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Failure of the multiple peaking approximation for fast capture processes at milliradian
scattering angles
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The first Born approximation is examined for different fast capture processes for the p + He system at incident
energies of about 1 MeV. Calculations have been performed for the singly differential cross section (SDCS)
for scattering angles 0–0.5 mrad in the laboratory frame. In the case of transfer ionization, we observe that the
two-step-2 mechanism has a dominant contribution to the SDCS for the kinematics considered in this work. The
present investigation demonstrates that the multiple peaking approximation is a very crude method which fails to
describe the SDCS even at scattering angles below 0.5 mrad. We have also presented a doubly differential cross
section for the fixed emission energy of 600 eV and compared our results with other theoretical calculations and
experiments.
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I. INTRODUCTION

The study of capture processes such as charge transfer,
transfer excitation, and transfer ionization is of great interest
in astrophysics, radiation physics, and plasmas. The history
of these investigations is rather long and dates back more
than 80 years. We can recommend to readers two rather
full theoretical review articles devoted to this topic [1,2].
Nowadays, most of the theories are based on various time-
dependent and time-independent distorted wave approaches
(see, for example, a few recent articles [3–5]), and the focus
of studies moves toward molecular targets.

In this respect, simple and physically clear first Born
mechanisms, together with the kinematical domain of their
validity, are rather relevant. In Ref. [6], the single-differential
cross section (SDCS) for the charge-transfer p + He → H +
He+ (CT) and transfer-ionization p + He → H + e + He2+

(TI) reactions was calculated for different trial helium wave
functions (not only of the Slater type). The Oppenheimer-
Brinkman-Kramers (OBK) [7] amplitude was used in the
calculations. In the case of TI, a strong dependence of the
SDCS on different helium ground-state wave functions was
noticed in the scattering angular range 0–0.5 mrad, contrary
to the case of CT reactions with the helium residual ion
left in its ground state. It was found that the principal
matrix element of the OBK amplitude is analogous to that
for quasielastic (e,3e) reactions [8], which provide very
important information on electron correlations in the target.
This observation inspired us to think that a study of TI reactions
at very small scattering angles would probably give valuable
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information about the quantum structure of a target along
with the electron momentum spectroscopy. Unfortunately, the
agreement between the theory and the experiment was not
satisfactory at that time.

Indeed, three terms can be attributed to the first Born
approximation (FBA), and the OBK is only one of them. In a
later article [9], the numerical FBA calculations for the TI
reactions were accomplished for strongly and loosely cor-
related Slater-type helium wave functions and demonstrated
some dependence on their choice. However, the authors did
not consider the relative contribution of different terms to
the FBA amplitude. Recently, it was shown [10,11] that the
full FBA calculations for CT processes considerably improve
the agreement with the experiment in the angular domain
0–0.5 mrad (i.e., the domain of the main SDCS peak).

For TI, we briefly recall the physical mechanisms in the
three terms of the FBA which we call A1, A2, and A3 here
(see diagrams in Fig. 1). The A1 (OBK) amplitude describes
the hit of an electron by the proton, and then the capture of this
electron by the projectile. Another electron is released due to
a sudden rearrangement in the system. It is a typical shake-off
(SO) mechanism, well-known in scattering theory [12].

The amplitude A3 describes the first interaction of the
proton with the helium nucleus, followed by the capture of
a target electron by the proton. Another target electron is
released again due to a sudden rearrangement in the system.
Both A1 and A3 processes are frequently considered in various
applications.

The amplitude A2 describes a two-step process induced
by the fast proton. In a first step, the proton hits a target
electron and kicks it out, whereas in a second step, it picks
up another active target electron. In the scattering theory, it
is a so-called two-step-2 (TS2) mechanism usually attributed
to the second Born approximation (SBA) [13], but in the
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FIG. 1. FBA amplitudes, diagram representation.

capture processes it manifests itself like one of the first Born
terms. The distinguishing feature of this mechanism is that it
always contributes to the total amplitude, even in the absence
of correlation between the electrons of the target atom. We
shall see its role later in this article.

In this article, we compare the relative contributions of
the amplitudes A1, A2, and A3 for both the TI and the CT
reactions. Previously, in the CT processes [10] it was found
that the terms A1 and A3 provide the main contributions to the
SDCS, while the A2 term is a correction. However, this is not
the case for TI.

