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We have calculated the lowest-order relativistic effects for the three lowest states of the helium atom with
symmetry 1S, 1P , 1D, 3S, 3P , and 3D using variational Monte Carlo methods and compact, explicitly correlated
trial wave functions. Our values are in good agreement with the best results in the literature.
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I. INTRODUCTION

When comparing theoretical atomic energies with their
experimental counterparts, the nonrelativistic Schrödinger
equation must be evaluated to high accuracy and a number of
corrections must also be computed. Starting with the work of
Hylleraas in the 1920s, explicitly correlated wave functions
have been used to determine the nonrelativistic energies,
the relativistic corrections (both lowest and higher order),
the mass related corrections, and some QED corrections for
helium [1–19] and lithium [20–34] to an accuracy that meets
or exceeds the current level of experimental precision. This
excellent agreement between theory and experiment is not yet
true for the other atoms. The form of choice for two- and three-
electron atoms, appropriately known today as a Hylleraas wave
function, cannot be used for beryllium or any larger atom
because it is difficult to analytically evaluate all the integrals
needed to compute the energy. As a result, these systems
have been examined using a number of other methods whose
convergence is noticeably slower [35–49]. In the past decade
Monte Carlo methods have been used to calculate a number of
atomic energies to high accuracy. For smaller atoms (helium,
lithium, beryllium) Monte Carlo methods are not as accurate
as other explicitly correlated calculations but for larger atoms
they are much more competitive and have recovered 99% of
the correlation energy with a relatively compact wave function
[50–54]. Because all integrals are computed numerically, this
method has also been used to determine a variety of properties
[55–62] including the relativistic corrections for several singlet
S states [63–65]. Our ultimate goal is to use these Monte
Carlo wave functions to calculate the relativistic corrections
for a number of atoms. Before we can do so, however, we
need to verify that this method can accurately evaluate these
corrections for wave functions with high angular momenta.
In this article we examine whether variational Monte Carlo
techniques can accurately evaluate the lowest-order relativistic
corrections and the mass polarization term for the three lowest
states of helium with symmetry 1S, 1P , 1D, 3S, 3P , and 3D.
Our goal is to compare the accuracy that we can get from a set
of medium-quality, explicitly correlated wave functions with
those from a high-quality Hylleraas wave function. In Sec. II
we describe our trial wave function forms and determine the

energy for each of our 18 states. Next, we use these wave
functions to calculate the spin-independent terms. This work
is described in Sec. III. In Sec. IV we first derive a detailed
formula for each spin-dependent term and then we evaluate
it. Finally, in Sec. V we calculate the singlet-triplet mixing
for each state. This correction occurs because the spin-orbit
operator causes a small mixing to take place between the
singlet and the triplet wave functions. As a result, both the
singlet and the triplet energies are slightly shifted. Unless
otherwise indicated, all values in this article are given in
atomic units and all calculations were performed with the
2006 CODATA values c = 137.035 999 679 a.u. and M =
7294.299 a.u.

II. CALCULATING THE WAVE FUNCTIONS

The variational Monte Carlo calculation is a method of
computing the expectation value of an operator,

〈A〉 =
∑

i

[�(xi)A�(xi)/w(xi)]
/∑

i

[�(xi)
2/w(xi)], (1)

and its standard deviation (i.e., statistical error),

σ 2 =
∑

i

{[A�(xi) − 〈A〉�(xi)]
2�(xi)

2/w(xi)
2}/

{∑
i

[�(xi)
2/w(xi)]

}2

, (2)

using Monte Carlo integration. Here �(xi) is the value of the
trial wave function at the Monte Carlo integration point xi

and the weight function w(xi) is the relative probability of
choosing this point. In a variational Monte Carlo calculation
the adjustable parameters in the trial wave function are
often optimized with respect to a functional, usually some
combination of the energy and its standard deviation [66,67].

