadiabatic
coupling can change an inelastic cross section by more than an
order of magnitude. For these reasons, several sets of quantum-
chemical data have been used in this paper to compare the data
and the resulting cross sections from the different quantum-
chemical calculations.

B. Adiabatic and diabatic potentials and couplings

Figure 1 compares the adiabatic potentials from the three
quantum-chemical calculations for 1�+ symmetry. Recently
large quantum-chemical calculations for the X 1�+ state have
been performed [9] by using the coupled-cluster theory with
single, double, and perturbative triple excitations [CCSD(T)].
This potential is also shown and assumed to be the most reliable
calculation presently available.

The series of avoided crossings associated with the ionic
state is clearly apparent. It is these avoided crossings, and
their associated nonadiabatic radial couplings, which provide
the dominant mechanism for transitions at low energy. In
this work we study cross sections within about 10 eV
of threshold as being the most relevant to astrophysical
applications and complementing the experimental work at
higher energies. We thus require quantum-chemical data in this
symmetry.

1. Pseudopotential calculations

Dickinson et al. [8] derived the lowest ten 1�+ state
adiabatic NaH potentials using a pseudopotential method with
two active electrons. They then derived the 10 × 10 diabatic
Hamiltonian matrix (Hij ) using the method of [10], taking
the electronic origin on the Na nucleus. This method uses an
effective metric for the overlap matrix, which corresponds to a
static substitute of the electron translation factors and ensures,
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FIG. 1. Adiabatic potentials for the lowest ten 1�+ states of
the NaH quasimolecule obtained using different quantum-chemical
calculations. MRCI values are only available for the X and A states
for R � 12a0, and MRD-CI values for the X, A, and C states. The
atomic states and energies at dissociation are shown in the right-hand
side of the figure. The pseudopotential calculations extend to 316a0.
The dashed line plots the ab initio X-state potential from [9].

at large distances, that the transformation between the adiabatic
and diabatic representations is simply the identity matrix. This
approach was shown to give good results compared to various
other methods [11]. The derived ionic diabatic curve was
corrected for the underestimate of the H− electron affinity
and this corrected diabatic matrix was diagonalized to yield
the final adiabatic results. This diagonalization yielded the
transformation matrices.

Nonadiabatic couplings were derived from these singlet
adiabatic and diabatic results and transformation matrix using
both the numerical differentiation and the Hellmann-Feynman
(HF) expressions of [12]. Because the HF expressions involve
numerical differentiation of the Hamiltonian matrices only,
which vary more smoothly than the transformation matrices,
the HF results are expected to be more reliable.

FIG. 2. Plot comparing radial couplings between the lowest three
1�+ states. Note the differing scales on the y axis. The data are
calculated using different electronic origins; however, as discussed in
the text, this explains differences of only about 0.01 a.u.

The results from both methods were, however, in quite
good agreement. The nonadiabatic radial couplings between
the three lowest 1�+ states are plotted in Fig. 2.

To help assess the importance of transformations between
adiabatic and diabatic bases, we have generated a new diabatic
matrix from these adiabatic potentials and nonadiabatic cou-
plings using the standard method of [13]. It proved necessary
to start the inward integration at 41a0 because using larger R

values led to difficulties at the outer avoided crossings, which
in turn led to poor results at small distances for some channels.
These difficulties were attributed to the use of insufficient
points to define the outer crossings precisely in the original
diabatic calculation. (Unfortunately it was no longer possible
to extend the original calculations.) Having the electronic
origin at Na in the pseudopotential calculation provides zero
radial couplings in the asymptotic region, which simplifies the
application of the Smith diabatization procedure.

These diabatic potentials from the HF nonadiabatic cou-
plings are compared in Fig. 3 to the original diabatic potentials
from [8]. While there are some small differences around
the minima in some channels, the positions of the crossings
are well reproduced. The couplings between the lowest
four states (not shown) are also generally well reproduced,
particularly the critical coupling for the 3s-3p transition.
Diabatic potentials derived using the nonadiabatic couplings
obtained by differentiating the transformation matrix were in
almost as good agreement with the original calculations [8],
but the couplings were in distinctly poorer agreement.

Since this transformation from diabatic to adiabatic and
back to diabatic almost regains the original diabatic matrix,
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FIG. 3. Comparison of original diabatic potential results of [8]
(points) with HF diabatic results (solid lines). The Na term at
dissociation is indicated.

it appears that the original singlet diabatic matrices, derived
using the method of [10], are reliable. These matrices, together
with the assumption of negligible residual radial couplings,
provide not only the adiabatic potentials (see, e.g., Fig. 1) but
also the nonadiabatic couplings (Fig. 2).

Two-state diabatic Hamiltonian. It is worth emphasizing
that the position of the maximum of the X-A pseudopotential
nonadiabatic coupling, 7.15a0 (see Fig. 2), differs from the
crossing of the corresponding ten-state diabatic potentials,
7.83a0 [8] (see Fig. 3). To clarify the situation, using the
method of [13] we have generated a new 2 × 2 diabatic
matrix from the X and A adiabatic potentials and the X-
A nonadiabatic derivative coupling derived from the full
pseudopotential calculation. The 2 × 2 diabatic potentials and
the off-diagonal matrix element are shown in Fig. 4, together
with the relevant matrix elements from the 10 × 10 diabatic
Hamiltonian matrix.

