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Formation of fragment momentum correlations in three-body predissociation of triatomic
hydrogen: The interplay of geometry-dependent nonadiabatic coupling and ground-state dynamics
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Momentum correlations in three-body predissociation of triatomic hydrogen are investigated by quasiclassical
trajectory calculations. It is shown that nonadiabatic couplings that trigger predissociation of the 2sA′

1 state of H3

imprint their geometric properties on the momentum correlation structures observed after dissociation. A simple
symmetry-based model of the geometric coupling properties succeeds in reproducing most of the experimentally
observed patterns. The ground-state dynamics that transform the geometric properties of the coupling into the
final momentum correlations are identified.
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I. INTRODUCTION

Predissociation of H3 Rydberg states has attracted much
interest over the past two decades [1–12]. There are two
major reasons for the persistent attention to this subject.
First, the understanding of the dissociation mechanisms is of
crucial importance for determining the rate of dissociative
recombination of H+

3 in interstellar clouds, which is decisive
for the production rate of various molecules [13–18]. Second,
H3 represents an ideal prototype for the in-depth study of
the fundamental predissociation mechanisms of polyatomic
molecules [1,2,10,19]. Electronically excited rovibronic levels
of H3 are quasibound and feature lifetimes which range
between 200 fs and 700 ns [8,20–22]. They are predissociated
by nonadiabatic transitions to one of the two Jahn-Teller
coupled electronic ground states. The dissociation limits of
the corresponding two ground-state potential sheets are three-
body [3× H(1s)] breakup for the upper surface and two body
(H + H2) as well as three-body breakups in the case of the
lower surface.

In general, nonadiabatic couplings which are involved in
predissociation prefer transitions at specific nuclear geome-
tries. These geometries are often manifestations of symmetry
properties. In conjunction with geometric properties of the
initial vibrational wave function, they determine initial nuclear
wave functions for the dissociation on the ground-state
surfaces.

Recent experimental observations indicate that the effects
of such geometric properties are reflected in correlations
among the momenta of the three H atoms emerging from three-
body predissociation of state-selected H3 [3,4,12,23]. The
states of which three-body predissociation were investigated to
date comprise several rovibrational levels of electronic states
of H3 as well as D3, especially 2sA′

1, 2pA′′
2, 3pE′, 3sA′

1, and
3dE′′.

The structures observed for the electronic states 2sA′
1 and

2pA′′
2 are not only much simpler than those observed for

the energetically higher states (e.g., those for the principal
quantum number n = 3), but also show clear regularities.
The reason is that for the levels of 2sA′

1 and 2pA′′
2 the set

of electronic states involved in the nonadiabatic coupling
processes is reduced to the initial electronic state and the
two ground states of H3 only. Nonadiabatic coupling between

2sA′
1 and 2pA′′

2 is prohibited by symmetry, due to the absence
of nonadiabatic coupling operators which transform A′′

2 into
A′

1 (radiative dipole coupling is allowed, but very inefficient
due to the low-level separation). For the lower vibrational
states studied here, higher electronic states are energetically
inaccessible because all the rovibronic levels in question are
separated by at least 0.6 eV from the lowest level of the higher
electronic states.

Specific regularities appear among the momentum correla-
tions observed after predissociation of the various vibrational
levels of 2sA′

1. Currently, there are two publications concern-
ing the interpretation of these levels. Lepetit et al. [23] showed
that the dominant structure of momentum configurations of
the levels 2sA′

1 (v2 = 0) can be explained by rovibronic
symmetry conservation and geometric phase effects. Lehner
and Jungen [24] succeeded in reproducing many features of
2sA′

1 (v2 = 0) as well as 2sA′
1 (v2 = 1) levels by using a

semiclassical trajectory surface-hopping method.
This article also focuses on the interpretation of momentum

correlations emerging from several vibrational levels (v1 =
{0, 1, 2}, v2 = {0, 1}) of 2sA′

1 for H3 as well as for D3. The aim
is to give a clear physical picture of the structures appearing
in the momentum correlations. It is shown that most of the
structures can be understood and even reproduced by mere
symmetry arguments and classical trajectory propagation.

The predissociation mechanism is described by a sequence
of two steps: First the nonadiabatic transition to the two
ground states and second the following propagation on the
two ground-state potential surfaces. In both steps the nuclear
wave function is subject to modifications. The first step is
described in a model which uses symmetry properties of the
initial rovibrational wave function and the coupling to define
the initial vibrational wave function for step two. The second
step is then carried out by using a classical trajectory Monte
Carlo (CTMC) simulation.

The nonadiabatic coupling between 2sA′
1 and the ground

states is mediated by a vibronic interaction which involves
derivative couplings in the coordinate space of the two
degenerate modes. This space can be described by a set
of polar coordinates (Qr, ϕ). In the model of Lehner and
Jungen, the coupling which is generated by the coodinate ϕ is
considered.
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The approach presented here differs from Lehner and
Jungen’s work in many aspects. In particular, we make two
major advances: The nonadiabatic coupling from the 2sA′

1
to the ground states involves both coordinates Qr and ϕ;
and the motion on the ground-state surfaces is initiated by
a well-defined initial phase-space distribution given by the
Wigner quasiprobability distribution. In Lehner and Jungen’s
work the initial conditions on each surface are derived from
energy conservation as well as the gradient of the potential.

This article also provides additional insight into the
time-dependent dissociation dynamics on the upper ground-
state sheet, which elucidates the process of breakup pattern
formation.

The present work does not include transitions (surface
hopping) between the two ground states, as included in
Lehner and Jungen’s work. Thus the description presented
here is restricted to the motion which remains in one of the
two electronic ground states after the nonadiabatic transition.
As a consequence, a few experimental features will not be
reproduced by this model, which will be discussed later on.