The evaluation of the preceding amplitudes needs vigorous
numerical calculations. It is worth mentioning that the first
Born amplitudes for CT are expressed by three-dimensional
(3D) integrals [6], and the SDCS for the TI reactions
involves the evaluation of a 6D integration. In the case of
molecules, we have to integrate the SDCS further over the
three Euler angles, that is, three more integrations. If we
want to take account of second Born terms (for example,
[14,15]), we face an additional 3D integration. Such a
situation demands reliable approximate computation of matrix
elements.

The best known in this respect is the multiple peaking
approximation (MPA) [16,17], which is employed for the
reduction of the preceding multidimensional integrals to
analytic expressions for fast projectiles. In a certain sense,
this article is a continuation of the previous one [18], which
examined the CT reaction p + H → H + H+. It was observed
that the MPA was rather poor in comparison with numerical
calculations of the SDCS even at very small scattering angles.
Here we extend the examination to the case of the helium
atom.

Atomic units are used throughout unless otherwise
indicated.

II. BASIC FORMULAS

As stated previously, we consider the He atom as a target
for the TI reaction. Let us denote the projectile momentum
by �pp, the hydrogen momentum by �pH, and the recoil-ion
momentum by �K . We also define the transferred momentum
by �q = �pH − �pp. We can deduce its approximate value using
the momentum and energy conservation

�q + �K + �k = 0, (1a)

p2
p

2m
+ EHe

0 = p2
H

2(m + 1)
+ K2

2M
+ EH + Eion. (1b)

Here �k is the electron momentum, the proton mass
m = 1836.15, the ion mass M ≈ 4m, EHe

0 ≈ −2.903, and
Eion = k2/2.

Now we choose very small scattering angles for the out-
going hydrogen (0 � θp � 0.5 mrad). It leads to a practically
zero ion velocity K/M in the laboratory frame during the
process, and we set its position as rN = 0. The proton velocity
�vp = �p/m varies about 10 a.u. for its energy of several MeV.
This fact allows one to neglect the values K2/2M and q2/2m

after insertion of �pH = �q + �pp into Eq. (1b). As a result we
obtain

�vp · �q = 1
2v2

p + Q; Q = EHe
0 − EH − Eion,

and choosing the vector �vp as a z axis, there follows qz =
vp/2 + Q/vp. The perpendicular component of the vector �q
is q⊥ ≈ mvpθp.

The first Born amplitude for the TI (Fig. 1) follows from
the matrix element

TFBA = 〈�−
f ( �pH, �k)|Vp1 + Vp2 + VpN |�+

i ( �pp)〉,
where

〈�rp, �r1, �r2|�+
i ( �pp)〉 = ei �pp ·�rp�0(�r1, �r2),

[�0(�r1, �r2) the helium wave function]

and

〈�−
f ( �pH, �k)|�rp, �r1, �r2〉

≈ 1√
2

[e−i �pH·�rpφH(�rp − �r1)ϕ−∗
c (�k, �r2) + (1 ↔ 2)],

with the well known Coulomb wave function

ϕ−∗
c (�k, �r) = e−πξ/2�(1 + iξ )e−i�k·�r

1F1(−iξ, 1; ikr + i�k · �r);

ξ = −2/k.
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Calculating the matrix element, we obtain

TFBA = −4π
√

2
∫

d �x
(2π )3

φ̃H(x)

|�vp − �q − �x|2 [F (�q; 0; �k)

+F (�vp − �x; −�vp + �q + �x; �k) − 2F (�vp − �x; 0; �k)]

= A1 + A2 + A3, (2)

where

F (�y; �η; �k) =
∫

e−i �y·�r1−i �η·�r2ϕ−∗
c (�k, �r2)�0(�r1, �r2)d�r1d�r2 (3)

and the hydrogen ground state in the momentum representation
is

φ̃H(x) =
∫

e−i �x·�rφH(�r)d�r = 8
√

π

(x2 + 1)2
.

