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Atomic structure via highly charged ions and their exact quantum states

G. Friesecke1,2 and B. D. Goddard2

1Center for Mathematics, TU Munich, Germany
2Mathematics Institute, University of Warwick, Coventry CV47AL, United Kingdom

(Received 18 September 2009; published 25 March 2010)

For highly charged ions with 3 to 10 electrons, we derive explicit, closed-form quantum states which become
exact in the high charge limit. When combined with suitably renormalized experimental data across isoelectronic
sequences, these quantum states provide a widely applicable route to predicting electronic configurations and
term values for neutral atom energy levels. Moreover, our findings allow the prediction of missing levels, suggest
that certain current term assignments for five-electron ions are incorrect, and provide insight into the rare failure
of Hund’s rules in excited states.
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I. INTRODUCTION

It has long been recognized by experimental spectroscopists
[1,2] and quantum theorists [3–7] that highly charged ions
provide an attractive setting for the detailed understanding of
electronic structure and spectral properties of many-electron
systems. Highly charged ions are also of direct interest in
many contexts, e.g., strong field experiments in quantum
electrodynamics [8], plasma physics [9], and the investigation
of parity nonconservation [10].

Here we report, for highly charged ions with 3 to 10
electrons, explicit, closed-form quantum states which be-
come exact in the high charge limit. The ground states are
surprisingly similar to the semiempirical hydrogen orbital
configurations going back to Bohr, Hund, Pauli, and Slater
[11–13]. Our exact quantum states provide insight into the
fundamental mechanisms by which atomic structure emerges
from quantum mechanics. In particular, they yield a method
for term and configuration assignment for neutral atoms,
by using suitably renormalized experimental levels of the
corresponding isoelectronic sequence, such as Li, Be+, B2+,
C3+, . . . to interpolate to high charge ions. Also, our findings
suggest that certain current term assignments for five-electron
ions are incorrect, allow the prediction of missing levels, and
offer theoretical insight into Hund’s rules and their occasional
failure.

II. THEORETICAL BACKGROUND

Starting point of all theoretical insight into atomic energy
levels and states is the time-independent Schrödinger equation

H� = E�, (1)

where H is the Hamiltonian of the system, E is the energy,
and � is the wave function of the electrons.

For the lighter atoms, relativistic effects can be neglected
and, for nuclear charge Z and N electrons and in atomic units,
the (Born-Oppenheimer) Hamiltonian is

H =
N∑

i=1

(
−1

2
∇2

i − Z

ri

)
+

∑
1�i<j�N

1

rij

. (2)

Here the ri and rij are the electron-nucleus and electron-
electron distances, respectively, and ∇i is the gradient with
respect to the position coordinates xi of the ith electron. The

wave function � depends on the position coordinates and spins
of all the electrons, and must be antisymmetric with respect to
simultaneous exchange of the positions and spins of any two
electrons, by the Pauli principle.

III. QUANTUM STATES

Our results concern isoelectronic sequences. These are
defined by holding the number N of electrons fixed and
increasing the nuclear charge Z, as in the lithium sequence
Li, Be+, B2+, C3+, . . . . We find that in the large Z limit,
the low-lying quantum states can be determined explicitly, in
closed form. The ground states for 1 to 10 electrons are shown
in Fig. 1 and Table I. For excited states see Table II. The status
of these quantum states is given by the following mathematical
theorem: the difference between the true solutions to the
Schrödinger equation (1) with Hamiltonian (2), and the simple
wave functions given in the tables, tends in a least-squares
sense to zero along each isoelectronic sequence.

The derivation of these results is outlined in an Appendix.
The full details are documented elsewhere [14]. In an inter-
esting previous study [4], such asymptotic wave functions are
derived, but those given for B, Be, and C were incorrect, being
the standard hydrogen orbital configurations.

We note that the best available neutral atom or small
molecule wave functions delivered by computational methods
[15] consist of a superposition of millions [16] or even billions
[17] of different (method dependent) configurations, with the
exact functions requiring an infinite superposition [18]. The
simplicity of the wave functions derived here from (1) and
(2) for ions is then remarkable and lends theoretical support
to the continuing use of simplified wave functions in the
atomic spectra database [20] and their ongoing use as a source
of physical and chemical intuition and a starting point for
designing reduced models of complex systems [21–24].