As the pseudopotential nonadiabatic radial coupling is close
to Lorentzian in form, the 2 × 2 diabatic potentials cross, in-
dicating that the broad nonadiabatic region around R ≈ 3–9a0

(see Fig. 2) is the avoided crossing of two physically
meaningful molecular states: the ionic state and the covalent
state. It is clearly seen in Fig. 4 that the 3p diabatic potential
derived in the two-state approximation and the ionic potential
from the ten-state representation nearly coincide, apart from in
the internuclear distance range R > 12a0, where other avoided
crossings are located. The covalent molecular state, however,
is associated with a single atomic state, Na(3s) + H, only at

FIG. 4. Comparison of ten-state [8] and two-state diabatic poten-
tials and couplings. Adiabatic potentials are also shown. The key is
the same for both panels.

large internuclear distances, R > 11a0, and at the distances
of interest this covalent molecular state represents a strong
mixing of different atomic states, at least the Na(3s) + H and
Na(3p) + H states (see Fig. 4). This results in a significant
deviation of the two-state 3s diabatic potential from the ten-
state 3s diabatic potential and in the crossings of the ten-state
and the two-state diabatic potentials having different locations.
Consequently, the corresponding off-diagonal matrix elements
differ by approximately a factor of 2 in the ten-state and
two-state representations (see the bottom panel of Fig. 4). In
order to estimate parameters for the transition probability using
the Landau-Zener (LZ) model, one needs to use the two-state
representation. For higher-lying avoided crossings, deviations
between the appropriate two-state and the ten-state represen-
tations become smaller as the avoided crossings become more
localized.

Figure 4 clearly shows that the ten-state Na(3s) + H and
Na(3p) + H diabatic potentials cross each other at R ≈ 5a0.
Consequently the contributions of the Na(3s) + H and
Na(3p) + H diabatic wave functions to the A-state adiabatic
molecular wave function are interchanged for internuclear
separations either side of R ≈ 5a0. This interchange should be
reflected in the X-A nonadiabatic coupling matrix element. In-
deed the X-A coupling deviates substantially from Lorentzian
form at short internuclear distances, R � 5a0, even changing
sign, which is confirmed by the ab initio nonadiabatic coupling
calculations (see Fig. 2). This variation of the X-A radial
coupling significantly affects the low-energy 3s-3p excitation
cross section.
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2. Ab initio calculations

The adiabatic potentials calculated by means of the ab initio
MRD-CI and MRCI methods are also shown in Fig. 1. The
methods are described elsewhere and have been proven to be
accurate [14,15], though the accuracy of the results depends on
the employed basis. The MRD-CI and MRCI potentials are in
reasonable agreement with the pseudopotential calculation [8],
with the most accurate quantum-chemical potentials [9,16]
and with experimental data [17] (see Sec. II C). In the MRCI
calculation, the nonadiabatic first-derivative coupling matrix
elements were computed by the finite-difference method with
a radial increment of 0.01a0.

The nonadiabatic radial couplings between low-lying NaH
1�+ molecular states derived from the MRD-CI and MRCI
calculations are plotted in Fig. 2 and compared with the
pseudopotential ones. The results from these three calculations
are qualitatively similar. The ab initio calculations agree well
with each other and with the pseudopotential calculation
of [18] [see the short-dashed line in their Fig. 3(a)] but
differ quantitatively from the pseudopotential values of [8].
These calculations have used different electronic origins: at
Na [8,19] and at the center of nuclear mass (CNM) [7,19]. The
standard (and simplest) form of coupled-channel equations
for the nuclear dynamics requires nonadiabatic couplings with
the electron origin at the CNM [19–21]. Using nonadiabatic
couplings with a different electron origin leads to extra
terms in the dynamical equations [19,22]. The nonadiabatic
couplings with different origins can easily be recalculated
via the adiabatic potentials and the transition dipole moment
[19,21,22]. Na is much heavier than H, so the CNM is close
to the Na nucleus. An estimate shows that for NaH the use of
the origin at Na should not affect the couplings by more than
0.01 a.u. and, hence, this effect can be neglected.

The same holds for the asymptotic couplings, many of
which must be nonzero but rather small. For example, the
X-A radial coupling with the electron origin at the CNM has
the asymptotic value of 8.4 × 10−3 a.u. [19], which is small
compared with the maximum value of ≈0.2 a.u. There are two
ways to handle nonzero asymptotic couplings in the dynamical
treatment: (i) use the t-matrix method in calculations of
transition probabilities [19,21] or (ii) cut nonzero couplings
at appropriate distances. Both are used in the present case.
Because asymptotic couplings are small, the latter does not
affect the cross sections greatly if the cutting of couplings is
done at appropriate places. Thus, the principal cause of the
differences in the X-A radial couplings seen in Fig. 2 appears
not to be the different electron origins but the use of different
approaches.

