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Millimeter-wave spectroscopy and multichannel quantum-defect-theory analysis of high Rydberg
states of xenon: The hyperfine structure of 129Xe+ and 131Xe+
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Millimeter-wave transitions between high-n Rydberg states of several isotopes of xenon have been recorded at
sub-megahertz resolution. The fine and, for 129Xe and 131Xe, hyperfine structures of s, p, d , and f Rydberg states
with principal quantum number in the range 52 � n � 64 have been determined from combination differences
and analyzed using multichannel quantum defect theory. Improved eigenquantum defects and channel interaction
parameters for the odd- and even-parity Rydberg states of xenon and the hyperfine structure of the 2P3/2 ground
state of 129Xe+ and 131Xe+ have been obtained. Nearly degenerate p and d fine or hyperfine levels are very easily
mixed by even weak stray electric fields.
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I. INTRODUCTION

The determination of high-resolution spectroscopic in-
formation on cations represents a considerable challenge,
particularly in cases where no allowed transitions lie in the
infrared and visible regions of the electromagnetic spectrum.
In such cases the information on the cation can be derived from
Rydberg-state spectroscopy and extrapolation of the Rydberg
series using multichannel quantum defect theory (MQDT)
[1–3]. This method has been recently used to determine the
hyperfine structure of the ground state of ortho-H2

+ [4] and
para-D2

+ [5] and of both spin-orbit states (2P3/2 and 2P1/2) of
the ground state of 83Kr+ [6–8]. For the two naturally occurring
isotopes of xenon with nonzero nuclear spin, 129Xe (I = 1/2)
and 131Xe (I = 3/2), the hyperfine structure of the 2P1/2

state of the ion has been determined from the analysis of the
autoionizing Rydberg series [9] (see Fig. 1); the determination
of the hyperfine structure of the 2P3/2 ground state of Xe+ from
high-resolution millimeter-wave spectra of high-n Rydberg
states of xenon is the subject of this article.

We applied the same technique as was used to determine the
hyperfine structure of the 2P3/2 state of 83Kr+ [6]: Millimeter-
wave transitions between high-n Rydberg states of xenon were
measured using selective field ionization and mass-selective
detection of the ions; from the observed transition frequencies,
the intervals between the Rydberg levels were derived with a
precision of better than 1 MHz. The hyperfine structure of the
ion was derived in a MQDT analysis of the millimeter-wave
spectroscopic data together with complementary experimental
data from the literature [9–57] (see Table I). Even though
the millimeter-wave data cover only a small range of atomic
energy levels, the high resolution makes it possible to de-
termine accurate MQDT parameters which can be used to
predict spectral positions over a substantial energy range, as
already shown for krypton, where the MQDT parameters of the
odd-parity states determined from the bound Rydberg states [6]
also describe the autoionizing Rydberg states very well [8].
The presence of a nonzero nuclear spin I allows access to
Rydberg states not accessible in I = 0 isotopes, and additional
information is obtained from the hyperfine structure. Whereas
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the study of the hyperfine structure of the bound Rydberg states
of krypton [6] covered only odd-parity states [the penetrating
s (� = 0) and d (� = 2) Rydberg series with large quantum
defects δ > 1], this study includes even-parity p (� = 1) and
f (� = 3) levels, of which the f states exhibit nonpenetrating
character with small quantum defects (0.02 � δ � 0.06). The
new high-resolution millimeter-wave data enable us to improve
the existing sets of MQDT data on xenon [43,57–65].

The quantum defects of p and d Rydberg states of xenon
differ by almost exactly 1.0 (1.0007 for the np[3/2]1 and
nd[1/2]1 Rydberg series) so that several hyperfine levels
of moderately high (n ∼ 60) Rydberg states are almost
degenerate and can be mixed by small (E ∼ 10 mV/cm)
electric stray fields. The high resolution of our millimeter-wave
experiments allows us to study these effects and to observe,
in the presence of a small stray field, otherwise forbidden
transitions that are nominally �� = 0,±2. A simple model
used to analyze these effects qualitatively and quantitatively is
presented.

II. EXPERIMENTS

The millimeter-wave spectra of high-n Rydberg states
of xenon were measured in an experiment similar to those
described in Refs. [6,66]. The millimeter-wave source, a
phase-stabilized backward wave oscillator (BWO) operating
in the frequency range 240–380 GHz, has been described in
Ref. [67]. In this study, the frequency range 240–348 GHz has
been used.