We now compare the ground states in Fig. 1 to the
semiempirical hydrogen orbital configurations developed by
Bohr, Hund, and Slater [11–13] to explain the periodic table.
Recall the underlying rules: (a) Each electron in an atom
occupies a hydrogenic orbital.1 (b) The orbitals in each

1In fact, in Bohr’s and Hund’s original works [11,12] the electrons
were supposed to occupy hydrogenic Bohr orbits.
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Iso-el.
Seq.

Exact ground state in large Z limit

He

Li

Be 0.974... −0.129... −0.129... −0.129...

B 0.986... −0.116... −0.116...

C 0.994... −0.105...

N

O

F

Ne

FIG. 1. Diagrammatic representation of the ground states of the
Schrödinger equations (1) and (2) in the large Z limit. Arrows
indicate spin-up and spin-down electrons occupying the four lowest
hydrogen levels (1s, bottom; 2s, top left; 2pi , i = 1,2,3, top right).
Note the close similarity with the semiempirical hydrogen orbital
configurations. For more details see Table I.

hydrogen energy level, or shell, form sub-shells which are
occupied in the order 1s, 2s, 2p, 3s, 3p, 4s, 3d, . . . . (c) Hund’s
rule: Within any partially filled subshell, the electrons adopt
a configuration with the greatest possible number of aligned
spins. Thus, in, say, the carbon sequence, the six electrons
would occupy the orbitals 1s 1s 2s 2s 2p1 2p2 [the alternative
choices 2p1 or 2p2 for the last orbital are consistent with (b)
but not (c)].

There is a long history of explaining this beautiful heuristic
picture in terms of numerical solutions of Hartree- and Hartree-
Fock models [25]; here, for highly charged ions it is seen
to emerge directly from the fundamental laws of quantum
mechanics. For 7 of 10 elements, the high-charge limit of the

FIG. 2. (Color) Hilbert space visualization of the large-Z
six-electron ion ground state. Note that it can be written in the form
cos φ|1s22s22p12p2〉 − sin φ|1s22p12p22p2

3〉, with the nonobvious
angle φ = arctan[(

√
221876564389 − 460642)/98415] ≈ 6o.

FIG. 3. (Color) Quantum probability of finding a second electron
anywhere on the sphere of radius N/Z a.u. when the first electron
is at the north pole for the ground states of various atoms and
ions. (a) High-charge ion, beryllium sequence; (c) neutral beryllium;
(b) high-charge ion, nitrogen sequence; (d) neutral nitrogen. Plots
(a) and (b) show exact pair densities ρ2(x, y) = 〈�|δ(x − x1)δ(y −
x2)|�〉, � from Table I, x = (0, 0, N/Z), |y| = N/Z; (c) and (d)
are based on numerical wave functions [19]. In (a), neglecting
the corrections in Table I and Fig. 1 to the standard 1s22s2

configuration would lead to the unphysical result of a constant
probability.

Schrödinger ground state (Fig. 1) coincides with the hydrogen
orbital configuration predicted from (a), (b), and (c). For
the remaining three elements Be, B, and C, the large-ion
ground state contains the hydrogen orbital configuration as
a dominant part, but a 10 to 20% admixture of a particular
“higher subshell” configuration is also present, in which the
2s2 electron pair has migrated to a 2p orbital, see Fig. 2.
This shows that rule (b) is not obeyed in a strict sense
but only probabilistically. Numerical ab initio computations
confirm that this effect persists as Z is decreased to neutrality
[19].

These higher subshell contributions turn out to significantly
affect the typical relative position of electron pairs, which, as
we argue below, is a significant indicator for preferred bond
angles and hence chemical behavior.

Figure 3 demonstrates this point for the beryllium sequence.
For the quantum state in Fig. 1, and the first electron fixed,
without loss of generality, at the north pole on a sphere
around the nucleus, the preferred position of the second
electron (red) is seen to be at the south pole, but all positions
would be equally likely when the higher subshell contributions
are ignored. It is interesting to compare with the nitrogen
sequence, where the preferred position of the second electron
(red) is at a nonlinear angle. This different behavior of Be
and N correlates in a tantalizing way with the experimental
fact that the BeH2 molecule is straight, but NH2 is bent. The
connection becomes clear when one interprets the shape of
the trimer as a rough measurement of the relative position
of the two bonding electrons contributed by the central
atom.
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TABLE I. An orthonormal basis of ground states of the Schrödinger equations (1) and (2) in the large Z limit in standard notation
(see Appendix). The symmetry agrees with experiment for each element of each sequence, including neutral atoms.