The SDCS is expressed as the 3D integral,

dσ

dθp

= m2θp

(2π )4

∫
|T |2kdEkd�k. (4)

Only the term A1 in (2) can be expressed analytically,

A1 = − 4
√

2π

1 + (�vp − �q)2
F (�q, 0; �k),

and it is well known as the plane-wave OBK amplitude. The
other two terms require numerical integration. It is supposed, of
course, that the function F in (3) can be calculated analytically
when the helium wave function is of the Slater type.

A. Charge transfer reactions: A3

We begin by considering the CT reactions for the sake of
comparison. The SDCS is then given by

dσ

dθp

= m2θp

(2π )
|T |2.

To obtain the integral expression of the A3 term in this
case, the final Coulomb wave function ϕ−∗

c (�k, �r) in (3) should
be replaced by the ground-state wave function �He+ (�r) of the
He+ ion, and Eion = −2 in (1b):

A3 = 8π
√

2
∫

d �x
(2π )3

φ̃H(x)

|�vp − �q − �x|2 F0(�vp − �x; 0), (5)

where

F0(�y; �η) =
∫

e−i �y·�r1−i �η·�r2�He+ (�r2)�0(�r1, �r2)d�r1d�r2. (6)

Inserting (6) into (2), one obtains

A3 = 2
√

2
∫

d�r2�He+ (�r2)J (�r2; �q, �vp − �q),

with

J (�r2; �q, �vp − �q)

=
∫

d�r0d�r1

|�r0 − �r1| e−i �q·�r1e−i(�vp−�q)�r0φH(�r0)�0(�r1, �r2). (7)

A typical configuration interaction (CI) helium wave
function takes the form

�0(�r1, �r2) =
∑
l=0

�l(�r1, �r2), (8)

where, for example,

�l(�r1, �r2) = 4π
∑

n�(l+1)

Cnlψnl(r1)ψnl(r2)

×
l∑

m=−l

〈l, m; l,−m|0, 0〉Yl,m(�r1)Yl,−m(�r2);

ψnl(r) = rl
∑

i

dnl
i

√(
εnl
i

)3

π
e−εnl

i r . (9)

In particular, the simplest 1s2 Hylleraas (Hy) wave function is
written as

�0(�r1, �r2) = Z3

π
e−Z(r1+r2).

Let us consider first this the simplest case. It follows from
(6) and (9)

J (�r2; �q, �vp − �q) =
√

Z3

π
e−Zr2

[√
Z3

π

√
1

π

∫
d�r0d�r1

|�r0 − �r1|

× e−i(�vp−�q)�r0e−r0e−i �q·�r1e−Zr1

]
. (10)

The integral in the square brackets in (10),

[· · ·] = R(Z)

= 32
√

Z5

π

∫
d �x
x2

1

[(�vp − �q − �x)2 + 1]2[(�q + �x)2 + Z2]2
,

(11)

is connected to the well-known Lewis integral [19]

I (λ) = 1

π2

∫
d3x

[x2 + λ2]
[
µ2

1 + (�x − �q1)2
][

µ2
2 + (�x − �q2)2

]
= π − 2 arcsin(β/γ )√

γ 2 − β2
. (12)

In (12)

β = λ[(�q1 − �q2)2 + (µ1 + µ2)2)] + µ2
(
q2

1 + µ2
1 + λ2

)
+µ1

(
q2

2 + µ2
2 + λ2

)
,

γ 2 = [(�q1 − �q2)2 + (µ1 + µ2)2]
[
q2

1 + (µ1 + λ)2
]

× [
q2

2 + (µ2 + λ)2],
In particular,

R(Z) = 8π
√

Z3
∂2

∂µ1∂µ2
I (0), (13)

with

µ1 = 1, µ2 = Z, �q1 = �vp − �q, �q2 = −�q.

In this case,

A3(Z) = 2
√

2R(Z)F1s(Z), (14)

with

F1s(Z) =
√

Z3

π

∫
d�r2�He+ (�r2)e−Zr2 = 16

√
2Z3

(Z + 2)3
.
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FIG. 2. SDCS (A1 + A3 amplitudes only) vs the hydrogen
scattering angle θp for the CT reaction He + p → He+ + H at proton
energy Ep = 1.4 MeV. The 1s2 Hy wave function is used. Solid line,
numerical calculations [fully coincident with Eq. (14)]; dashed line,
the MPA Eq. (15).