In Ref. [62] we showed that an exponential pade form
produced rapidly convergent energies for the three lowest
states of the helium atom with symmetry 1S, 1P , 1D, 3S,
3P , and 3D. The spatial part of these wave functions have the
form

�1S = (1 ± P12)exp(P − αr1 − βr2), (3)
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�2S = (1 ± P12)(r1 + a)exp(P − αr1 − βr2), (4)

�3S = (1 ± P12)
(
r2

1 + ar1 + b
)
exp(P − αr1 − βr2), (5)

�2P = (1 ± P12)z1exp(P − αr1 − βr2), (6)

�3P = (1 ± P12)z1(r1 + a)exp(P − αr1 − βr2), (7)

�4P = (1 ± P12)z1
(
r2

1 + ar1 + b
)
exp(P − αr1 − βr2), (8)

�3D = (1 ± P12)
[(

3z2
1 − r2

1

)
exp(P − αr1 − βr2)

+ d(2z1z2 − x1x2 − y1y2)exp(P2 − γ r1 − δr2)
]
, (9)

�4D = (1 ± P12)
[(

3z2
1 − r2

1

)
(r1 + a)exp(P − αr1 − βr2)

+ d(2z1z2−x1x2−y1y2)(r1+b)exp(P2−γ r1 − δr2)
]
,

(10)

�5D = (1 ± P12)
[(

3z2
1 − r2

1

)(
r2

1 + ar1 + b
)
exp(P − αr1

−βr2) + d(2z1z2 − x1x2 − y1y2)
(
r2

1 + er1

+ f
)
exp(P2 − γ r1 − δr2)

]
, (11)

where

P =
∑

k=0 akr
n
1 rl

2r
m
12∑

k=0 bkr
n
1 rl

2r
m
12

, P2 =
∑

k=0 ckr
n
1 rl

2r
m
12∑

k=0 dkr
n
1 rl

2r
m
12

. (12)

Here the operator P12 interchanges the two electrons. The
exponents l, m, and n are integers (0, 1, . . .) and all possible
terms adding up to N = n + l + m are selected. In Eq. (12)
both the numerator and the denominator of the P terms have
the same number of terms.

The parameters in each trial wave function form are
adjusted so as to minimize the standard deviation in the local
energy [Eq. (2) with A = H ]. This calculation is done over a
set of 16 000 Monte Carlo integration points that are generated
from a guiding function that was optimized specifically for
each state [68]. Once the adjustable parameters were found,
we then evaluated the energy using our largest (N = 4) wave
function and a set of 65 536 000 Monte Carlo integration
points in order to make the statistical error as low as possible.
The results, shown in Table I, are all within a microhartree (or
better) of the benchmark values given by Drake [69].

III. CALCULATING THE SPIN-INDEPENDENT
RELATIVISTIC CORRECTIONS

If there are no external electric and magnetic fields, the
lowest-order spin-independent relativistic corrections [11]
consist of the mass velocity term,

H1 = − 1

8c2

∑
i

∇4
i , (13)

the orbit-orbit (retardation) term,

H2 = − 1

2c2

∑
i<j

∇i •
[

(ri − rj)(ri − rj )

r3
ij

+ 1

rij

]
• ∇j , (14)

and the one- and two-body Darwin terms,

H4 = Zπ

2c2

∑
i

δ(ri) − π

c2

∑
i<j

δ(ri − rj ). (15)

In addition, the finite mass of the nucleus gives rise to
several other corrections [11]. The largest of these is the mass

TABLE I. Energies (in a.u.) of select helium states computed
using our largest wave function (N = 4) and 65 536 000 Monte Carlo
integration points. Value in the parentheses are statistical errors.

State Nonrelativistic energy Relativistic energy

1 1S −2.903 724 372(5) −2.903 806 4(2)
−2.903 724 377 034 119 5 [69]

2 1S −2.145 973 51(3) −2.146 080 4(3)
−2.145 974 046 054 419 [69]

3 1S −2.061 271 55(5) −2.061 378 1(4)
−2.061 271 989 740 911 [69]

2 1P −2.123 842 89(7) −2.123 947 3(4)
−2.123 843 086 498 093 [69]

3 1P −2.055 146 04(8) −2.055 251 6(6)
−2.055 146 362 091 94 [69]

4 1P −2.031 069 82(3) −2.031 386 7(8)
−2.031 069 650 450 24 [69]

3 1D −2.055 620 725(3) −2.055 726 9(8)
−2.055 620 732 852 246 [69]

4 1D −2.031 279 815(7) −2.031 386 7(8)
−2.031 279 846 178 687 [69]

5 1D −2.020 015 828(3) −2.020 121(1)
−2.020 015 836 159 984 [69]