This article is organized as follows: In Sec. II, a theoretical
description of predissociation of 2sA′

1 is discussed. A model
for the nonadiabaic couplings is derived on the basis of
symmetry considerations. Section III shows how this model
is applied for a CTMC simulation. The main part of this
publication is Sec. IV, which is concerned with the results
of the quasiclassical simulations and their interpretation. A
conclusion is given in Sec. V.

II. PREDISSOCIATION OF 2s A′
1 LEVELS

Predissociation of the lower vibrational levels of the elec-
tronic state 2sA′

1 of H3 and D3 proceeds by direct nonadiabatic
transition to the Jahn-Teller coupled ground states followed by
a propagation of the rovibrational part of the wave function
on the ground-state surfaces. These surfaces form a conical
intersection at the equilateral triangle geometry. In this section
we describe the transition process in more detail and work out
reasonable approximations to reproduce the essential features
of the coupling between 2sA′

1 and the ground states.
For simplicity, we first introduce a shorthand notation for

the involved electronic basis states

e2s ≡ |φ2s(Q)〉,
eu ≡ |φu(Q)〉, (1)

el ≡ |φl(Q)〉,
where |φ2s(Q)〉 refers to the initial state 2sA′

1 and |φl(Q)〉,
|φu(Q)〉 refer to the lower and upper adiabatic ground states,
respectively. Using this basis set, the Hamiltonian describing
the nuclear motion is given by

H = TN I +

⎛
⎜⎝

Vi �2s,u �2s,l

�2s,u Vu �u,l

�2s,l �u,l Vl

⎞
⎟⎠ . (2)

Here TN denotes the kinetic-energy operator for the nuclei,
I the identity matrix, and V2s , Vu, and Vl the adiabatic
potentials (including diagonal corrections). �2s,u, �2s,l , and
�u,l describe the nonadiabatic couplings. As H is time
independent, the temporal evolution of the rovibronic wave

function �evr of a predissociating level of 2sA′
1 is given by

|�evr(t)〉 = exp [−iHt] χ2s(0)e2s , (3)

where χ2s(0) denotes the initial rovibrational wave function
of the electronically excited state. The time evolution will
result in a population transfer into the ground states over times
which correspond to the natural lifetime (τ ≈ 200 fs [20]) of
2sA′

1. However, the dissociation on both of the ground-state
sheets proceeds within ≈ 20 fs [25]. Thus, fractions of χ2s(t)
transferred to the ground state will rapidly propagate away
from the equilibrium geometry and will be inhibited from
further interaction with 2sA′

1. For this reason, we can simplify
the description as follows: We consider the fraction of the
population which is transferred to one of the ground states
over a small time interval [t ′, t ′ + dt ′]. This fraction is given
by

d
∣∣�evr

u,l (t ′)
〉 = −iPu,lHχ2s(t

′)e2sdt ′

= −i[�2s,uχ2s(t
′)eu + �2s,lχ2s(t

′)el]dt ′, (4)

where Pu,l is the projection on the the subspace spanned by
eu and el . As no significant population is transferred back into
2sA′

1, this results in an exponential decrease of the population
of the excited state

χ2s(t) = χ2s(0) exp

[
−iEt − t

τ

]
, (5)

where E is the rovibrational energy and τ the lifetime of 2sA′
1.

Neglecting the coupling back to the excited state, the evolution
of d|�evr

u,l (t ′)〉 on the coupled ground-state surfaces for t > t ′
is described by

d
∣∣�evr

u,l (t)
〉 = exp[−iHu,l(t − t ′)]d

∣∣�evr
u,l (t ′)

〉
, (6)

where Hu,l = Pu,lHPu,l . Inserting Eq. (4) into Eq. (6) and
integrating over t ′ results in

∣∣�evr
u,l (t)

〉 = −i

∫ t

0
exp[−iHu,l(t − t ′)][�2s,uχ2s(t

′)eu

+�2s,lχ2s(t
′)el]dt ′. (7)

In a simplified way, this equation can be interpreted as follows:
In a small time interval dt ′, the fraction [�2s,uχ2s(t ′)eu +
�2s,lχ2s(t ′)el]dt ′ leaks from the population of the excited
state into the continuum. Thereby each fraction is modified
by the action of the coupling operators �2s,u and �2s,l . These
fractions then evolve on the two coupled ground-state surfaces,
which is described by the term exp[−iHu,l(t − t ′)]. At time
t many fractions are accumulated in the ground state and the
total wave function |�evr

u,l (t)〉 is obtained by summing up these
fractions, which is expressed by the integral in Eq. (7).

According to symmetry arguments [20], 2sA′
1 can only be

coupled by a vibronic interaction with the degenerate modes.
The corresponding nonadiabatic coupling terms are

�2s,u/l =
[
〈φ2s | ∂

∂Q2a

|φu/l〉 ∂

∂Q2a

+ 〈φ2s | ∂

∂Q2b

|φu/l〉 ∂

∂Q2b

]
,

(8)

where Q2a and Q2b are the normal coordinates of the degener-
ate modes. In this notation, the subscript u/l denotes either an
index u or an index l for the whole equation, respectively. After
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TABLE I. Characters of the one-dimensional irreducible repre-
sentations of the double group of S3.

σ̂1 Ĉ+ IR

A1 1 1 1 φ2s , ∂

∂Qr

A2 −1 1 1 ∂

∂ϕ

Ā1 1 1 −1 φl , Al , Bu

Ā2 −1 1 −1 φu, Au, Bl

a transformation to polar coordinates (Qr, ϕ) [see Appendix,
Eq. (A6)], this becomes

�2s,u/l =
[
〈φ2s | ∂

∂Qr

|φu/l〉 ∂

∂Qr

+ 〈φ2s | ∂

∂ϕ
|φu/l〉 1

Q2
r

∂

∂ϕ

]
.