Isoel. seq. Sym. Exact ground state in large Z limit Dim.

H 2S |1s〉, |1s〉 2

He 1S |1s2〉 1

Li 2S |1s22s〉, |1s22s〉 2

Be 1S 1√
1+c2

(|1s22s2〉 + c 1√
3
(|1s22p2

1〉 + |1s22p2
2〉 + |1s22p2

3〉)) 1

c = −
√

3
59049 (2

√
1509308377 − 69821) = −0.2310995 . . .

B 2P o 1√
1+c2

(|1s22s22pi〉 + c 1√
2
(|1s22pi2p2

j 〉 + |1s22pi2p2
k〉)) 6

1√
1+c2

(|1s22s22pi〉 + c 1√
2
(|1s22pi2p2

j 〉 + |1s22pi2p2
k〉))

(i, j, k) = (3, 1, 2), (1, 2, 3), (2, 3, 1)

c = −
√

2
393660 (

√
733174301809 − 809747) = −0.1670823 . . .

C 3P 1√
1+c2

(|1s22s22pi2pj 〉 + c|1s22p2
k2pi2pj 〉) 9

1√
1+c2

( 1√
2
(|1s22s22pi2pj 〉 + |1s22s22pi2pj 〉) + c 1√

2
(|1s22p2

k2pi2pj 〉 + |1s22p2
k2pi2pj 〉))

1√
1+c2

(|1s22s22pi2pj 〉 + c|1s22p2
k2pi2pj 〉)

(i, j, k) = (3, 1, 2), (1, 2, 3), (2, 3, 1)

c = − 1
98415 (

√
221876564389 − 460642) = −0.1056317 . . .

N 4So |1s22s22p12p22p3〉 4
1√
3
(|1s22s22p32p12p2〉 + |1s22s22p32p12p2〉 + |1s22s22p32p12p2〉)

1√
3
(|1s22s22p32p12p2〉 + |1s22s22p32p12p2〉 + |1s22s232p12p2〉)

|1s22s22p12p22p3〉
O 3P |1s22s22p2

i 2pj 2pk〉 9
1√
2
(|1s22s22p2

i 2pj 2pk〉 + |1s22s22p2
i 2pj 2pk〉)

|1s22s22p2
i 2pj 2pk〉

(i, j, k) = (3, 1, 2), (1, 2, 3), (2, 3, 1)

F 2P o |1s22s22p2
i 2p2

j 2pk〉 6

|1s2222p2
i 2p2

j 2pk〉
(i, j, k) = (3, 1, 2), (1, 2, 3), (2, 3, 1)

Ne 1S |1s22s22p2
12p2

22p2
3〉 1

Our exact quantum states also allow theoretical insight
into the failure of Hund’s rules for certain excited states.
Experimentally, the lowest 1s22s2p3 3So and 1Do levels
of the carbon sequence cross between Z = 20 and Z =
19, whereas Hund’s rules would order them universally as
3So < 1Do. However, the energy difference as read off from
Table III (by writing each energy as 〈�|H |�〉 and using
Slater’s rules [15]) consists of a 2s-2p positive exchange
term and a 2p-2p negative exchange term, E3So − E1Do =
(2s2p1|2p12s) − 3(2p12p2|2p22p1), and so indeed could
have either sign, depending on the orbitals. This interesting
effect is missed when these states are modelled by the aufbau
principle Slater determinants |1s22s2p32p12p2〉 (singlet) and
|1s22s2p32p12p2〉 (triplet). The energy difference is then
E3So − E1Do = −(2s2p1|2p12s) < 0, which wrongly predicts
a universal ordering.