Analytical calculations of A3 (14) can be done with MAPLE

software, for instance.
MPA can be applied in (7) or (11). In this approximation, it

is supposed that the main contribution to the integral (11)
follows from the two domains: �x ∼ −�q and �x ∼ �vp − �q.
However, we evaluate the MPA from R(Z), leaving the
terms that are asymptotically proportional to v−6

p [the leading
asymptotic behavior in (13)]. We obtain

A3(Z)MPA ≈ 2
√

2R(Z)MPAF1s , (15)

with

R(Z)MPA = 64π
√

Z3[
(Z + 1)2 + v2

p

]2

[
Z

(�vp − �q)2 + 1
+ 1

q2 + Z2

]
.

Of course, we obtain the same with the usual methods [16,17].
The comparison of SDCS calculating with (A1 + A3) and

(A1 + A3MPA) is presented in Fig. 2. The proton energy
is Ep = 1.4 MeV. The coincidence of both expressions is
rather poor except for a very small region of scattering
angles θp ∼ 0–0.1 mrad. The situation becomes even worse
if we evaluate the asymptotical term proportional to v−7

p from
(13) in addition to the MPA. Calculations at Ep = 10 MeV
demonstrate practically the same effect, the convergence
being very slow. This fact was already observed earlier [18].

Of course, the numerical and analytical calculations of A3
fully coincide.

It is necessary to point out that the Gauss-Legendre and
Gauss-Laguerre quadrature methods are very convenient for
numerical calculations. A higher degree of accuracy can be
reached by increasing the number of integration points.

The exact expression (11) and Eq. (7) allow one to formulate
a proper approximation for A3 item in the case of CI trial
wave function at high proton energies. The structure of the
integral (7) also prompts one to assume that only 1s2 item
�0(�r1, �r2) in the sum (8) gives a leading contribution to A3 at
big vp, q, |�vp − �q|. Defining

Rn(CI) =
∑

i

dn0
i R

(
εn0
i

)
,

Fn(CI) =
∑

i

dn0
i F1s

(
εn0
i

)
,

we obtain

A3(CI) ≈ 2
√

2
∑
n�1

Cn0Rn(CI)Fn(CI). (16)

Analytical [Eq. (16)] and numerical calculations for the
helium wave functions of Hylleraas (Hy), Roothaan-Hartree-
Fock (RHF) [20], and Mitroy [21] are presented in Fig. 3.
Coincidence is excellent, and it is a result of the dominance of
the 1s2 term in the He wave function. Of course, the application
of the MPA to these calculations shows again a very poor result.

B. Charge transfer reactions: A2

In accordance with definitions

A2 = −4π
√

2
∫

d �x
(2π )3

φ̃H(x)

|�vp − �q − �x|2
×F0(�vp − �x; −�vp + �q + �x)

= −
√

2
∫

d�r0d�r1d�r2

|�r0 − �r1 + �r2| e−i �q·�r1

× e−i(�vp−�q)�r0�He+ (�r2)φH(�r0)�0(�r1, �r2). (17)

At the beginning, we consider again the Hy wave function and
obtain from (3)

F0(�vp − �x; −�vp + �q + �x)

= 128
√

2πZ4(Z + 2)

[(�vp − �x)2 + Z2]2[(�vp − �q − �x)2 + (Z + 2)2]2
.

(18)

Insertion of (18) into (17) and exchange of variables gives

A2 = −210πZ4(Z + 2)

{
1

π2

∫
d �y
y2

1

[(�vp − �q − �y)2 + 1]2[(�q + �y)2 + Z2]2[y2 + (Z + 2)2]2

}
. (19)

The integral in the figure brackets can be reduced into two
Lewis type integrals,

{· · ·} = − 1

8µ1µ2λ

∂3

∂µ1∂µ2∂λ

1

λ2
[I (0) − I (λ)], (20)

with
λ = (Z + 2), µ1 = 1, µ2 = Z, �q1 = �vp − �q, �q2 = −�q.

Finally,

A2 = 27πZ3 ∂3

∂µ1∂µ2∂λ

[
I (0) − I (λ)

λ2

]
. (21)
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FIG. 3. The same as in Fig. 2. Solid line, numerical calculations;
squares, Lewis approach with MAPLE Eq. (16). (a) Hy, (b) RHF, and
(c) Mitroy wave functions.