(9)

The terms 〈φ2s | ∂
∂Qr

|φu/l〉 and 〈φ2s | ∂
∂ϕ

|φu/l〉 represent integrals
over the electronic coordinate space and are functions of the
nuclear coordinates

Au/l(Q1,Qr, ϕ) ≡ 〈φ2s | ∂

∂Qr

|φu/l〉,
(10)

Bu/l(Q1,Qr, ϕ) ≡ 〈φ2s | ∂

∂ϕ
|φu/l〉.

In the following, we derive approximate expressions for these
functions. As we are interested in nonadiabatic transitions
from the lower vibrational levels of the 2sA′

1 state, the goal is
to reproduce the essential features in the regions of nuclear
coordinate space where the vibrational wave function has
significant amplitude. This region is limited to configurations
which deviate from the equilibrium geometry by <∼25% of the
binding distance.

First we analyze the symmetry of these functions. As
both φu and φl feature a geometric phase (change of sign
for ϕ → ϕ + 2π ), we use the double group of S3 [26] to
characterize the symmetry properties. This group is defined
for the double-cover space for nuclear configurations. In this
space, the range of the angle ϕ is extended to [0, 4π ] to
facilitate the description of functions featuring a geometric
phase [27]. The operation IR : (ϕ → ϕ + 2πmod 4π ) is an
additional group element of the double group of S3. It gives rise
to two additional one-dimensional irreducible representations
Ā1 and Ā2 (see Table I).

The function φ2s and the operator ∂
∂Qr

are totally symmetric

with respect to the double group of S3. The operator ∂
∂ϕ

transforms according to an A2 irreducible representation,
while the functions φu and φl have symmetries Ā2 and Ā1,
respectively [23]. As a consequence, we find the following
symmetries for the functions Au/l and Bu/l


(Au) = A1 ⊗ A1 ⊗ Ā2 = Ā2,


(Al) = A1 ⊗ A1 ⊗ Ā1 = Ā1,
(11)


(Bu) = A1 ⊗ A2 ⊗ Ā2 = Ā1,


(Bl) = A1 ⊗ A2 ⊗ Ā1 = Ā2.

As the nuclear coordinates Q1 and Qr are not affected by
symmetry operations, the symmetry of these functions is
expressed by ϕ only. Complete basis sets for the functions

of symmetries Ā1 and Ā2 are given by [28]

Ā1 : sin 3
(
n + 1

2

)
ϕ n = 0, 1, . . . ,

(12)
Ā2 : cos 3

(
n + 1

2

)
ϕ n = 0, 1, . . . .

Thus, the functions Au/l and Bu/l can be written as

Au =
∑

n

a(n)
u (Q1,Qr ) cos 3

(
n + 1

2

)
ϕ,

Al =
∑

n

a
(n)
l (Q1,Qr ) sin 3

(
n + 1

2

)
ϕ,

(13)

Bu =
∑

n

b(n)
u (Q1,Qr ) sin 3

(
n + 1

2

)
ϕ,

Bl =
∑

n

b
(n)
l (Q1,Qr ) cos 3

(
n + 1

2

)
ϕ.

In the following, we apply a first-order approximation for the
functions Au/l and Bu/l

Au ≈ a(0)
u (Q1,Qr ) cos

(
3
2ϕ

)
,

Al ≈ a
(0)
l (Q1,Qr ) sin

(
3
2ϕ

)
,

(14)
Bu ≈ b(0)

u (Q1,Qr ) sin
(

3
2ϕ

)
,

Bl ≈ b
(0)
l (Q1,Qr ) cos

(
3
2ϕ

)
.

This approximation is justified as follows: Lehner and Jungen
[24] calculated the adiabatic-diabatic mixing angle β2s,u/l

between φ2s and φu/l , which is related to Bu/l by

Bu/l = ∂

∂ϕ
β2s,u/l . (15)

The variations of the angles β2s,u/l with respect to ϕ do
not show any significant oscillations of an order higher
than cos( 3

2ϕ) [or sin( 3
2ϕ)], which is in agreement with our

approximation of Bu/l in Eq. (14). Considering that the only
difference between the functions Au/l and Bu/l is the involved
derivative, the approximation for Au/l is also justified.

In addition to symmetry properties, another important
feature is given by the fact that

lim
Qr→0

Bu = lim
Qr→0

Bl = 0, (16)

which can be derived from symmetry arguments and was also
shown numerically by Lehner and Jungen [24]. Apart from
that, we can assume that the functions Au/l and Bu/l neither
show any other zeros nor vary dramatically in the region of the
initial vibrational wave function. This assumption is backed
by the numerical calculations of nonadiabatic couplings of
Schneider and Orel [10] as well as Tashiro and Kato [2]. As a
consequence, we approximate

a(0)
u (Q1,Qr ) ≈ Au, (17)

a
(0)
l (Q1,Qr ) ≈ Al, (18)

b(0)
u (Q1,Qr )/Qr ≈ Bu, (19)

b
(0)
l (Q1,Qr )/Qr ≈ Bl, (20)
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where Au, Al , Bu, and Bl are constants. Using these simplifi-
cations, the nonadiabatic coupling operators read

�2s,u = Au cos(3ϕ/2)
∂

∂Qr

+ Bu sin(3ϕ/2)
1

Qr

∂

∂ϕ
,

(21)
�2s,l = Al sin(3ϕ/2)

∂

∂Qr

+ Bl cos(3ϕ/2)
1

Qr

∂

∂ϕ
.

III. QUASICLASSICAL PROPAGATION ON THE
GROUND-STATE SURFACES

In our quasiclassical model, we simulate the propagation
of wave functions, which correspond to the nonadiabatically
transferred parts of the initial wave function. These parts are
recognized in Eq. (7) as

dχu ≡ �2s,uχ2s(t)dt,
(22)

dχl ≡ �2s,lχ2s(t)dt,

for the upper and lower ground states, respectively. The results
for the coupling operators allow us to investigate how the
functions χ2s(t) are modified by the nonadiabatic coupling. In
our model, the coupling for state 2sA′

1 [Eq. (21)] includes the
unknown parameters Au/l and Bu/l . As we are not interested in
absolute predissociation rates, only the ratios δu = Bu/Au and
δl = Bl/Al are of interest. Unless otherwise noted, the results
presented in the following are obtained by using a trial value
δu/l = 1.