IV. ENERGY LEVELS

The energy levels E = Ej (N,Z) of the atom/ion with
N electrons and nuclear charge Z have the the following
asymptotic expansion for large Z [3,5–7,14]

Ej (N,Z) = a(0)(N )Z2 + a
(1)
j (N )Z + O(1). (3)

Here a(0)(N )Z2 is a contribution purely from kinetic en-
ergy and electron-nucleus attraction, whilst the next order
term a

(1)
j (N )Z stems from electron-electron repulsion. The

coefficient a(0) is a sum of hydrogen atom eigenvalues,
a(0)(N ) = ∑N

i=1 −1/n2
i ; for the ground state one has a

(0)
GS(N ) =

−1 − (N−2)/8 for N = 2, . . . , 10. Much less trivially, we
have succeeded in also determining a

(1)
j in closed form, for

all low-lying energy levels of the first 10 atoms (see Table III
and the Appendix). We note that the O(1) term in (3) can be
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TABLE II. The 12 lowest asymptotic eigenstates of (1) and (2) for the carbon sequence (N = 6), along with their term values and energies,
ordered from top to bottom with increasing energy. The theoretical large-Z ordering agrees with experiment for all Z � 20, and differs by a
single crossing between the 7th and 8th levels when Z � 19 [see Fig. 4(d)]. Only the states with L3 = 0 and S3 = S are shown. The remaining
states, and those for the remaining N = 3, . . . , 10, are listed in Ref. [14].

Term � E (Z)

3P 1√
1+c2

(|1s1s2s2s2p12p2〉 + c|1s1s2p32p32p12p2〉) − 3
2 Z2 + ( 3806107

1119744 −
√

221876564389
3359232 )Z

c = 460642
98415 −

√
221876564389

98415

1D 1√
1+c2

( 1√
6
(2|1s1s2s2s2p32p3〉 − |1s1s2s2s2p12p1〉 − |1s1s2s2s2p22p2〉) − 3

2 Z2 + ( 19148633
5598720 −

√
221876564389

3359232 )Z

+c 1√
6
(2|1s1s2p12p12p22p2〉 − |1s1s2p32p32p12p1〉 − |1s1s2p32p32p22p2〉))

c = − 460642
98415 +

√
221876564389

98415

1S 1√
1+c2

( 1√
3
(|1s1s2s2s2p32p3〉 + |1s1s2s2s2p12p1〉 + |1s1s2s2s2p22p2〉) − 3

2 Z2 + ( 966289
279936 −

√
62733275266

1679616 )Z

+c( 1√
3
(|1s1s2p32p32p12p1〉 + |1s1s2p32p32p22p2〉 + |1s1s2p12p12p22p2〉)))

c = 230321
98415 −

√
62733275266

98415

5So |1s1s2s2p32p12p2〉 − 3
2 Z2 + 464555

139968 Z

3Do 1√
6
(2|1s1s2s2p32p12p2〉 − |1s1s2s2p32p12p2〉 − |1s1s2s2p32p12p2〉) − 3

2 Z2 + 4730843
1399680 Z

3P o 1√
2
(|1s1s2s2p32p12p1〉 + |1s1s2s2p32p22p2〉) − 3

2 Z2 + 1904147
559872 Z

3So 1√
12

(3|1s1s2s2p32p22p2〉 − |1s1s2s2p32p12p2〉 − 3
2 Z2 + 961915

279936 Z

−|1s1s2s2p32p12p2〉 − |1s1s2s2p32p12p2〉)
1Do 1√

12
(2|1s1s2s2p32p12p2〉 − |1s1s2s2p32p12p2〉 − |1s1s2s2p32p12p2〉 − 3

2 Z2 + 9625711
2799360 Z

+2|1s1s2s2p32p12p2〉 − |1s1s2s2p32p12p2〉 − |1s1s2s2p32p12p2〉)
1P o 1

2 (|1s1s2s2p32p12p1〉 − |1s1s2s2p32p12p1〉 − 3
2 Z2 + 242119

69984 Z

+|1s1s2s2p32p22p2〉 − |1s1s2s2p32p22p2〉)
3P Same as 3P above, c = 460642

98415 +
√

221876564389
98415 − 3

2 Z2 + ( 3806107
1119744 +

√
221876564389

3359232 )Z

1D Same as 1D above, c = − 460642
98415 −

√
221876564389

98415 − 3
2 Z2 + ( 19148633

5598720 +
√

221876564389
3359232 )Z

1S Same as 1S above, c = 230321
98415 +

√
62733275266

98415 − 3
2 Z2 + ( 966289

279936 +
√

62733275266
1679616 )Z

expanded further into

a
(2)
j (N ) + a

(3)
j (N )

1

Z
+ · · · ; (4)

but already the next order coefficients a2
j (N ) are not known ex-

actly even for N = 2 (for numerical values see, e.g., Ref. [26]).
Hence our closed-form energies a(0)(N )Z2 + a

(1)
j (N )Z, unlike

TABLE III. Missing experimental energy levels predicted from
Fig. 4, along with their symmetry and the dominant configuration.