It is a very bulky expression of analytical items calculated
with MAPLE software, which can be converted to FORTRAN if
necessary.

We again suppose that, according to (15), only the 1s2

(l = 0) state gives the leading contribution to A2 at big vp, q,
and |�vp − �q| in the case of CI wave functions. So we can write
now

F0(�vp − �x; −�vp + �q + �x)

=
∑
n�1

Cn0

∑
i,j

dn0
i dn0

j

×
27

√
2π

√(
εn0
i

)5(
εn0
j

)3[(
εn0
j

)+2
]

[
(�vp−�x)2+(

εn0
i

)2]2{
(�vp−�q−�x)2+[(

εn0
j

)+2
]2}2 ,

(22)

and on the basis of the formulas presented previously, we
obtain

A2 ≈ 27π
∑
n�1

Cn0

∑
i,j

dn0
i dn0

j

√(
εn0
i

)3(
εn0
j

)3 ∂3

∂µ1∂µ2i∂λj

×
[

Ii(0) − Ii(λj )

λ2
j

]
, (23)

with

λj = (
εn0
j + 2

)
, µ1 = 1, µ2i = εn0

i ,

�q1 = �vp − �q, �q2 = −�q.

We do not present a comparison of numerical and an-
alytical results, because the coincidence is just as in
Fig. 3.

On the other hand, an approximated formula can be derived
from (17). We assume that the main contribution to the integral
follows from the domains r0 ∼ 0 and r1 ∼ 0 because of large
values of the momenta q and |�vp − �q| in the exponential
indexes in (17). Consequently, for the Hy wave function the

FIG. 4. The same as in Fig. 2, but the amplitude A2 is also in-
cluded. Solid line, numerical calculation; squares, A1 + A3MAPLE +
Eq. (24).

approximation can be written as

A2 ≈ −
√

2
∫

d�r0d�r1d�r2

r2
e−i �q·�r1e−i(�vp−�q)�r0

×�He+ (�r2)φH(�r0)�0(�r1, �r2)

= − 210πZ4

(Z + 2)2 [(�vp − �q)2 + 1]2 [q2 + Z2]2
. (24)

This expression is of the asymptotical order v−8
p and should

be much smaller than A1 and A3.
In Fig. 4, the numerical and approximate calculations of the

SDCS are presented. Numerical calculations include all three
items, whereas the approximate calculations take into account
A1 + A3 analytically and A2 by Eq. (24). One easily sees that
the contribution of A2 item is rather small in the case of CT,
as it was marked in our previous publications [10,11]. That
is why its approximate calculation does not differ from the
numerical result considerably.

Concluding the part about CT reactions, one has to note
that exact analytical formulas for all three FBA amplitudes can
be written for any CI helium wave function, but they are very
bulky. For example, the term rlYl,m(�rl) in (8) can be presented
like a finite linear combination of items xλyµzν (l = λ +
µ + ν). On insertion in the integrand of (10), this combination
leads to an additional application of the differential operator
(−i∂/∂q2x)λ(−i∂/∂q2y)µ(−i∂/∂q2z)ν to the basic integral
(13), etc. The analogous considerations are valid for Eqs. (17)
and (20). MAPLE can be useful here. However, there is no sense
in using analytical calculations for the integrals A2 and A3
because calculations by using the Gauss-Legendre numerical
quadrature scheme give rather reliable and relatively fast
results even for CT from molecules (7D integration) [11].

C. Transfer ionization reactions: A3

By definition (2),

A3(�k) = 8π
√

2
∫

d �x
(2π )3

φ̃H(x)

|�vp − �q − �x|2 F (�vp − �x, 0; �k),

(25)
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with F (�y, �η; �k) given by Eq. (3). By analogy with (5), we
write

A3(�k) = 2
√

2
∫

d�r2ϕ
−∗
c (�k, �r2)J (�r2; �q, �vp − �q),

with

J (�r2; �q, �vp − �q) =
∫

d�r0d�r1

|�r0 − �r1| e−i �q·�r1e−i(�vp−�q)�r0

×φH(�r0)�0(�r1, �r2). (26)

Let us consider in the beginning the simplest Hy helium
wave function. In this particular case,

A3(�k; Z) = 2
√

2R(Z)F (�k; Z), (27)

where R(Z) is given by (11) (the same, like for CT), and

F (�k; Z) =
√

Z3

π

∫
d�r2ϕ

−∗
c (�k, �r2)e−Zr2

= e−πξ/2�(1 + iξ )
8
√

πZ3(Z + kξ )

(k2 + Z2)2
e2ξ arctan(k/Z).