2 3S −2.175 229 376(3) −2.175 343 4(2)
−2.175 229 378 236 791 30 [69]

3 3S −2.068 688 69(4) −2.068 796 8(4)
−2.068 689 067 472 457 19 [69]

4 3S −2.036 511 62(2) −2.036 617 8(7)
−2.036 512 083 098 236 30 [69]

2 3P −2.133 164 07(4) −2.133 280 3(3)
−2.133 164 190 779 273 [69]

3 3P −2.058 080 72(4) −2.058 188 8(8)
−2.058 081 084 274 28 [69]

4 3P −2.032 324 18(2) −2.032 429(1)
−2.032 324 354 296 62 [69]

3 3D −2.055 636 282(4) −2.055 743 3(7)
−2.055 636 309 453 261 [69]

4 3D −2.031 288 842(3) −2.031 395 5(8)
−2.031 288 847 501 795 [69]

5 3D −2.020 021 027(3) −2.020 127(1)
−2.020 021 027 446 911 [69]

polarization term,

H7 = − 1

M

∑
i<j

∇i • ∇j . (16)

For a helium atom these terms can be evaluated from the
expressions

〈H1〉 = − 1

4c2

∫ (∇2
1�

)2
dτ, (17)

〈H2〉=− 1

2c2

∫ [
(∇1� • r12)(∇2� • r12)

r3
12

+ ∇1� • ∇2�

r12

]
dτ,

(18)

〈H4〉 = 2π

c2

∫
�δ(r1)�dτ − π

c2

∫
�δ(r12)�dτ, (19)

and

〈H7〉 = − 1

M

∫
∇1�•∇2�dτ. (20)
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We computed each of these expectation values with our
largest wave function (N = 4) and 65 536 000 Monte Carlo
integration points. To evaluate the one- and two-electron δ

functions in H4 we used the procedure described in Ref. [59].
Because our initial calculations of the mass polarization term,
Eq. (20), were dominated by large fluctuations around the
origin (which led to a considerable loss of precision for the D

states), we evaluated this quantity using the rotation method
described in Ref. [62]. Our final results for all these expectation
values are given in Table II. As expected from the relative
quality of each wave function, it is not surprising that our
values are better than those in Ref. [64] but they show small
deviations from the benchmark values in Refs. [14] and [15].

IV. CALCULATING THE SPIN-DEPENDENT
RELATIVISTIC CORRECTIONS

In the absence of external electric and magnetic fields,
the lowest-order spin-dependent relativistic corrections [11]
consist of the spin-orbit term,

H3Z = Z

2c2

∑
i

[
ri × pi

r3
i

]
• si , (21)

the spin-other-orbit term,

H3e = 1

2c2

∑
i �=j

[
rji × pi

r3
ij

]
• (si + 2sj ), (22)

and the spin-spin terms,

H5 = 1

c2

∑
i<j

si •
[

r2
ij−3(ri − rj )(ri − rj )

r5
ij

]
• sj , (23)

H6 = − 8π

3c2

∑
i<j

δ(ri − rj )si • sj . (24)

Before we can evaluate these terms we first have to use the
Wigner-Eckhart theorem to separate the spin operators from
the spatial operators (see, for example, Refs. [70] and [71]).
For the helium atom this allows us to rewrite the spin-orbit,
the spin-other-orbit, and the spin-spin terms as

〈H3Z〉 = 〈LSJM|H3Z|LSJM〉
= 2

c2
(−1)L+S+J

{
J S L

1 L S

} 〈
L

∥∥∥∥r1×p1

r3
1

∥∥∥∥L

〉
〈S‖s1‖S〉

=
√

6

c2
(−1)L

{
L 1 L

1 L 1

}
(

L 1 L

−1 0 1

) ∫
�∗(L,ML = 1)

×
i
(
y1

∂
∂x1

−x1
∂

∂y1

)
r3

1

�(L,ML = 1)dτ, (25)

〈H3e〉 = 〈LSJM|H3e|LSJM〉
= 1

c2
(−1)L+S+J

{
J S L

1 L S

} 〈
L

∥∥∥∥r21×p1

r3
12

∥∥∥∥L

〉
×〈S‖s1 + 2s2‖S〉

= 3
√

6

2c2 (−1)L

{
L 1 L

1 L 1

}
(

L 1 L

−1 0 1

) ∫
�∗(L,ML = 1)