N Z Atom or ion Domin. conf. Sym. Ei − E1 (a.u.)

6 15 P X 1s22p4 1S 4.0831
6 18 Ar XIII 1s22p4 1S 5.2334
6 18 Ar XIII 1s22s2p3 5So 0.9715
6 6 C 1s22s22p2 3P 0.68 ± 0.004
6 6 C 1s22s22p2 1D 0.76 ± 0.004
6 6 C 1s22s22p2 1S 0.85 ± 0.004
7 18 Ar XII 1s22s2p4 2P o 5.3458
8 17 Cl X 1s22s2p5 1P o 3.0407

our closed-form wave functions, do not have an asymptotically
vanishing absolute error but only an asymptotically vanishing
relative error.

To compare the asymptotic result (3) to experimental energy
levels, we argue that it is useful not to make a comparison of
bare values, or bare gaps, but to first renormalize both the
energy gaps and the nuclear charge Z so as to make them
constant at Z = ∞. We see from (3) that this is achieved by
the following prescription:

Do not plot Ej (Z) − E1(Z) against Z,

but Ej (Z)−E1(Z)
Z2 against 1

Z
. (5)

This scaling, which is a natural application of “renormalization
group thinking”, also reveals a wealth of hidden structure in
the experimental spectra.

Theoretical predictions from (3) and Table II are as follows:
(i) The energy levels should form smooth curves as a

function of 1/Z. This is a consequence [27] of the smooth
dependence of the Hamiltonian (2) on Z and smoothness of
the rescaling (5).
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FIG. 4. (Color) (a)–(g): Energy levels of the isoelectronic sequences with three to nine electrons. (Lines) Asymptotic Schrödinger levels
(this article); (points) experimental data [20] (averaged, by multiplicity, over J); only levels associated to 1s22si2pN−2−i configurations are
shown. To reveal the close similarity of spectra across each isoelectronic sequence, the natural but previously unused scaling (5) is essential.
Note that only two level crossings are present (in the beryllium and carbon sequences, colored red and blue). (h) Relativistic effects in the
lithium sequence for Z >∼ 20. (i) Higher principal quantum number levels in the beryllium sequence and their theoretical limits (5/72 for
1s22s23� and 3/22 for 1s22s24�, � = s, p; blue and green points and crosses, respectively).

(ii) The number of curves converging to zero as 1/Z → 0
should correspond exactly to the number n(N ) of different
a

(1)
j possible in formula (3) when a(0) is given by its lowest

value a
(0)
GS. By our results, n(N ) equals the number of eigen-

values of the reduced Hamiltonian (A1) (for 2 � N � 10,
1, 2, 6, 8, 12, 8, 6, 2, 1).

(iii) The exact theoretical tangents at 1/Z = 0 to the energy
gap curves are given by tj ( 1

Z
) = (a(1)

j (N ) − a
(1)
1 )/Z, with the

a
(1)
j as in Table III.

(iv) Energy curves whose dominant configurations contain
higher principal quantum number orbitals should converge
to values greater than zero as 1/Z → 0, more explicitly
to a(0)(N ) − a

(0)
GS(N ). These predictions are all beautifully

confirmed by the experimental data, see Fig. 4.
Such plots [see Fig. 3 (h)] also clearly demonstrate, for

Z >∼ 20, relativistic deviations from (1) and (2) (theoretically,
energy corrections scale like α2Z4 as Z gets large, where α ≈
1/137 is the fine structure constant).

Finally we discuss the error made by neglecting the
higher-order asymptotic energy corrections in (4). As Fig. 4
and Table III demonstrate, further terms are not needed to
resolve the number of levels emanating from the noninteracting
ground state, along with their term values and orderings. The
size of the next order O(1) term is known numerically in
some cases, such as the asymptotically lowest (1S, dominant
configuration 1s22s2), third (1P o, domin. conf. 1s22s2p) and
sixth (1S, domin. conf. 1s22p2) levels of the Be sequence in
Fig. 4(b) [28]:

Gap 1P o −1S 1S −1S 1P o −1S 1S −1S

Z 4 4 20 20
O(Z2) + O(Z) 0.4939 0.9252 2.4693 4.6260
contrib. [14]
O(1) contrib. [28] −0.2103 −0.3638 −0.2103 −0.3638
Experimental 0.1939 0.3471 2.3630 4.4068
value [20]
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Thus the O(1) term in (4) is important for neutral atoms,
as expected, while for highly charged ions with Z ≈ 20, the
error with or without this term is of the same magnitude (e.g.,
−0.104 versus +0.106 for the 1P o–1S Be sequence gap).
Hence in order to significantly improve our theoretical energies
in this regime, relativistic effects would need to be taken into
account as well.