Although the ground states are populated in a continuous
nonadiabatic transition from 2sA′

1, it is sufficient to investigate
the propagation of the transferred fractions given by Eq. (22).
This may be justified as these fractions are subject to a
monotonic propagation toward dissociation (ρ direction),
without any reflections. Furthermore, the dissociation occurs
faster than the phase modulation in χ2s(t) [Eq. (5)]. Thus
fractions transferred at different times are never subject to
interferences and can be treated separately, regardless of their
phase.

We represent the initial rovibrational wave functions χ2s

by linear combinations of basis states which are products of
Wigner D functions and harmonic oscillator wave functions
[29]

χ2s ≡ χ
N,v1,v2
K,M,l2

= 1/
√

2ζ v1 (Q1)
[
DN

KM (a, b, c)ηv2,l2 (Qr, ϕ)

+u(−1)NDN
−KM (a, b, c)ηv2,−l2 (Qr, ϕ)

]
, (23)

where ζ v1 (Q1) corresponds to a one-dimensional harmonic
oscillator wave function of the symmetric stretch mode while
ηv2,l2 (Qr, ϕ) represents the two-dimensional harmonic oscil-
lator wave function of the degenerate modes. DN

KM (a, b, c)
denotes a Wigner D function depending on the Euler angles
a, b, c. The parameter u = ±1 defines the symmetry of the
wave function, which is A1 for u = 1 and A2 for u = −1.
Other parameters in the functions ζ v1 (Q1) and ηv2,l2 (Qr, ϕ) are
chosen according to experimentally observed vibrational-level
spacings and equilibrium positions [30–32]. In the experiments
on three-body predissociation, the quantum number M is
unknown, but uniformly distributed due to an isotropic en-
vironment. Therefore we assume a uniform statistical mixture
of states with various values of the quantum number M .

A quasiphase-space distribution (QPD) for the vibrational
coordinates Q = (Q1,Q2a,Q2b) is obtained by using the
Wigner function

Wd (Q, P) = 1

π

∫
d3s〈Q − s/2|�|Q + s/2〉e−iP·s, (24)

where the density matrix � is given by

� = 1

2N + 1

N∑
M=−N

∣∣dχ
(M)
u/l

〉〈
dχ

(M)
u/l

∣∣. (25)

The M dependency of χ
(M)
u/l can be seen from Eqs. (22) and

(23).
Substantial test calculations revealed that centrifugal dis-

tortions due to rotations in the Euler angles a and b are
negligible. Hence the angles a and b were kept fixed in
the classical propagation. The initial rotation in the Euler angle
c is given by the quantum number K . The simulations were
tested for several choices of K . For low rotational excitations
(K � 3), which are typical for the experimental data [3],
observed variations of the results were marginal. This is in
agreement with the results from Lehner and Jungen [24].
Therefore, K was chosen according to the most typical value
in the experiment, in consideration of the restrictions given by
the rovibronic symmetry.

To account for energy conservation, we restrict the QPD in
energy space to W ± 0.2 eV, where W is the total energy of
the initial state. The QPD is propagated by a CTMC method.
In the present model we restrict the propagation to a single
surface (upper or lower), which means that the nonadiabatic
coupling between the two ground-state surfaces is neglected.
The consequences of this restriction will be discussed in the
next section.

The data for the potential surfaces were obtained by Jungen
[3]. It extends to a separation distance of the nuclei which
corresponds to a hyperradius ρ = 8.9 a.u. At this value the
mutual interaction of nuclei has virtually ceased for the upper
sheet, hence the momentum distributions obtained at this
value correspond to the final distributions. The distribution of
momentum configurations resulting from the propagation on
the upper sheet are derived according to Eqs. (A9) and (A14) in
the Appendix. The momentum configuration distributions are
displayed in Dalitz plots. Figure 1 shows the configuration
geometries which are mapped in a Dalitz plot, while the
definition of its coordinates is described in the Appendix.

In contrast to the upper sheet, for large values of ρ the
lower sheet is governed by attractive two-particle interactions,
which enable two-body decay (H + H2). At ρ = 8.9 a.u., the
internal energy of the two closest nuclei is calculated for each
trajectory. If this energy is positive, the trajectory results in
three-body decay, otherwise in two-body decay. The three-
body momentum configurations obtained at this separation
distance are less reliable than those obtained on the upper sheet
because many trajectories are still influenced by the attractive
two-particle interactions.
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FIG. 1. Allocation of momentum configurations in a Dalitz plot.
The plot coordinates are explained in Eq. (A14).

IV. RESULTS AND DISCUSSION

Table II shows the fraction of trajectories leading to
three-body dissociation after direct coupling to the lower
ground state. For the investigated levels of 2sA′

1, this fraction
varies from ≈ 1% [D3(v1 = 0, v2 = 0)] to ≈ 6% [H3(v1 = 2,

v2 = 1)]. In general, the fraction of three-body dissociations
increases for higher vibrational excitations, while for H3 the
fractions are higher than the corresponding results for D3.

The direct population of the lower ground state by nonadi-
abtic transitions from the 2sA′

1 states is significantly weaker
than for the upper ground state [2]. In consideration of the low
fractions of three-body decay in this process, we can conclude
that three-body decay resulting from direct coupling to the
lower ground state is negligible in comparison to three-body
decay resulting from direct coupling to the upper ground state,
as long as couplings among the two ground states are not taken
into account.