The major nonadiabatic coupling differences are twofold:
in the values of maxima (minima) and in positions where
couplings change sign. As shown below, both are important
for low-energy inelastic cross sections. The X-A coupling is
of particular interest. The pseudopotential X-A coupling is
close to a Lorentzian form, apart from at R < 3a0 where
it changes sign. As is well known, the widely used LZ
model provides a Lorentzian form for the derivative coupling.
The pseudopotential X-A coupling has a maximum value of
0.249 a.u. at R = 7.15a0, which agrees well with the maximum
value of 0.251 a.u. at R = 7.35a0 for the LZ coupling [7] but is
larger than the maximum values of both the MRD-CI and the

MRCI couplings: 0.148 a.u. at R = 7.35a0 [3] and 0.181 a.u.
at R = 7.45a0 [7], respectively (i.e., larger by 70% and 40%,
respectively). Adjusting the LZ parameters to best match the
pseudopotential coupling could improve the agreement but
would not alter the conclusion of our discussion.

The pseudopotential X-A coupling has an area under the
positive values close to π/2 obtained from the LZ form.
The areas under the positive values of both the MRD-CI and
the MRCI couplings are less than π/4 using zero asymptotic
values of the couplings; otherwise they diverge. This is in
agreement with previous conclusions (see, e.g., [3,18]). These
smaller areas are the result of both smaller maximum values
as compared with the LZ coupling and the rather large values
of the position where the couplings change sign, R ≈ 4.6a0

for both the MRD-CI and MRCI couplings. As discussed in
Sec. II B1, this change of sign is due to mixing of the
Na(3s) + H and the Na(3p) + H diabatic covalent states.
Consistent with the small areas under the ab initio X-
A couplings, the procedure for generating diabatic 2 × 2
matrices from the ab initio data provides noncrossing diabatic
potentials.

It is usually assumed that nonadiabatic couplings with
larger areas should lead to greater nonadiabatic transition
probabilities and, hence, larger inelastic cross sections. Indeed,
while this is generally correct for relatively high-energy
collisions, the reverse may be true for low-energy collisions,
as shown by [7] and confirmed by the present calculations
presented below.

C. Spectroscopic comparisons

In this section we compare the available spectroscopic data
for the X and A states with the predictions derived from
the three potentials employed: pseudopotential, MRD-CI, and
MRCI. In 1991, Stwalley et al. [17] reviewed the available
spectroscopic data for sodium hydride. These data are available
for the X and A 1�+ states only. More recent data for the
vibrational levels 6 � v � 9 of the X state and for 2 � v � 8
for the A state are available from [23], and for 12 � v � 25
for the A state from [24].

Additional calculations also exist for the X state, namely the
previously mentioned CCSD(T) calculation [9], and another
[16] using the MRCI method. Neither calculation studied the
A state, although [16] did calculate potentials for the a 3�+,
b 3�, and B 1� states.

Values of the dissociation energy and equilibrium separa-
tion of the X and A states, along with the electronic energy
of the A state, are compared in Table I with experimental and
other recent theoretical values. For these properties in all cases
the pseudopotential results are the most reliable of the three
calculations being considered here.

Using Le Roy’s code LEVEL [25], comparisons of the
rotationless vibrational spacings and the rotational constants
were made where possible for v � 18 for the X state, and
for v � 25 for the A state. Regarding the vibrational spacings
of the X state, [9] did not list the values but their Fig. 1
shows that their error in the lowest 12 vibrational energies
was always less than about 10 cm−1. The X-state potential
of [16] compares the next best, followed by the pseudopotential
values, both agreeing to better than 20 cm−1. The MRD-CI
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TABLE I. Dissociation energy, De, and equilibrium separation, Re, of various NaH potentials for
the X and A states of NaH compared with experimental and recent theoretical values. Also compared
is the electronic energy, Te, of the A state.

Pspota MRD-CIb MRCIc CCSD(T)d MRCIe Exptf

X

De (cm−1) 15 787 14 670 14 004 15 823 15 814 15 900 ±100
Re (a0) 3.568 3.652 3.638 3.564 3.567 3.566

A

Te (cm−1) 22 730 21 420 20 989 22 713
De (cm−1) 10 024 10 222 9987 10 143
Re (a0) 6.057 6.283 5.991 6.035

aPseudopotential from [8].
bFrom [3].
cFrom [7].
dFrom [9].
eFrom [16].
fFrom [17].

and MRCI results show spacings ranging from 20 to
150 cm−1 smaller than experimental values, but typically
around 50 cm−1, the MRD-CI results being marginally better
than MRCI results.

A similar picture is seen for the rotational constants with
the values from [9] agreeing best, followed closely by those
of [16] and the pseudopotential results, all agreeing to within
typically better than 0.025 cm−1, while for MRD-CI and MRCI
the results are typically around 0.1 to 0.2 cm−1 smaller, the
MRD-CI results again marginally better than the MRCI results.