V. TERM AND CONFIGURATION ASSIGNMENT
FOR NEUTRAL ATOMS

We now turn to neutral atoms and the important issue of
assigning term values (total spin, angular momentum, and
parity quantum numbers L, S, and p, encoded as 2S+1Xν ,
where ν indicates parity and X = S, P,D, . . . means L =
0, 1, 2, . . .) to observed energy levels.

We propose an alternative to standard assignment meth-
ods [22], which carefully exploits both experimental and
theoretical insights on the large Z limit.

(1) Plot the experimental excitation energies along an
isoelectronic sequence, under the scaling (5), as in Fig. 4.

(2) Near 1/Z = 0 our exact results (see Table II) deliver
closed-form wave functions for each level and hence unam-
biguous term values and configurations.

(3) The term values remain constant along each energy
level curve, since L, S, and p are quantized and hence their
continuous dependence on the parameter Z forbids them to
change.

(4) Ambiguities arise only when continuing term assign-
ments through level crossings. These can be resolved by
a simple and theoretically justified curvature minimization
algorithm, described below.

We have applied this method to the 45 energy levels
emanating from the ground states of the atoms Li to Ne at
1/Z = 0, obtaining the experimentally established term value
in each case. For the corresponding ions, our method captured
correctly the crossings in the carbon sequence between Z = 19
and 20, the beryllium sequence between Z = 4 and 5, and the
noncrossing despite visual ambiguity in the boron sequence
between Z = 5 and 6.

Our method also assigns a definite “configuration” (e.g.,
1s22s22p3) to an atomic quantum state: namely the config-
uration associated to the corresponding energy level curve
in the limit 1/Z → 0. This procedure can be thought of
as an alternative, less empirical definition of the notion of
configuration, not as an approximate property of the state
(obtained as a best fit of experimental data to model wave
functions) but as an exact property of the deformed state which
emerges when one makes the nuclear charge large.

Our curvature minimization algorithm (4) continues term
assignment iteratively from Z to Z − 1 by considering an ar-
bitrary possible pairing of levels at Z with those at Z − 1, con-
necting each pair by a cubic spline Ẽi(s) (Z − 1 � s � Z) and
minimizing the resulting total level curvature C(Z − 1, Z) =∫ Z

Z−1

∑N
i=1[Ẽ′′

i (s)]2ds over all matchings. This algorithm has
its theoretical basis in the following simple mathematical
result: with the Ẽi replaced by the exact Schrödinger levels
and assuming any crossings are transverse, C is finite only
for the correct labeling, and infinite otherwise, due to kink

singularities at crossings. In practice, we found it sufficient to
interpolate by cubic splines.

This method also allows the prediction of missing experi-
mental values by taking the value given by the cubic spline at
the appropriate value of 1/Z; see Fig. 4. Due to the lack of
constraints for the cubic spline fitting, “end” values at Z = N

are harder to predict, as indicated by the error bar for the carbon
levels.

VI. CORRECTION OF EXPERIMENTAL TERM
ASSIGNMENTS

Our results strongly suggest that two levels of the 5-
electron isoelectronic sequence are incorrectly assigned in
the NIST database [20]. The levels in question are assigned
to the 1s22s2p2 configuration, with term values 2S J = 1/2
and 2P J = 1/2, 3/2. For Z � 22, the two J = 1/2 terms
(experimentally indistinguishable through multiplicity) are
assigned with 2S < 2P , whereas for Z � 23 (the ions V XIX,
Cr XX, Mn XXI, Fe XXII, Co XXIII, Ni XXIV) the order is
reversed. We suggest here that this reversal is incorrect; the
modified data gives much more convincingly smooth curves,
see Fig. 5. By contrast, the analogous 2S and 2P levels of
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FIG. 5. (Color) Experimental energies of five-electron ions as
assigned by NIST, averaged over J (top), and with the 2S and 2P

J = 1/2 levels transposed for Z � 23 before averaging (bottom).
The NIST assignment appears to be at odds with the principle that
the levels should lie on smooth curves.
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seven-electron ions with configuration 1s22s2p4 appear to be
correctly assigned.