×
i
(
y21

∂
∂x1

− x21
∂

∂y1

)
r3

12

�(L,ML = 1)dτ, (26)

〈H5〉 = 〈LSJM|H5|LSJM〉
= 1

c2
(−1)L+S+J

{
J S L

2 L S

}
〈L‖T2‖L〉〈S‖U2‖S〉

=
√

30

4c2 (−1)L+1

{
L 1 L

2 L 1

}
(

L 2 L

0 0 0

) ∫
�(L,ML = 0)

× r2
12 − 3z2

12

r5
12

�(L,ML = 0) dτ, (27)

and

〈H6〉 = 〈LSJM|H6|LSJM〉
= − 8π

3c2 〈L|δ(r12)|L〉〈S|s1 • s2|S〉

= 2π

c2

∫
�(L,ML = 0)δ(r

12
)�(L,ML = 0) dτ. (28)

Here we denote a reduced matrix element with a double vertical
bar, a 6-J symbol with a curly bracket, and a 3-J symbol with a
smooth bracket. Following the choice made in Ref. [15], all of
these spin-dependent expectation values assume that J = L.
As before, the two-electron δ function in Eq. (28) is evaluated
using the procedure described in Ref. [59].

Because of symmetry, the spin part of Eq. (28) is identically
zero for triplets. Similarly, the spatial part of Eqs. (25)–(27) is
identically zero for S states or when the trial wave function has
ML = 0. Since all of our trial wave functions have ML = 0,
we first had to modify our P and D forms to have ML = 1
before we could calculate the spin-orbit and spin-other-orbit
terms. For the P states this modification simply replaces the
term Y10(r1)Y00(r2) = z1 with Y11(r1)Y00(r2) = x1 + iy1. All
of the optimized parameters in the exponential are unaltered.
Performing a similar operation on our D states is slightly more
complicated because the Clebsch-Gordon expansion produces
two combinations of spherical harmonics that add up to L =
2; this is what necessitates the second expansion in each of
these wave functions. The total angular momentum of the first
expansion is given by Y20(r1)Y00(r2) = 3z2

1 − r2
1 , which we

can easily replace with Y21(r1)Y00(r2) = z1(x1 + iy1). In the
second expansion the total angular momentum is given by

r1r2

[√
3

2
Y10(r1)Y10(r2) + 1

2

√
3

2
Y11(r1)Y1−1(r2)

+ 1

2

√
3

2
Y1−1(r1)Y11(r2)

]
= d[2z1z2 − x1x2 − y1y2],

(29)
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and the ML = 1 analog of this is

r1r2

[√
3

2
Y10(r1)Y11(r2) +

√
3

2
Y11(r1)Y10(r2)

]

= d[z1(x2 + iy2) + (x1 + iy1)z2]. (30)

Although the wave functions needed to evaluate Eqs. (25) and
(26) are complex, the imaginary component of the expectation
value is zero.

After making all of these adjustments to our trial wave
functions we computed the spin-dependent relativistic correc-
tions using our largest wave function (N = 4) and 65 536 000
Monte Carlo integration points. As shown in Table II, most of
our results agree with the benchmark values given in Ref. [15]
to three significant digits. We should point out that the value for
the 3D state given in Table XV of Ref. [15] is almost certainly
a misprint because it would otherwise differ from ours by an
order of magnitude. The corrected value for the 〈H3e〉 matrix
element, 1.877 615 241 1, has been used to compute the entry
in Table II.

V. CALCULATING THE SINGLET-TRIPLET MIXING

In addition to the changes to each energy level due to the
corrections described in the previous sections, the spin-orbit
operators cause a small mixing to take place between a singlet
wave function and its triplet counterpart [6,10,12]. Using first-
order perturbation theory the matrix elements associated with
this mixing are [15]

〈H3Z〉ST = 〈LS ′JM|H3Z|LSJM〉
= 2

c2
(−1)L+S ′+J

{
J S ′ L

1 L S

}〈
L

∥∥∥∥r1×p1

r3
1

∥∥∥∥ L

〉
〈S ′‖s1‖S〉

=
√

3

c2
(−1)L

{
L 0 L

1 L 1

}
(

L 1 L

−1 0 1

) ∫
�∗

singlet(L,ML = 1)