In the case of the A state, the picture is similar, although
the MRD-CI and MRCI perform somewhat better here. For the
vibrational spacings the pseudopotential data typically agree
to better than a few cm−1, though differing by as much as
20 cm−1 for larger v. The MRD-CI and MRCI results generally
agree within about 20 cm−1, again usually smaller, though
the MRCI results are as much as 50 cm−1 smaller at large
v. However, the MRCI results compare significantly better
than the MRD-CI for v � 14, while the reverse is true for
larger v.

For the A-state rotational constants, the pseudopotential
data again agree best, being within 0.025 cm−1. The MRD-CI
and MRCI values are again usually smaller by typically
0.05 cm−1, though as much as 0.1 cm−1. As for the X state,
MRCI performs better at low v, while MRD-CI performs best
at large v.

These comparisons show that, among the three potentials
being considered here, in almost all cases the pseudopotential
values [8] are the most accurate for the attractive regions of the
potentials. For the X state the MRD-CI results are somewhat
more accurate than the MRCI results [7], while the reverse
is true for the A state. It should be emphasized that the
deviations of both the MRD-CI [3] and the MRCI [7] well
depths from the experimental data [17] (see Table I) are within
about a factor of 2 of the pseudopotential ionic correction [8].
The absence of any adjustment and any smoothing for the
MRD-CI and the MRCI potentials [3,7] results in deviations
of vibrational spacings and rotational constants from the
experimental data. Nevertheless, the MRD-CI and MRCI
data [3,7] are used, where possible, in the present study

for the dynamical treatment because they provide reliable
nonadiabatic couplings, which is important because the low-
energy inelastic cross sections between low-lying states are
more sensitive to the couplings than to the potentials (see
below).

For the X state the CCSD(T) calculations of [9] and the
MRCI calculations of [16] are seen to be slightly more accurate
than the pseudopotential calculation [8]. The influence of
differences in the ab initio adiabatic potentials on the inelastic
cross sections is shown and discussed in the next section. The
data of [9] (see Fig. 1) are used in Sec. III B for trial adjustments
of the MRD-CI [3] and the MRCI [7] potentials for the nuclear
dynamics.

III. QUANTUM-DYNAMICAL CALCULATIONS

A. Nuclear-dynamical methods

The nuclear dynamics of Na + H collisions has been treated
in the present study by means of two codes: (i) the one
developed by Belyaev et al. [3,19] for solving the coupled-
channel equations in the adiabatic or mixed adiabatic-diabatic
representation and (ii) the code used in [8] for solving the
coupled-channel equations in the diabatic representation. The
former code handles cases with either zero [3] or nonzero
[4,19,21] asymptotic couplings by means of the t-matrix
method [19,21,26]. The mixed representation is constructed
from the pseudopotential data in the adiabatic representation
at R < 40a0 and in the diabatic representation elsewhere. The
latter code [8] is based on the code developed in [27] using
the [28] version of the log-derivative method of [29] and
requires asymptotic couplings to be zero.

Before proceeding further it is of interest to confirm that
these two methods give identical results. Four-state results [3]
solving in the adiabatic representation were compared with
results using the technique from [13] to transform to a diabatic
basis, followed by solution using the code of [8]. Results for
the Na(3s → 3p) and Na(3s → 4s) excitation cross sections
in collisions with H were compared for energies of 3–8 eV,
and satisfactory agreement was obtained.
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B. Near-threshold 3s → 3 p cross section and influence
of different input data

Figure 5 shows the 3s → 3p excitation cross section at
collision energies within 0.04 eV of the threshold. These cross
sections are based on hybrid potentials and couplings: X- and
A-state potentials and the X-A radial coupling from the MRCI
calculation [7], along with the B state 1� potential and the B-X
and B-A rotational couplings from the MRD-CI calculation
[3]. This energy range was previously studied using MRD-CI
data [3].

Resonant structure is clearly seen due to orbiting reso-
nances, predominantly in the A state (but possibly also in the B

state). Similar resonances were found in [3] for the MRD-CI in-
put data, but the positions and widths of the resonances are very
sensitive to the adiabatic potentials, and so differ between the
MRD-CI potential used in that work and the MRCI hybrid data
used here. It is seen from Fig. 5 that the resonances are dense
in energy and increase the cross section by up to six orders
of magnitude compared to the very small (≈10−8–10−7 Å2)
background cross section. In many cases the cross section
reaches its unitarity limit for the single partial wave in which
the resonance occurs. Nonadiabatic transition probabilities
(not shown) in resonance cases are much larger than the
typical value of 10−7 for background transition probabilities
and can be up to 1 (e.g., for the kinetic energy E = 2.13323 eV
and angular momentum quantum number L = 46 for the
resonance), the cross section of which is shown in the inset
of Fig. 5. For the resonances, L varies from ten to several
hundreds. The widths of the resonances vary from 10−10 to
10−3 eV (see the inset in Fig. 5). Still narrower resonances
may exist but are prohibitively expensive to find in a scattering
calculation. We estimate the number of 3s → 3p orbiting
resonances with widths exceeding 10−10 eV to be around 500.