VII. CONCLUSIONS

For highly charged ions, hydrogen orbital configurations
do not just arise as semiempirical approximations but as exact
quantum states, which emerge directly from the Schrödinger
equation along with definite term values, energetic order-
ings, and same-shell-higher-subshell corrections. These states,
when combined with the systematic study of properties of
interest across isoelectronic sequences, provide a widely
applicable route to accessing atomic structure and complex
spectra. Another use of our results, as rare benchmark data
for the design of computational methods, will be explored
elsewhere [19].

APPENDIX

1. Notation

In Fig. 1, 1s, 2s, 2pi (i = 1, 2, 3) are the usual hydrogen
orbitals for ions with nuclear charge Z and one electron,
1s(x) = Z3/2e−Z|x|/

√
π , 2s(x) = Z3/2(1 − Z|x|/2)e−Z|x|/2/√

8π , 2pi(x) = Z5/2(x · ei)e−Z|x|/2/
√

32π . Note that the di-
ameter of the orbitals is smaller by a factor 1/Z as compared
to those in neutral hydrogen atoms. Here x is a 3D position
coordinate, e1, e2, e3 are orthonormal basis vectors of 3D
space, the overbar or its absence gives the spin state (down
and up, respectively), a square (as in 1s2) indicates that both
spin states are occupied, and |ϕ1 · · · ϕN 〉 stands for the Slater
determinant of the orbitals ϕ1, . . . , ϕN .

2. Reduction to a finite-dimensional problem

Use of rescaled position coordinates x̃ = Z−1x removes
the factor Z from (2) and creates a small factor, 1/Z, in
front of electron interaction. Applying degenerate first-order
perturbation theory and scaling back to the original variables
yields that for large Z, the lowest eigenvalues and eigenstates

of (1) and (2) have the asymptotic expansion (3), � =
�j (N,Z) = 


(0)
j (N,Z) + O(Z−1), where the approximate

Schrödinger levels a(0)Z2 + a
(1)
j Z and states 


(0)
j are the exact

eigenvalues and eigenstates of the finite-dimensional reduced
problem

(a′) PHP� = E�, (b′) � ∈ V0. (A1)

Here P = ∑
i |�i〉〈�i | is the projector onto the noninteracting

ground state V0 (lowest eigenspace of (2) with second term
deleted). Rule (b′) is the same as (a) in the Aufbau principle,
while (a′) replaces the empirical postulates (b) and (c), instead
selecting the correct hydrogen orbital configurations from
theory.

3. Determining the eigenvalues and eigenstates of the reduced
Hamiltonian PHP

For 2 � N � 10, by hydrogen atom theory plus the theory
of noninteracting fermions V0 has a basis {�1, . . . , �d(N)}
of Slater determinants with hydrogen orbital configurations
(1s)2(2s)j (2p)N−2−j , j = 0, 1, 2 and dimension d = ( 8

N−2

)
corresponding to the number of possible assignments of
the N−2 valence electrons to the 8 valence orbitals. PHP
is a d × d matrix with entries 〈�i |H |�j 〉 (for the carbon
sequence, a 70 × 70 matrix whose entries are integrals over
R18 × Z6

2). By conservation of total spin, angular momentum,
and parity under (2) [and (A1)], PHP leaves the simultaneous
eigenspaces of L2, L3, S2, S3, and parity invariant. Aided
by representation theory for the underlying symmetry group
SO(3) × Z2 × SU(2) of (1), (2), (A1) (which corresponds to
rotation and inversion of electron positions and rotation of
spins), these can be explicitly determined [14] (for previous
analysis of some cases, see Ref. [22]). The largest such spaces
turn out to be 2D! Evaluating the matrix elements of PHP is
achieved by successively reducing the domain of integration
from R3N to R6 to R3 to R via Slater’s rules [15], Fourier
analysis, and spherical polar coordinates and evaluating the
remaining one-dimensional integrals by residue calculus as
implemented in MAPLE.
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