In fact, the Jahn-Teller-type coupling among the two ground
states is very strong in the vicinity of the conical intersection
at equilateral geometries. For nuclear wave functions which
have significant amplitudes at this configuration the coupling
results in a population transfer between the adiabatic states.
Mahapatra and Köppel [25] showed that for Gaussian wave
packets initially located at the seam of the conical intersection

TABLE II. Fractions of three-body dissociation after direct
coupling to the lower ground state.

H3

2sA′
1 v1 = 0 v1 = 1 v1 = 2

v2 = 0 0.022 0.032 0.039
v2 = 1 0.029 0.045 0.061

D3

2sA′
1 v1 = 0 v1 = 1 v1 = 2

v2 = 0 0.010 0.024 0.024
v2 = 1 0.014 0.033 0.039

the transfer predominantly proceeds from the upper state to
the lower state. However, after 15 fs, when the molecule is
practically dissociated, still ≈20% of the initial upper-state
population remains in the upper state. Our calculations for
the upper state describe the propagation of the part which is
not transferred to the lower state. In view of our results for
the lower state, we can expect that most of the population
which is transferred to the lower state will result in two-
body dissociations. Small contributions of three-body decay
resulting from dissociation via the lower state (either arising
from direct transitions from 2sA′

1 or from transitions from the
upper state) are not included in the final state distributions
derived here.

Figure 2 shows Dalitz plots which present momentum
configurations obtained for predissociation of vibrational
levels of 2sA′

1 via the upper ground-state sheet. The degenerate
mode quantum number v2 is kept zero while the stretching
mode quantum number v1 is varied from 0 to 2 for both H3

and D3. The rotational quantum number K was set to zero.
Despite the absence of Jahn-Teller-type coupling in our

model, our results are in good qualitative agreement with the
experiments (first row of Figs. 7 and 9 in Ref. [3]). In particular,
we reproduce several key features of the data: First, there are
three dominant maxima at geometries which correspond to
obtuse-angled triangles in momentum space. The maxima are
also similar with respect to their width. Second, configurations
with low density can be found in the central region (near
equilateral geometries) and at near-linear geometries close
to the edge of the circular plot region, located in between
the three maxima. And third, for increasing excitation of
the symmetric stretch mode the correlation structure appears
to contract slightly toward the center of the plot. Missing
features of the theoretical results can be identified as the
absence of the clear zero in the center as well as the wings
of faint intensity at acute-angled near-linear geometries. Also
in contrast to the experiment, the plots for v1 = 1 and v1 = 2
show a weak local maximum in the center, which is slightly
stronger for H3 in comparison to D3. Other isotope effects are
very weak.

Figure 3 shows as an example the temporal evolution of
spatial configurations for the dissociation of 2sA′

1(1, 0) of
H3. Note that here we use polar plots of the hyperspherical
coordinates (ϑ, ϕ) (see Appendix), which is equivalent to a
Dalitz plot for spatial coordinates. The t = 0 plot shows the
density of the initial starting points, which were randomly
generated according to the Wigner distribution [Eq. (24)]. The
pattern of this density results from properties of the nonadia-
batic coupling, as well as the initial vibrational wave function.
In these coordinates, the density of a v2 = 0 vibrational wave
function is just a symmetrical Gaussian centered at the origin.
After a nonadiabatic transition to the upper ground state, this
wave function is transformed according to Eq. (22), where
�2s,u is given by Eq. (21). For v2 = 0, the vibrational wave
function is independent of ϕ, hence the second term of �2s,u

(containing ∂/∂ϕ) does not contribute. The pattern at t = 0
is therefore a direct consequence of the two factors in the
first term of �2s,u: The factor cos(3/2ϕ) generates node lines
at acute-angled geometries (compare Fig. 6, lower part) and
maxima at obtuse-angled geometries. The operator ∂/∂Qr

gives rise to a zero in the center.
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D3 2sA 1’ D3 2sA 1’ D3 2sA 1’
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-1/3 -1/3 -1/3

-1/3-1/3-1/3

-1/3 -1/3 -1/3

-1/3-1/3 -1/3

1/3 1/3 1/3

1/31/31/3

1/3 1/3 1/3

1/31/31/3

0 0 0

000

0 0 0

000

(0, 0)

(0, 0) (1, 0)

(1, 0) (2, 0)

(2, 0)

x D x D x D

x Dx Dx D

y D y D y D

y D y D y D

FIG. 2. Momentum configuration maps
obtained from the simulation of 2sA′

1(v1, v2 =
0),K = 0 states of D3 and H3. The calcula-
tions were carried out on the upper ground
state. The coordinates xD and yD are defined
by Eq. (A14) in the Appendix. See Fig. 1 for an
illustration of the associated configurations.

It might seem that this initial pattern is retained in the final
momentum configuration. However, what precisely happens
during the propagation on the upper sheet is shown in the plots
for t > 0 in Fig. 3: At t = 100 a.u. as well as at t = 200 a.u., the
density is transformed to a pattern which now features maxima
at acute-angled geometries. For t � 300 a.u. the pattern
again shows maxima at obtuse-angled geometries, though the
node lines between these maxima appear increasingly washed
out. A more detailed examination of the evolution of the
density reveals an oscillatory motion by which the pattern first
contracts toward the center, then expands again in an inverted
(acute-angled) configuration, followed by another contraction,
and another inversion to obtuse-angled geometries. These
dynamics are a direct consequence of the steep cone of
the upper potential sheet, which is centered at the conical
intersection with the lower sheet at ϑ = 90◦. This motion
in the coordinates (ϑ, ϕ) is accompanied by a continuously
increasing hyperradius ρ, which is the consequence of initial
momenta in the ρ direction.

For increasing ρ, the slope of the cone of the upper sheet
decreases continuously, as the atoms separate spatially and the
mutual interaction is reduced. For this reason, the oscillatory
motion in the coordinates (ϑ, ϕ) abates after one cycle and the

spatial as well as the momentum configuration distributions
remain in a pattern which features maxima at obtuse-angled
geometries, as seen in the final momentum configurations.