×
i
(
y1

∂
∂x1

− x1
∂

∂y1

)
r3

1

�triplet(L,ML = 1)dτ, (31)

〈H3e〉ST = 〈LS ′JM|H3e|LSJM〉
= 1

c2
(−1)L+S ′+J

{
J S ′ L

1 L S

} 〈
L

∥∥∥∥r21×p1

r3
12

∥∥∥∥ L

〉
×〈S ′‖s1 + 2s2‖S〉

=
√

3

2c2 (−1)L−1

{
L 0 L

1 L 1

}
(

L 1 L

−1 0 1

) ∫
�∗

singlet (L,ML = 1)

×
i
(
y21

∂
∂x1

− x21
∂

∂y1

)
r3

12

�triplet(L,ML = 1)dτ.

(32)

As before, symmetry considerations cause these terms to
vanish for all S states.

We computed each of these expectation values using
our largest wave function (N = 4) and 65 536 000 Monte

TABLE III. Singlet-triplet mixing coefficients of select helium
states computed using our largest wave functions (N = 4) and
65 536 000 Monte Carlo integration points. Values in the parentheses
are statistical errors.

State 〈H3Z〉ST 〈H3e〉ST

1S 0.0 0.0
2S 0.0 0.0
3S 0.0 0.0
2P −0.000 001 907(1) −0.000 000 689(2)

−0.000 001 904 968 [15] −0.000 000 688 043 [15]
3P −0.000 000 560 4(5) −0.000 000 192 6(9)

−0.000 000 558 929 [15] −0.000 000 191 301 [15]
4P −0.000 000 234 6(3) −0.000 000 079 3(5)

−0.000 000 234 440 [15] −0.000 000 078 772 [15]
3D −0.000 000 162 70(7) −0.000 000 079 96(3)

−0.000 000 162 750 [15] −0.000 000 079 992 [15]
4D −0.000 000 068 77(3) −0.000 000 033 60(2)

−0.000 000 068 739 [15] −0.000 000 033 594 [15]
5D −0.000 000 035 33(3) −0.000 000 017 21(1)

−0.000 000 035 208 [15] −0.000 000 017 161 [15]

Carlo integration points. Because the singlet and triplet wave
functions have different guiding functions, we performed
our calculations with the more diffuse function. Our results
are given in Table III and are in good agreement with the
benchmark values given in Drake and Yan [15] once the latter
have been corrected for a slight mistake. The singlet-triplet
mixing listed in Tables XIV and XV of Ref. [15] were
computed with the 6-J symbol {L0L

1L0 } rather than {L0L
1L1 } [72].

The corrected values have been used to compute the entries in
Table III.

Now that the mixing coefficients have been determined we
can estimate the total relativistic energy for each state as

Erel = Enon + 〈H1〉 + 〈H2〉 + 〈H3Z〉 + 〈H3e〉 + 〈H4〉 + 〈H5〉
+ 〈H6〉 + 〈H7〉 + 〈H3Z〉ST + 〈H3e〉ST. (33)

Each of these expectation values has a statistical error and a
systematic error arising from the use of an approximate trial
wave function. Except for the ground state, the relativistic
energy estimates in Table I are dominated by the systematic
error in our nonrelativistic energies.

VI. CONCLUSIONS

The helium atom has long served as a testing ground for
both theoretical and experimental studies and several superb
reviews have chronicled the progress in both areas (see, for
example, Ref. [73]). In this article we have outlined the steps
needed to calculate the lowest-order relativistic corrections to
the three lowest states of the helium atom with symmetry 1S,
1P , 1D, 3S, 3P , and 3D using Monte Carlo methods. Starting
from a novel set of explicitly correlated trial wave functions
that produce a nonrelativistic energy with an accuracy of a
microhartree or better, we were able to calculate most of these
corrections to two or more significant figures. On a Linux
box running at 1150 MHz, evaluating all of the expectation
values in this article required less than 50 MB of memory and
10 h of CPU time. Although our results are clearly less accurate
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than those obtained by several earlier calculations (e.g.,
Ref. [15]), this is due to the quality of our trial wave functions.
One advantage of a Monte Carlo calculation, however, is
that the techniques described here can easily be applied
to larger atoms and molecules and to wave functions that
cannot be analytically integrated. Another advantage is that
the time required to numerically evaluate an expectation value
will scale much more favorably as the system size increases
(approximately N3 where N is the number of electrons) than
most traditional methods [58,74]. Earlier results for large
singlet S state atoms suggest that Monte Carlo methods can

produce first-order relativistic corrections that are as good or
better than those found by these other methods [64]. In a
future work we will examine these properties for a variety of
atoms.