Very long-lived resonances will decay radiatively rather
than by tunneling or vibronic coupling. We have estimated

FIG. 5. (Color online) The resonant structure of the 3s → 3p

cross sections in the near-threshold energy range. The inset shows
the orbiting resonances in the enlarged scale around E = 2.133 eV.
The (red) dotted line in the inset is the 3s → 3pσ partial cross section,
the (blue) dashed curve is the 3s → 3pπ partial cross section, and
the (black) solid line is the total 3s → 3p excitation cross section.
See text for the definition of the hybrid potentials and couplings used
for the dynamical calculation.

FIG. 6. (Color online) The background cross sections for 3s →
3p excitation calculated using the X, A, and B states [the (black)
solid, (red) dotted, and (blue) short-dashed lines are the same as in
Fig. 5] and using only the X and A states [the (green) long-dashed
line].

radiative lifetimes as being typically about 30 ns, based on
results for the A state in LiH [30] and KH [31]. Hence,
resonances narrower than 20 neV in width should be excluded
from any average over a velocity distribution to obtain a rate
coefficient. For astrophysical applications the rate coefficients
are of interest, so we have performed test calculations,
using a Maxwellian speed distribution, of the 3s → 3p rate
coefficients with and without the resonances to estimate
the contribution of the orbiting resonances: roughly 25% at
2000 K, 15% at 5000 K, and 8% at 10 000 K.

The inset in Fig. 5 also clearly shows that, in the vicinity
of the orbiting resonances, the 3s → 3pπ partial cross section
(the dotted curve) exceeds the 3s → 3pσ partial cross section
(the dashed line). In the remaining discussion, the background
cross sections, excluding the orbiting resonances, are mainly
considered, keeping in mind the estimate for the contribution
of the orbiting resonances to the rate coefficients.

The background 3s → 3p excitation cross sections are
shown in Fig. 6. The analysis shows that the 3s → 3pπ

partial cross section exceeds the 3s → 3pσ one only in
two narrow energy regions, approximately 0.05 eV wide,
below about 2.25 eV. The 3s → 3pσ cross section shows
Stückelberg oscillations, while the 3s → 3pπ cross section
lacks such structure and increases with increasing energy
more slowly than that for 3s → 3pσ . This means that at
energies E � 2.3 eV, except for a narrow range around 2.8 eV,
excitation via the B 1� state can be neglected. Note that the
positions of the orbiting resonances differ in the two- and in
the three-channel treatment.

It is worth mentioning that the 3s → 3pσ cross section in
the two-state approximation does not coincide exactly with the
3s → 3pσ partial cross section in the three-state treatment,
yet the total cross sections are very similar (see Fig. 6).
The reason is that, in the three-state treatment, nonadiabatic
transitions from the X 1�+ state mainly occur at internuclear
distances R < 10a0 into the A 1�+ state, and the B 1� state
is then populated basically from the outgoing current in the
A 1�+ state at large internuclear distances due to the rotational
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FIG. 7. (Color online) Comparison of the background cross
sections for 3s → 3p excitation calculated in the three-state approxi-
mation using different quantum-chemical data. The solid lines are the
cross sections obtained with the MRCI data [7], the long-dashed lines
are those using the MRD-CI data [3], and the short-dashed (orange)
line is the cross section based on the pseudopotential data [8]. The
B-state adiabatic potential and the rotational couplings with the X and
A states are always taken from [3]. The additional label X means that
the X 1�+-state adiabatic potential is replaced by the corresponding
potential from [9]. The label XA means that both the X and the
A 1�+-state adiabatic potentials are adjusted to the X-state potential
from [9]. See the text for explanation of the adjustment.

coupling and asymptotic degeneracy between the A and B

states. With increasing collision energy, the difference between
the cross sections calculated in the two-state and the three-state
treatments decreases and finally disappears. For this reason the
main part of the dynamical calculations below is performed
in the NaH(1�+) system. The nonadiabatic transitions in
the triplet NaH system lead to much smaller inelastic cross
sections for this energy range, as shown in [3].

We now discuss the influence of different quantum-
chemical data on the Na + H inelastic cross sections. The
3s → 3p excitation cross sections calculated using the pseu-
dopotential, the MRD-CI, and the MRCI input data are
presented in Fig. 7. This figure also shows the results of
the calculations with the X-state adiabatic potential, as well
as both the X- and A-state potentials, replaced or adjusted
using the CCSD(T) X-state potential from [9] (which is
judged to be the most reliable and quite similar to the X-state
pseudopotential; see Fig. 1). The A state is corrected by the
same amount in absolute terms as the X state. More precisely,
the X-state potential is replaced, while the A-state potential is
adjusted so that the absolute difference between the original
calculations of the X and A states at a given internuclear
distance is retained.