The contraction of the momentum configuration structures
for increasing excitation of the stretching mode observed in
the plots in Fig. 2 is not surprising: The higher the excitation
of the stretching mode, the higher is the average momentum
toward dissociation (ρ direction). A larger share of momentum
in this direction leads to a shift toward the equilateral triangle
configuration in momentum space, which is retained during the
propagation and thus observed in the final-state distribution.

It is not surprising that the zero observed in the center
of the experimental plots is not strictly reproduced in this
model. Trajectories which end up in these equilateral final
configurations linger for a long time in configurations which
are subject to strong Jahn-Teller-type couplings, hence their
contributions are not reliable. The experimentally observed
features at almost-linear acute-angled geometries are most
likely contributions from three-body dissociation on the lower
ground-state surface, which was populated by direct coupling
from 2sA′

1 or by Jahn-Teller-type coupling.
Figure 4 shows final momentum distributions which result

from simulations of dissociation of degenerate-mode excited

t 0 a.u. t 100 a.u. t 200 a.u.

t 300 a.u. t 400 a.u. t 500 a.u.

0

1

= = =

= = =

   -1    -1     -1

   -1   -1   -1

 -1  -1   -1

  -1  -1   -1

   1    1    1

   1   1   1

   1    1     1

    1   1    1

0 0 0

000

0 0 0

000

x Q x Q x Q

x Qx Qx Q

y Q y Q y Q

y Q y Q y Q

FIG. 3. Evolution of spatial configura-
tions during the propagation on the upper
sheet. The coordinates are given by xQ =
cos ϑ sin ϕ, yQ = cos ϑ cos ϕ (see Fig. 6, right
part). This example corresponds to the state
2sA′

1(1, 0) of H3.

032517-6



FORMATION OF FRAGMENT MOMENTUM CORRELATIONS . . . PHYSICAL REVIEW A 81, 032517 (2010)
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FIG. 4. Momentum configuration maps
obtained from simulation of 2sA′

1(v1, v2 = 1),
K = 2 states of D3 and H3 using δu = 1. The
calculations were carried out on the upper
ground state.

vibrational levels (v2 = 1) of 2sA′
1. For the rotational quantum

number, we chose K = 2 to reproduce the states investigated
in the experiment [33]. In contrast to the preceding examples,
the initial vibrational wave functions used for these simulations
are no longer independent of ϕ, meaning that now both terms
of �2s,u in Eq. (21) contribute. The relative weight of the two
terms is controlled by the parameter δu. As the exact value of
δu is unknown, results are shown for two reasonable choices,
δu = 1 and δu = 3.

Figure 4 shows results for δu = 1. On first sight, features
which were recognized for plots with v2 = 0 can also be
found in the plots for v2 = 1: Again some of the plots show
three maxima at obtuse-angled geometries, similar to the
striking maxima which appear for v2 = 0. These maxima are
most prominent for v1 = 0 and become weaker for higher
v1. They also appear slightly stronger for D3 in comparison
to H3. Another feature which is recognized is that again
no significant density appears beyond the triangular area
spanned by these three maxima (at acute-angled almost-linear
geometries). Again the area of significant density seems to
shrink for higher excitations of the stretching mode (v1 = 1, 2).

A clear difference to the plots for v2 = 0 can be found in
three additional maxima at acute-angled geometries, which

appear in the plots for H3, (1, 1) and (2, 1) as well as D3,
(2, 1). In view of the formation process of the obtuse-angled
structure, which was described earlier, this additional feature
can be attributed to the additional second term in the expression
for �2s,u: The factor sin 3/2ϕ appearing in this term gives
rise to contributions at acute-angled geometries in the spatial
density at t = 0, which are propagated by the aforementioned
oscillatory motion to a corresponding pattern in the final-state
distribution. In the simulations for δu = 1, the feature at
acute-angled geometries does not appear for lower values of v1

because in these cases a large part of the corresponding regions
of phase space are not in agreement with the total energy of
the system and hence are sorted out before the propagation is
started.

The connection between the two terms in �2s,u and the
obtuse-angled or acute-angled structures can be demonstrated
by changing the parameter δu. Figure 5 shows plots for the
same states as in Fig. 4, calculated for δu = 3. Using this value,
the second term of �2s,u (containing sin 3/2ϕ) has stronger
weight in comparison to the first term (containing cos 3/2ϕ).
At first sight, this variation of δu does not seem to cause
strong changes in the overall structure. On closer examination,
however, it appears that regions of acute-angled geometries

H3 2sA 1’ H3 2sA 1’ H3 2sA 1’

D3 2sA 1’ D3 2sA 1’ D3 2sA 1’

0

1

-1/3 -1/3 -1/3

-1/3-1/3-1/3

-1/3 -1/3 -1/3

-1/3-1/3 -1/3

1/3 1/3 1/3

1/31/31/3

1/3 1/3 1/3

1/31/31/3

0 0 0

000

0 0 0

000

x D x D x D

x Dx Dx D

y D y D y D

y D y D y D

(2, 1)(0, 1)

(0, 1)

(1, 1)

(1, 1) (2, 1)

FIG. 5. Momentum configuration maps
obtained from the simulation of 2sA′

1(v1, v2 =
1), K = 2 states of D3 and H3 using δu = 3.
The calculations were carried out on the upper
ground state.
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gained intensity in comparison to regions of obtuse-angled
geometries. This is most obvious in the plots for v1 = 0 of H3,
where the highest densities are no longer found at almost-linear
obtuse-angled configurations (for δu = 1), but in the form of
three elongate bands at acute-angled geometries (for δu = 3).