ACKNOWLEDGMENTS

We thank Dr. Gordon Drake for several invaluable discus-
sions. This work was supported in part by the Department of
Science and Technology, India, under the Women Scientists
Scheme (Grant No. SR/WOS A/PS-19–2005).

[1] E. A. Hylleraas, Z. Phys. 54, 347 (1929).
[2] H. Araki, Prog. Theor. Phys. 17, 619 (1957).
[3] J. Sucher, Phys. Rev. 109, 1010 (1958).
[4] C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
[5] C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
[6] G. Araki, M. Ohta, and K. Mano, Phys. Rev. 116, 651 (1959).
[7] C. Schwartz, Phys. Rev. 123, 1700 (1961).
[8] C. Schwartz, Phys. Rev. 134, A1181 (1964).
[9] B. Schiff, H. Lifson, C. L. Pekeris, and P. Rabinowitz, Phys.

Rev. 140, A1104 (1965).
[10] L. Hambro, Phys. Rev. A 5, 2027 (1972).
[11] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-

and Two-electron Atoms (Plenum, New York, 1977).
[12] M. L. Lewis and P. H. Serafino, Phys. Rev. A 18, 867 (1978).
[13] G. W. F. Drake, Phys. Rev. Lett. 59, 1549 (1987).
[14] J. D. Baker, M. S. thesis, Department of Physics, University of

Delaware, 1988.
[15] G. W. F. Drake and Z. C. Yan, Phys. Rev. A 46, 2378 (1992).
[16] Z. C. Yan and G. W. F. Drake, Phys. Rev. Lett. 74, 4791 (1995).
[17] K. Pachucki, J. Phys. B 31, 3547 (1998).
[18] G. W. F. Drake and S. P. Goldman, Can. J. Phys. 77, 835 (1999).
[19] G. W. F. Drake, Can. J. Phys. 80, 1195 (2002).
[20] S. Larson, Phys. Rev. 169, 49 (1968).
[21] F. W. King and V. Shoup, Phys. Rev. A 33, 2940 (1986).
[22] O. Jitrik and C. F. Bunge, Phys. Rev. A 43, 5804 (1991).
[23] K. T. Chung, Phys. Rev. A 44, 5421 (1991).
[24] D. K. McKenzie and G. W. F. Drake, Phys. Rev. A 44, R6973

(1991).
[25] Z. C. Yan and G. W. F. Drake, Phys. Rev. A 52, 3711 (1995).
[26] R. Barrois, A. Luchow, and H. Kleindienst, Chem. Phys. Lett.

249, 249 (1996).
[27] G. Pestka and W. Woznicki, Chem. Phys. Lett. 255, 281 (1996).
[28] Z. C. Yan and G. W. F. Drake, Phys. Rev. Lett. 81, 774 (1998).
[29] F. W. King, D. G. Ballageer, D. J. Larson, P. J. Pelzl, S. A.

Nelson, T. J. Prosa, and B. M. Hinaus, Phys. Rev. A 58, 3597
(1998).

[30] Z. C. Yan, J. Phys. B 34, 3569 (2001).
[31] Z. C. Yan and G. W. F. Drake, Phys. Rev. Lett. 91, 113004

(2003).
[32] K. Pachucki and J. Komasa, Phys. Rev. A 68, 042507 (2003).
[33] M. Stanke, D. Kedziera, S. Bubin, and L. Adamowicz, J. Chem.

Phys. 127, 134107 (2007).
[34] M. Stanke, J. Komasa, D. Kedziera, S. Bubin, and

L. Adamowicz, Phys. Rev. A 78, 052507 (2008).

[35] C. F. Bunge, Phys. Rev. A 14, 1965 (1976); 17, 486(E)
(1978).

[36] A. Rizzo, E. Clementi, and M. Sekiya, Chem. Phys. Lett. 177,
477 (1991).
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