It is seen in Fig. 7 that the pseudopotential data and
the MRCI data provide cross sections of the same order of
magnitude but with differing Stückelberg oscillations, while
the MRD-CI input data yield cross sections two orders of
magnitude larger.

We have found that the reason for these differences is
rooted not in the differences in the potentials, but rather in
the differences in the nonadiabatic couplings. Figure 7 shows

that the replacement of the MRD-CI X-state potential with the
X-state potential from [9], but keeping the same nonadiabatic
radial coupling, changes the Stückelberg oscillations but gives
the same order of magnitude for the cross section [the (red)
long-dashed curve]. Adjustment of both the X-state and the
A-state MRD-CI adiabatic potentials to the X-state potential
for [9] results in the cross section [the thin (green) dashed
line] practically coinciding with the cross section without any
adjustment.

Similar results hold for the MRCI quantum-chemical data:
adjusting one or two adiabatic potentials and keeping the same
nonadiabatic couplings changes the cross-section oscillations
but not the order of magnitude. It should be emphasized
that the cross sections plotted in Fig. 7 are obtained in
the three-channel treatment, but as mentioned earlier the
two-channel approximation (the 1�+ states only) gives the
same cross sections except for the orbiting resonances and a
narrow region just above the energy threshold. Thus, although
the variation of adiabatic potentials changes the particular form
of the energy dependence of the inelastic cross section, it keeps
the order of magnitude, but differences in the nonadiabatic
radial couplings may change the inelastic cross sections by
several orders of magnitude. This conclusion agrees with that
drawn in [7], where it has been found that using the same
adiabatic potentials but slightly different radial couplings may
change the inelastic cross section by orders of magnitude in the
energy threshold region, and increasing the magnitude of the
coupling may even provide a smaller cross section. At higher
energies (not shown in Fig. 7; see [7]), the difference between
the cross sections based on different input data decreases and
at E � 5 eV a larger coupling leads to larger cross sections,
as commonly expected.

The analysis carried out in [7] by means of the perturbation
approach and that in the present paper shows that this is the
result of the particular form for the nonadiabatic coupling
(see Fig. 2). A transition probability can be expressed via the
integral of the radial coupling multiplied by the Wronskian
of elastic wave functions [7]. At near-threshold energies,
transition probabilities and cross sections are sensitive to
even a small variation of the coupling—even more so to a
change in sign—as the integrands are alternating functions
and transition probabilities are small (see, e.g. Fig. 5 of [7]).
Note that the LZ X-A radial coupling does not change sign,
while all the calculated X-A couplings change sign, which
finally results in high sensitivity of transition probabilities and
cross sections to the particular shape of the coupling. It is seen
in Fig. 2 that the MRD-CI and the MRCI X-A couplings
are very similar; nevertheless, they lead to substantially
different cross sections. The MRCI and the pseudopotential
X-A couplings are different, but they lead to cross sections
of the same order of magnitude. The fact that the cross
sections based on the pseudopotential and the MRCI input
data agree with each other and differ from those based on
the MRD-CI data does not necessarily mean the former cross
sections are more reliable. Rather, this just emphasizes that the
excitation cross section is very sensitive to the nonadiabatic
coupling.

For astrophysical applications, the inelastic rate coefficients
are of interest. As an illustration, here we discuss the sensitivity
to the different quantum-chemical data of the 3s → 3p rate
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FIG. 8. (Color online) The cross sections for excitation processes calculated using the NaH 1�+ pseudopotential data. The statistical
probability factors have been included. The initial level is shown in each panel. The key is common to all panels and is shown in the bottom
right (5p) panel. Note that the scales used in the various panels may differ.

coefficients for temperatures up to 10 000 K. We have found
that the pseudopotential data (with the largest coupling)
provide the lowest rate coefficients and the MRD-CI data (with
the smallest coupling) yield the largest rate coefficients, greater
than those using the pseudopotential data by factors of 116 at
2000 K, 74 at 5000 K, and 67 at 10 000 K. Rate-coefficient
results for all the initial levels will be discussed in detail in a
separate publication.

C. Cross-section overview

Excitation cross sections between the lowest ten 1�+
states calculated using the pseudopotential diabatic data are
presented in Fig. 8. De-excitation cross sections (omitted
for clarity) can be inferred using detailed balance. All
ten states have been included in the calculation, either as
open or closed channels, depending on the energy. Collision
energies from close to the first excitation threshold up to
10 eV are shown for each possible entrance channel. A
logarithmic scale has been used to provide a clearer view of the
lower energies more important for subsequent rate-coefficient
calculations.

The cross sections shown have been calculated on an
energy grid of 0.01 eV for energies on a 3s target between
2.11 and 3.0 eV, 0.02 eV between 3.0 and 4.8 eV, 0.05 eV
between 4.8 and 10.0 eV, and 0.25 eV above 10.0 eV. In
addition, a narrow region around 1.93 eV for entrance in
the 3p channel was explored on a much finer grid and
is discussed in the next section. While the coarser grid
suffices to provide a good overview of the behavior of
all the excitation cross sections, for some narrow energy
regions, resonance structure occurs on a finer scale and will
be explored more thoroughly for subsequent comprehensive
rate-coefficient calculations to be published in the astrophysics
literature.