(28)

Correspondingly,

|F (�k; Z)|2 = 4π/k

1−exp(−4π/k)

64πZ3(Z − 2)2

(k2+Z2)4

× e(−8/k) arctan(k/Z). (29)

With the purpose of convenience, we write the analytical
expression of the sum A1 + A3

A1 + A3 = 2
√

2

{
− 16π

√
Z5

[1 + (�vp − �q)2][Z2 + q2]2
+ R(Z)

}
×F (�k; Z). (30)

Now we consider the CI wave functions. According to
(26), we expect from the general rules of calculation of
rapidly oscillating integrals that only 1s2 (l = 0) state gives
the leading contribution to A3 at big vp, q, and |�vp − �q|.
Defining

Rn(CI) =
∑

i

dn0
i R

(
εn0
i

)
,

Fn(CI, �k) =
∑

i

dn0
i F

(�k; εn0
i

)
,

we obtain

A3(�k) ≈ 2
√

2
∑
n�1

Cn0Rn(CI)Fn(CI, �k). (31)

For the RHF 1s2 wave function this formula is exact.
In Fig. 5, the SDCS is displayed for A1 + A3 amplitudes

where the solid line represents the numerical calculations with

FIG. 5. SDCS (A1 + A3 amplitudes only) vs the hydrogen
scattering angle θp for the TI reaction He + p → He2+ + e +
H at proton energy Ep = 1.4 MeV. The Mitroy wave func-
tion is used. Solid line, numerical calculations; dashed line,
Eq. (31) (only 1s2 part of the full wave function is taken into
account).

the Mitroy wave function, whereas the dashed line takes into
account only its 1s2 part given by (31). We see that contrary
to the CT case, the 1s2 part of the correlated helium wave
function is obviously not enough to reproduce full calculations.
Higher angular momenta play a very important role for
the TI.

D. Transfer ionization reactions: A2

This integral A2 cannot be reduced now to the Lewis type
integral, and we consider its representation in the coordinate
space

A2(�k) = −
√

2
∫

d�r0d�r1d�r2

|�r0 − �r1 + �r2| e−i �q·�r1e−i(�vp−�q)�r0

×ϕ−∗
c (�k, �r2)φH(�r0)�0(�r1, �r2). (32)

The same considerations resulting in Eq. (24) make it possible
to obtain the approximation like the MPA

A2(�k) ≈ −
√

2
∫

d�r0d�r1d�r2

r2
e−i �q·�r1e−i(�vp−�q)�r0

×ϕ−∗
c (�k, �r2)φH(�r0)�0(�r1, �r2)

= − 8
√

2π

[1 + (�vp − �q)2]2

∫
d�r1d�r2

r2
e−i �q·�r1

×ϕ−∗
c (�k, �r2)�0(�r1, �r2). (33)

For the Hy wave function, Eq. (33) gives

A2(�k) ≈ −
√

2
28π2

√
Z5e−πξ/2�(1 + iξ )e2ξ arctan(k/Z)

[1 + (�vp − �q)2]2[Z2 + q2]2(Z2 + k2)
;

ξ = −2

k
. (34)
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For the sake of convenience, we write the approximate
expression of the sum A1(�k) + A3(�k) + A2(�k)

A1(�k) + A3(�k) + A2(�k)

≈ 2
√

2

{
− 16π

√
Z5

[1 + (�vp − �q)2][Z2 + q2]2
+ R(Z)

− 16π3/2Z(Z2 + k2)

(Z − 2)[1 + (�vp − �q)2]2[Z2 + q2]2

}
F (�k; Z).