Xenon atoms were excited to high Rydberg states in a
2 + 1′ resonant three-photon process using UV and visible
radiation from two pulsed dye lasers pumped by the tripled
(355 nm) and doubled (532 nm) output of a neodymium-doped
yttrium aluminum garnet (Nd:YAG) laser. The wave number
of the first dye laser was doubled and set to correspond to the
(5p)5(2P3/2)6p[1/2]0 ← (5p)6 1S0 two-photon resonance of
xenon (2ν1 = 80 118.96 cm−1). The radiation of the second
dye laser (17 670–17 676 cm−1) further excited the xenon
atoms to high ns and nd (J = 1) Rydberg states, which
served as initial states for millimeter-wave transitions. To
minimize the background ion signal (from 3ν1 or 2ν1 + 2ν2

photoionization), the powers of the lasers were set as low
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FIG. 1. Energy level diagram of the 2P ground state of 132Xe+,
131Xe+, and 129Xe+. For each spin-orbit component of the ion (2P3/2

and 2P1/2), the wave numbers (per centimeter) of the ionization
energies of 132Xe from the 1S0 ground state and the isotope shifts
(per centimeter) for 131Xe and 129Xe are given. The hyperfine levels
of 131Xe+ and 129Xe+ are labeled with the quantum number F +, and
their positions (per centimeter) with respect to the center of gravity of
the hyperfine structure are given. The data for the 2P1/2 state are from
Ref. [9], the ionization energies for the 2P3/2 state are from Ref. [48],
and the hyperfine structures are determined in this article.

as possible, and the second laser was delayed with respect
to the first one by about 15 ns using an optical delay line.
Both laser beams were arranged collinearly and crossed a
pulsed skimmed supersonic beam of xenon (Pangas, spec-
troscopic grade purity) at right angles in the middle of an
array of resistively coupled cylindrical extraction plates. The

millimeter-wave radiation entered the photoexcitation region
perpendicularly to the xenon and the laser beams. Because
an oversized waveguide is used for the BWO, its output
is distributed among different electromagnetic modes with
horizontal or vertical polarization [67]. The polarization vector
of the first laser and the main polarization vector of the
millimeter-wave radiation were oriented parallel to the atomic
beam and the applied electric field; the polarization vector
of the second laser and the secondary polarization vector of
the millimeter-wave radiation were mutually perpendicular
and perpendicular to the atomic beam and the applied field.
This arrangement allows the observation of �MF = 0,±1
transitions and does not lead to any polarization restriction of
the observable millimeter-wave transitions.

The millimeter-wave transitions were detected by selective
field ionization using a pulsed electric field in the range
between 40 and 133 V/cm, which was applied 1–4 µs after
the laser pulse and also accelerated the xenon ions toward
a microchannel plate detector. Spectra of different xenon
isotopes (128Xe, 129Xe, 130Xe, 131Xe, 132Xe, 134Xe, and 136Xe)
were recorded by placing temporal gates at the corresponding
positions of the time-of-flight (TOF) spectrum. Examples of
such isotope-selective spectra are displayed in Figs. 2 and 3.
The photoexcitation region and the adjacent TOF tube were
surrounded by two cylindrical mu-metal shields to minimize
stray magnetic fields. The residual stray electric fields were re-
duced to values below 5 mV/cm using the procedure described
in Ref. [68], which consisted of measuring the quadratic Stark
shift for different applied fields and determining the field for
which the Stark shift was minimal (see Fig. 4). To avoid power
broadening of the millimeter-wave transitions (cf. Ref. [66]),

TABLE I. Overview of the experimental energy levels reported in the literature.

n� [K]J n Refs. n� [K]J n Refs.

nd[1/2]0 5–21 [15,26,43,49] np[1/2]0 6–42 [15,36,49,54]
ns ′[1/2]0 6–7, 9–15 [15,32,49] np′[1/2]0 6–11, 13, 18–31 [15,24,34,41,49,51]
nd[1/2]1 5–34 [15,26,27,48,49] np[1/2]1 6–12, 15–19, 28–40 [15,24,29,49]
nd[3/2]1 5–66 [15,26,27,48,49] np[3/2]1 6–12 [15,49]
ns[3/2]1 6–47 [15,26,27,49] nf [3/2]1 4–73 [15,24,29,49]
nd ′[3/2]1 5–78 [14,15,23,27,28,32,39,45,49] np′[3/2]1 6–17 [15,24,31,42,49,51,55]
ns ′[1/2]1 6–52 [14,15,23,27,28,32,39,45,48,49] np′[1/2]1 6–17 [15,24,31,42,49,51,55]
nd[3/2]2 5–25 [15,26,49] np[5/2]2 6–27 [15,36,49]
nd[5/2]2 5–25 [15,26,49] np[3/2]2 6–27 [15,36,49]
ns[3/2]2 6–44 [15,26,43,49] nf [3/2]2 4–19a [15,36,43,49]
nd ′[3/2]2 5, 7–40 [32,49,50] nf [5/2]2 4–19a [15,36,43,49]
nd ′[5/2]2 5, 7–24 [32,49,50,57] np′[3/2]2 6–11, 13 [15,24,41,49,51,55]
nd[7/2]3 5–25 [15,26,49] nf ′[5/2]2 4–13 [24,41,44,49]
nd[5/2]3 5–29 [15,26,43,49] np[5/2]3 6–15 [15,49]
nd ′[5/2]3 5, 7–40 [15,32,49,50,57] nf [5/2]3 4–11 [15,49]
nd[7/2]4 5–44 [15,26,43,49] nf [7/2]3 4–13 [15,43,49]