The marked structure seen in practically all cross sections
below the ionic threshold is discussed in the next section,
particularly the examples of the 3p → 3d and 4p cross
sections. Among the other features of interest in the larger
cross sections in Fig. 8, we note the following:

1. The 3s → 3p cross section is the largest of the excitation
cross sections from 3s and shows Stückelberg oscillations.
Resonance structure at lower energies (not seen on this scale)
is discussed in Sec. III B for the MRCI data and in Ref. [3] for
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the MRD-CI data, and similar resonance structure occurs with
the pseudopotential data.

2. The marked drop in the 3s → 4s cross section at the
opening of the ionic channel arises because the 4s channel
is strongly coupled to the ionic channel near the threshold,
consistent with the Na+/H− mutual neutralization being
predominantly to Na(4s) + H at low energies [8].

3. Below the ionic threshold, the largest excitation cross
section from 3p is to 4s, to which there is direct nonadiabatic
coupling through the avoided crossings with the ionic state.
As the avoided crossing is traversed more favorably than
that for 3s-3p, the cross section is significantly larger at
comparable energies. With the opening of the ionic channel,
the 4s cross section is largely converted to the ionic, as was
discussed earlier for the 3s entrance channel. The 3p → 3d,
4p resonance structure is discussed in the following section.

4. Near the threshold the 4s → 3d cross section is signif-
icantly larger than the 3p → 4s cross section at comparable
energies because the avoided crossing is more nearly diabatic.
Above the ionic threshold the ionic channel dominates, for the
reasons discussed earlier.

5. The 3d → 4p cross section below about 1 eV shows
considerable structure associated with the structure already
seen in the 3p → 3d and 4p cross sections. Again, because
of the strong coupling with the ionic channel [8], that channel
dominates above the ionic threshold.

6. In contrast to the 3p, 4s, and 3d entrance channels,
the ionic channel does not dominate the 4p excitation cross
sections, except for a narrow energy band immediately above
the threshold. Instead, cross sections to the adjacent 5s

excitation channel are dominant at almost all energies.
7. From the 5s and higher entrance channels the ionic-

covalent avoided crossings are at such large distances as to
be traversed diabatically. Hence, the primary coupling is at
intermediate distances and is best seen as arising in the Fermi
model describing a nearly free Na valence electron scattering
elastically from the H atom [32]. Cross sections to the adjacent
near-degenerate 4d and 4f levels are dominant at almost all
energies.

8. It is seen from Fig. 8 that the largest cross section
corresponds to the ion-pair (Na+ + H−) production from the
4s state. Among others, the following cross sections have large
values: 4d → 4f , 4p → 5s, 4s → 3d and 4p, the ion-pair
production from 3d and 4p. Some cross sections have rather
large values at relatively high energies (around 10 eV), for
example, 3p → 4s, 5s → 4d, 4d → 5p, 4f → 5p, 4p → 4d

and 4f , and 3d → 4p and 5s.

D. Feshbach resonances

As can be seen from Fig. 8, many resonances appear
in the excitation cross sections for energies from excitation
thresholds to the ionic threshold, in particular, in the 3p → 3d

and 4p cross sections for energies from the threshold to
about 2.3 eV. Exploratory calculations have shown that these
resonances are absent if closed channels are omitted from the
calculation and consequently the resonances must be Feshbach
resonances associated with temporary excitation and capture
into a rovibrational level of a higher channel.

Such levels are also accessed spectroscopically as vibronic
states where the quasibound state is sufficiently long lived for
narrow spectral lines to be observed. Vibronic states in LiH
have been studied in detail: of these the highest electronic state
studied is the D 1�+ [33]. There the calculated vibronic states
had irregular vibrational spacings, typically about 70 cm−1,
and widths varying between 4 × 10−5 and 36 cm−1. The
spacings were comparable to those of the vibrational levels
obtained in the D 1�+ adiabatic state. As this attractive
potential had an essentially ionic outer wall, the vibrational
spacings were unusually small.

To obtain an estimate of the likely vibronic spacings for
these NaH Feshbach resonances, the rovibrational levels of
the sixth 1�+ potential, dissociating to Na(5s) + H, have been
investigated. This state, with an avoided crossing with the
ionic state at R ≈ 73a0, has a double minimum (see Fig. 1)
with a very wide attractive outer region, well depth of about
0.36 eV, and is largely ionic in character for R � 20a0. Using
LEVEL [25], in this potential a high density of vibrational
levels is found—about 140 rotationless vibrational states
and almost 30 000 rovibrational levels, including over 5000
quasibound levels with energies up to about 0.12 eV above
dissociation. Typical vibrational spacings are about 20 cm−1.
Obviously not all these rovibrational levels have angular
momenta (maximum value 300 for the ground vibrational
level) for which the avoided-crossing region is classically
accessible at the related collision energy. Nevertheless a high
density of levels which can give rise to Feshbach resonances is
likely.