Experimental plots which correspond to 2sA′
1(v2 = 1)

also feature maxima at obtuse-angled geometries as well as
acute-angled geometries (see second row of Figs. 7 and 9 in
Ref. [3]). Their location corresponds to the location of the
maxima seen in the simulations: The “acute” maxima appear
closer to the center than the “obtuse” maxima, giving the
impression of a triangle formed by the “obtuse” maxima at
the corners and the “acute” maxima on the connecting lines.
The experimental plot for D3 (v1 = 0) is an exception because
here “obtuse” maxima are comparatively weak (eventually
stronger maxima will appear at near-linear geometries, which
were not accessible experimentally).

In contrast to the theoretical results, the experimental plots
also show a clear maximum at the center. This deficiency
can again be attributed to the absence of Jahn-Teller coupling
in our model: In contrast to the states with v2 = 0, the
nonadiabatically transferred parts dχu and dχl do not vanish
at equilateral geometries for v2 = 1. This results in a strong
population exchange between upper and lower states (both
directions), which is not included in our model. It is likely
that a certain part of the nuclear wave function remains in
the equilateral configuration, populating both upper and lower
electronic states, or in an alternative picture, a diabatic state.
This part finally results in the contributions observed at the
center of the experimental plots.

It can be concluded from the comparison between exper-
iment and theory that, in principle, our model is capable of
reproducing the structures at obtuse-angled and acute-angled
geometries, although the relative weighting of both kinds
of structures is incorrect. To some degree this weighting is
influenced by the parameter δu. For optimal agreement with
the experiment, however, it would be necessary to adjust
the relative weighting for each value of v2 independently.
Adjusting the parameter δu like that is unreasonable because
δu is by definition independent from vibrational quantum
numbers. A possible conclusion is that trajectories which
originate from the two terms of �2s,u are subject to varying
probabilities for transitions to the lower ground state and are
thus depleted from the upper state in unequal proportion.

V. CONCLUSION

We show that many of the momentum configuration struc-
tures observed in predissociation of 2sA′

1 can be interpreted
and reproduced by a simple model for the nonadiabatic
coupling. This model is derived from symmetry consider-
ations. It is shown that the final momentum distributions
are directly related to the essential geometrical properties
of the nonadiabatic coupling and the initial vibrational wave
function. These properties favor certain obtuse-angled breakup
geometries in the case of vibrational states with v2 = 0, while
allowing obtuse and acute-angled geometries for states with
v2 = 1. The dynamics which transform patterns imprinted by
the coupling to the final-state distributions are identified as an

oscillatory motion on the upper ground-state sheet, which is
induced by its conical structure at short nuclear distances.

It is an important insight that the formation of the basic
patterns in the final momentum configuration already occurs
in the nonadiabatic transition from 2sA′

1 to the upper ground
state, while the effect of the dynamics on the coupled
ground-state surfaces can be regarded as a slight deformation
and selective filtering. A major part of the dynamics which
result in three-body decay seems to proceed on the upper
adiabatic ground-state sheet only. Apparently, one effect of
the lower ground state and the Jahn-Teller-type coupling is to
selectively depopulate the upper state. A few experimental
observations give hints for three-body dissociation via the
lower adiabatic ground state (structures at acute-angled, near-
linear geometries) or dissociation by strongly Jahn-Teller
coupled (diabatic) states (structures at equilateral geometries).

Our results for levels with v2 = 0 are in agreement with
those of Lehner and Jungen. For the v2 = 1 levels, however,
clear differences are apparent. Here the results of Lehner
and Jungen showed typically strong contributions at acute
angled geometries and weak contributions at obtuse-angled
geometries. This difference can be attributed to the fact that
Lehner and Jungen did not account for the derivative coupling
which involves Qr (or related coordinates).

The ultimate aim of this work is to enhance the general un-
derstanding of predissociation mechanisms in H3 and related
molecules. More sophisticated efforts which contribute to the
interpretation of the huge amount of momentum correlation
structures of other states of H3 and D3 are welcomed.
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APPENDIX: SPATIAL AND MOMENTUM COORDINATES
FOR THREE IDENTICAL PARTICLES

This Appendix provides definitions for the various sets of
momentum and position coordinates used in this article.

1. Hyperspherical coordinates

The set of hyperspherical coordinates (ρ, ϑ, ϕ) we use in
Fig. 3 is the same as in Ref. [3]. It is defined by its relation to
mass-scaled Jacobi vectors r and R

v1 = |r|2 − |R|2 = ρ2 cos ϑ cos ϕ,

v2 = 2r · R = ρ2 cos ϑ sin ϕ, (A1)

v3 = 2|r × R| = ρ2 sin ϑ,

where (v1, v2, v3) can be interpreted as Cartesian coordinates
of configuration space. A one-to-one mapping of this vector
space to three-particle configurations is provided if v3 � 0,
which implies 0 � ϑ � π/2 and 0 � ϕ � 2π . The relation
to row-orthonormal hyperspherical coordinates (ρK, θK, δK )
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FIG. 6. (Color online) Configurations associated with hyper-
spherical coordinates. Left: Nuclear configurations on a sphere
described by hyperspherical coordinates. Right: Configurations for
a fixed value of ρ; the presentation corresponds to the view from
above on the sphere on the left.

defined by Kuppermann [34] is given by

ρ = ρK,

ϑ = 2θK, (A2)

ϕ = 2π − 2δK.

Figure 6 indicates schematically the configurations as-
signed to our hyperspherical coordinates. The angles ϑ and ϕ

correspond to spherical latitudes and longitudes and describe
the shape of the triangle that is formed by the three particles.
The hyperradius ρ solely defines the overall size of the triangle
and leaves the internal angles unchanged. The value ϑ = 0◦
always corresponds to linear arrangements, ϑ = 90◦ always
corresponds to the equilateral triangle. For ϕ = n × 60◦, where
n is integer, the shape is always isosceles, either acute (n odd)
or obtuse (n even).

Our internal coordinates refer to the Eckart frame, which is
in contrast to Kuppermann’s definition, which is based on the
principal axis frame.