(35)

For comparison, in the case of CT

A1 + A3 + A2

≈ 2
√

2

{
− 16π

√
Z5

[1 + (�vp − �q)2][Z2 + q2]2
+ R(Z)

− 16π
√

Z5(Z + 2)

[1 + (�vp − �q)2]2[Z2 + q2]2

}
F1s(Z). (36)

Even the approximate expression (35) shows that the
contribution of the A2 item can be rather big in spite of
its asymptotical smallness. Moreover, if we switch off for a
moment the ee correlation in the helium ground wave function
(put Z = 2), only this item remains nonzero. In fact, this is
the case, and the item A2 is bigger than A1 and A3 for the
incoming energy of a few MeV. For comparison, the SDCS (4)
for the Hy wave function is presented in Fig. 6.

In principle, by using the Lewis integrals instead of MPA,
we can reduce 3D integration in A2 and A3 to 1D integration.
For this, the Coulomb wave function ϕ−∗

c (�k, �r) should be
represented by the well-known 1D integral, and then the
remaining part can be analytically calculated. Sometimes
the reduction of two more integrations gives a huge profit.
However, if we are limited with calculations of the SDCS
and DDCS for fast TI reactions on atoms, 6D numerical
integrations can be fulfilled.

FIG. 6. The kinematical conditions are the same as in Fig. 5, but
the Hy wave function is used. (a) (A1 + A3) numerical calculations;
(b) (A1 + A2 + A3) numerical calculations (solid line) and (A1 +
A2 + A3) Eq. (35) (dashed line).

FIG. 7. FBA SDCS (4) vs the hydrogen scattering angle θp for
the TI reaction He + p → He2+ + e + H at proton energy Ep =
1.4 MeV. Solid line, Mitroy; open triangles, Nesbet, and dashed line,
Hy wave functions. Solid squares, experiment [23].

III. RESULTS AND DISCUSSION

Unfortunately, any analytical expression of the integral A2
in the case of TI is unknown. However, it is the leading
amplitude in the sum (A1 + A2 + A3). In this case, the SDCS
for TI in atoms involves a 6D integration. In Fig. 7, our
results are presented for Hy, Mitroy, and Nesbet [22] wave
functions and compared with experiment [23]. One sees that
just the broad tail of the term A2 agrees with the shape of the
experimental distribution beyond θp = 0.2 mrad (see Fig. 2
in [6] for comparison), and the correlated CI wave function
gives better agreement in this angular domain.

Another result is shown in Fig. 8, where we present our
calculated DDCS

d2σ

dEed�e

= m2k

(2π )5

∫
|A1 + A2 + A3|2d�p (37)

FIG. 8. FBA DDCS (37) vs the electron emission angle θe for the
TI reaction He + p → He2+ + e + H at proton energy Ep = 1 MeV.
Solid line, Mitroy; dashed line, Hy wave functions, solid squares,
experiment [26].
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(see also Fig. 1 in [9] for comparison). One sees the distribution
of the escaped electron vs its scattering angle at its emission
energy Ee = 600 eV and the proton energy Ep = 1 MeV. The
results are obtained with correlated and 1s2 wave functions.
Of course, we agree with a discussion on the role of the SBA
amplitudes presented in [9]. However, the wave functions with
different forms of ee correlations can describe different regions
of the experimental distribution. However, this can lead in
another cases to fallacious conclusions.

IV. CONCLUSIONS

We briefly enumerate the results of our studies of SDCS and
DDCS for different capture processes for the (p-He) system
at incident energies of about 1 MeV.

(i) The MPA is a very crude approximation which fails
to describe the SDCS even for the scattering angles below
0.5 mrad. However, it can be avoided by the use of analytical
Lewis-type integrals for most fast capture processes.

(ii) Any “simplifications” of the SBA amplitudes (for
example, [4,24]) must be carefully examined. It is found that

the amplitudes for capture processes are very sensitive to such
“simplifications.”

(iii) For TI reactions, the TS2 mechanism (item A2) mainly
contributes to the SDCS at the proton energies of a few
MeV and scattering angles below 0.5 mrad. We come out
with a cautious suggestion that the same effect may also be
observed for transfer excitation reactions. On the contrary,
this scattering mechanism is quite small in this kinematical
domain for CT reactions leaving a residual ion in its ground
state.

(iv) The SDCS for TI reactions within the range of
scattering angles 0–0.5 mrad seems to distinguish helium trial
wave functions with different degrees of correlation. Here we
see the same effect noted earlier for (e, 3e) reactions in the
kinematical regime of the electron momentum spectroscopy
[25].
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