As an example of these resonances, we have scanned the
region around 1.93 eV in the 3p entrance channel and cross
sections are shown in Fig. 9. The cross sections around four
resonances (two in each of the 3d and 4p channels) have
been fitted to a constant background plus a Lorentzian of
varying center, width, and height. As is clear from the figure,
the resonances fit well to this form, although ideally the two
close 4p resonances would be fitted simultaneously. The half
widths at half maximum of the Lorentzians are in the range
0.05–0.1 cm−1.

FIG. 9. The cross sections for 3p → 3d , 4p excitation calcu-
lated using the NaH 1�+ pseudopotential data. Results of fits of
Lorentzians to four of the resonances are also shown.
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To explore this structure further, the 3p-3d and 3p-4p

transition probabilities were investigated as a function of
angular momentum L at a collision energy of 1.9362 eV (not
shown). The probabilities for both final states showed marked
peaks at L = 29 and 131, with some probabilities exceeding
0.1.

The present case may be more complicated than one of a
Feshbach resonance associated with temporary capture into
a single state, as there are many open and closed coupled
states involved. Moreover, as mentioned earlier, at large
distances R � 20a0, the system passes the avoided crossings
diabatically, so temporary capture which is responsible for
the Feshbach resonances occurs in the mixed state, which
is ionic diabatic at large distances and mainly adiabatic (the
C mixed with the A states) at short distances. For collisional
energies exceeding the ionic threshold, the resonance structure
disappears, as seen in Fig. 8. Such resonances must also
occur in excitation of Li by H and may be important in other
hydrogen-alkali-metal collisions.

IV. CONCLUSIONS

We have compared a number of different input quantum-
chemical data sets from pseudopotential and ab initio calcula-
tions and their effects on excitation cross sections. Regarding
the quantum chemistry input data, two particularly important
results were found. First, the 2 × 2 diabatic potentials and the
off-diagonal matrix element are substantially different from
those of the 10 × 10 diabatic representation for the 3s-3p

excitation. This is important, for example, in deriving LZ
parameters. Second, the covalent Na(3s) + H and Na(3p) + H
diabatic potentials cross at short distances, which results in
deviation of the X-A radial coupling from the Lorentzian
coupling, including a change of sign, at short distances.
Regarding cross sections, the near-threshold cross section for
the 3s-3p excitation was found to vary dramatically depending
on the input radial coupling data between these two states.
The variation is not what might be naively expected; large
differences in the height and width of the radial coupling do
not translate directly into large differences in cross sections.
In fact, the two radial coupling data sets that are most similar,
MRD-CI and MRCI, show the largest differences, around two
orders of magnitude near the threshold.

An extensive set of cross sections between the ten lowest
levels, including the ionic channel, up to collision energies
of 10 eV were calculated. The cross sections show a large
variation in amplitude for different transitions, from as large
as 50 to as small as 10−12 Å2. The 3s-3p cross sections show

orbiting resonances, which have been seen in earlier studies,
and Feshbach resonances associated with closed channels are
also found to be present in the low-energy cross sections
for some transitions. It is clear that the cross sections are of
varying precision. From the preceding discussion, it is clear
that the 3s-3p near-threshold cross section is uncertain by
two orders of magnitude. However, this case is expected to
have the largest uncertainty. Since the X-A energy splitting
at the avoided ionic crossing is the largest of such crossings,
and the nonadiabatic transition probabilities in this particular
nonadiabatic region are very small at the energy threshold,
this leads to the 3s-3p transition probabilities and cross
sections having the greatest near-threshold sensitivity to the
radial coupling input data. This sensitivity becomes smaller
with increasing collision energy as the transition probabilities
become larger. Although this nonadiabatic region is involved
in other transitions, for example, 3s-4s, the collision energies
are naturally larger when the system passes this nonadiabatic
region and the uncertainties are reduced. Calculations for
3s-4s indicate that the uncertainty is only around one order
of magnitude at the threshold, a factor of 10 less than for
3s-3p. For other transitions, we expect the uncertainties to be
even smaller—certainly better than an order of magnitude, and
perhaps as good as a factor of 2.

These calculations are expected to be of sufficient precision
to evaluate their astrophysical importance, and certainly far
more reliable than the often-used so-called Drawin formula
(see [1]), a formula based on several modifications of
Thomson’s classical estimate for ionization by electrons. It
should also be noted that the Drawin formula only provides
estimates for optically allowed transitions. As mentioned, rate
coefficients for astrophysical application will be presented in
the astrophysical literature, and comparison with the Drawin
formula will be made and the data included in astrophysical
modeling. Initial comparisons show differences of many orders
of magnitude with a large scatter compared to the Drawin
formula, as was found for Li + H [6].
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(1999).

[6] P. S. Barklem, A. K. Belyaev, and M. Asplund, Astron.
Astrophys. 409, L1 (2003).

032706-11



BELYAEV, BARKLEM, DICKINSON, AND GADÉA PHYSICAL REVIEW A 81, 032706 (2010)
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