2. Hyperspherical coordinates for normal coordinate space

An X3 molecule which forms an equilateral triangle in its
equilibrium geometry features three vibrational normal modes:
The symmetric stretch mode, Q1, and two degenerate modes,
Q2a and Q2b.

The relation to the spatial coordinates (xi, yi) of nucleus i

in the Eckart frame is given by(
xi

yi

)
= 1√

m
liQ + r0

i , (A3)

where m is the proton mass, r0
i the equilibrium position of

nucleus i, and Q = (Q1,Q2a,Q2b). The matrices li are given
by

l1 = 1√
3

(
1 −1 0

0 0 1

)
,

l2 = 1√
3

(
−1/2 1/2 −√

3/2

−√
3/2 −√

3/2 −1/2

)
, (A4)

l3 = 1√
3

(
−1/2 1/2

√
3/2√

3/2
√

3/2 −1/2

)
,

and

r0
1 = re

(
1
0

)
, r0

2 = re

(
−1/2

−√
3/2

)
, r0

3 = re

(
−1/2√

3/2

)
,

(A5)

where re is the equilibrium distance of the nuclei.
Alternative coordinates for the degenerate modes are

Q2
r = Q2

2a + Q2
2b and ϕ = arctan(Q2b/Q2a), (A6)

where ϕ is identical to the hyperspherical angle.
The vibrational levels are labeled by the quantum numbers

(v1, v2), where v1 refers to excitations of the symmetric
stretch mode and v2 to excitations in the degenerate modes.
Basis states of the degenerate modes are usually labeled
by the vibrational angular momentum quantum number l =
{−v2,−v2 + 2, . . . , v2 − 2, v2}.

Normal coordinates are related to hyperspherical coordi-
nates as follows

Q̃1 = √
m3−1/4ρ sin ϑ̃,

Q2a = 3−1/4√mρ cos ϕ cos ϑ̃,
(A7)

Q2b = 3−1/4√mρ sin ϕ cos ϑ̃,

Qr = 3−1/4√mρ cos ϑ̃ .

Here, the substitutions Q̃1 = Q1 + √
mre and ϑ̃ = ϑ/2 + π/4

were used (re being the equilibrium distance between two
nuclei). Equation (A7) shows that the set of hyperspherical
coordinates (ρ, ϑ̃, ϕ) describes configurations in the space
which is spanned by the Cartesian coordinates (Q̃1,Q2a,Q2b).
In this space, the (Q̃1 = 0) plane as well as the Q̃1 axis
correspond to the equilateral triangle. Linear configurations are
found on the two cones which correspond to ϑ̃ = ±π/4. The
half-sphere shown in Fig. 6 is mapped onto the area confined
by π/4 � ϑ̃ � π/2. This restriction provides a one-to-one
mapping to configuration space.

3. Momentum coordinates and Dalitz plots

So far the coordinates introduced were all describing
spatial configurations. In the following similar coordinates
will be defined for momentum space. Let Pi = (pxi

, pyi
) be

the momentum coordinates of particle i in the center-of-mass
frame (w.l.o.g. pzi

= 0). Now we introduce hyperspherical
momentum coordinates analog to Eq. (A1). Therefore we first
define “Jacobi coordinates” for momenta

rp =
√

2

31/4
(P1 − P2),

(A8)

Rp = 31/4

√
2

[P3 − (P1 + P2)].

And we adopt the framework from Eq. (A1)

w1 = |rp|2 − |Rp|2 = ρ2
p cos ϑp cos ϕp,

w2 = 2rp · Rp = ρ2
p cos ϑp sin ϕp, (A9)

w3 = 2|rp × Rp| = ρ2
p sin ϑp.
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It follows directly from the definitions (A8) and (A9)

ρ2
p =

√
w2

1 + w2
2 + w2

3 = 2
√

3mT, (A10)

where T is the total kinetic energy of the system. We can
also introduce normal momenta coordinates by an equation
analogous to Eq. (A7)

P1 = 3−1/4√m
−1

ρP sin ϑ̃P ,

P2a = 3−1/4√m
−1

ρP cos ϕP cos ϑ̃P , (A11)

P2b = 3−1/4√m
−1

ρP sin ϕ cos ϑ̃P ,

where again ϑ̃P = ϑP /2 + π/4. Now the total kinetic energy
can be expressed as

T = 1
2

(
P 2

1 + P 2
2a + P 2

2b

)
. (A12)

Note that (P1, P2a, P2b) are different from the classical canon-
ical momentums (P c

1 = Q̇1, P
c
2a = Q̇2a, P

c
2b = Q̇2b). They

only coincide if the system is not rotating.
As a particularly interesting result we find that the coordi-

nates (w1, w2) can be written in terms of the kinetic energies

of the particles Ei = |Pi |2/(2m)

w1 = −2 × 33/2m(E3 − 1
3T ),

(A13)
w2 = 6m(E2 − E1).

If the total kinetic energy is not of interest, the coordinates

xD ≡ w2/(−2 × 33/2mT ) = (ε2 − ε1)/
√

3,
(A14)

yD ≡ w1/(−2 × 33/2mT ) = ε3 − 1/3,

where εi = Ei/T describe the configuration space of the
relative arrangements of momentum vectors. (xD, yD) are
also known as the coordinates of the Dalitz plot, which
is frequently used to display momentum configurations in
three-body dissociations [3,4,16].

This shows how the coordinates of the Dalitz plot are related
to hyperspherical coordinates: If we define hyperspherical
coordinates for momenta as described in Eqs. (A8) and (A9),
then a sphere in this coordinate space corresponds to a surface
of constant total kinetic energy. If we normalize the radius of
this sphere to 1/3 and project it onto the equator plane, we get
the configuration space of the Dalitz plot (see also Appendix
in Ref. [3]). Because of this analogy, the lower part of Fig. 6
can also be understood as showing momentum configurations
in the Dalitz plot.
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