nf ′[7/2]3 4–8b [49,55]
nf ′[5/2]3 4–8b [49]
nf [9/2]4 4–11 [15,49]
nf [7/2]4 4–9 [15,49]
nf ′[7/2]4 4–8b [41,49,55]
nf [9/2]5 4–11 [15,49]

aThe nf [3/2]2 and nf [5/2]2 levels with n > 19 are not resolved in the experiments reported in Ref. [36].
bOf the autoionizing nf ′[K]J (J = 3, 4) Rydberg series, only the n = 4, 5 levels of the K = 7/2(J = 3, 4) series reported in Ref. [55] and the
n = 4 − 7 levels of nf ′[7/2]5 in Ref. [41] are resolved.
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FIG. 2. Comparison of millimeter-wave overview spectra of the
62p ← 54d[3/2]1 transitions for the three most abundant isotopes:
(top) 132Xe (I = 0, 26.9% nat. abundance), (middle) 131Xe (I =
3/2, 21.2%), and (bottom) 129Xe (I = 1/2, 26.4%). For 129Xe and
131Xe, the marks on the assignment bars for transitions sharing
the same final state are connected by thin dashed lines for easier
interpretation. The spacing between the assignment bars represents
the hyperfine structure of the intermediate 54d[3/2]1 state.

the millimeter-wave radiation was attenuated by about −10 dB
by introducing stacks of paper between the millimeter-wave
source and the experimental chamber. These measures allowed
an accuracy in the measured transition frequencies of better
than 1 MHz.

III. MQDT CALCULATIONS

To analyze the Rydberg spectrum of Xe using MQDT,
we follow the formalism introduced by Lu [58] and Lee and
Lu [69] for the analysis of the Xe and Ar absorption spectra.
This formalism was extended by Wörner et al. [7,9] (in a
method similar to that outlined by Sun [70]) for the analysis
of the hyperfine structure of 83Kr and of the autoionizing
Rydberg states of 129Xe and 131Xe and was used to analyze the
millimeter-wave spectra of 83Kr [6].
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FIG. 3. (left) Section of the millimeter-wave overview spectrum
of the 62p[5/2]2 ← 54d[3/2]1 transition of xenon recorded in
different mass channels. The spectra have been shifted along the
vertical axis by an offset of 0–5 arb. units. The spectrum of the 131Xe
isotope is drawn with a dashed line, and the 130Xe spectrum is placed
at the bottom for clarity. The strong peak in the 129Xe spectrum at
263 445.7 MHz is the 62p[3/2]2(5/2) ← 54d[3/2]1(3/2) transition,
the strong peak in the 131Xe spectrum at 263 552.7 MHz is the
62p[5/2]3(5/2) ← 54d[3/2]1(5/2) transition, and the weak peak at
263 516.4 MHz is the 62p[3/2]1(3/2) ← 54d[3/2]1(1/2) transition.
(right) Millimeter-wave spectrum of the 61p[5/2]2 ← 52d[3/2]1

transition of 132Xe at high resolution.

Three different angular momentum coupling schemes are
used. In the close-coupling region of the electron-ion collision,
the electrostatic interaction between the electron and the ion
core is larger than the spin-orbit interaction and much larger
than the hyperfine interaction [69]. Therefore the following
(LS) angular momentum coupling scheme is adequate to
describe the close-coupling eigenchannels:

�L+ + �� = �L, �S+ + �s = �S, �L + �S = �J , �J + �I = �F,

(1)

where �L+ and �S+ represent the orbital and spin angular
momenta of the ionic core, �� and �s represent the corresponding
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FIG. 4. Millimeter-wave transitions between
Rydberg states of 132Xe in the presence of
different electric fields. The spectra are shifted
along the vertical axis by an offset corre-
sponding to the value of the applied field in
millivolts per centimeter (from −40 mV/cm
to +40 mV/cm). The 57f [3/2]2 ← 53d[1/2]1

transition with a field-free transition frequency of
276 360.5 MHz (left) exhibits a stronger Stark
effect than the 61p[5/2]2 ← 55s[3/2]1 transi-
tion at 267 477.3 MHz (right) and is split into
different M ′

J ← M ′′
J components, of which the

|M ′
J | = 1 ← |M ′′

J | = 1 component should be the
strongest according to the �MJ selection rules.
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TABLE II. Summary of the total angular momentum quantum number F of the hyperfine Rydberg levels converging to each hyperfine
state F + of the ion. The last two lines represent the case I = 0, where F + = J + and F = J .

� = 0 � = 1 � = 2 � = 3

F + j = 1/2 j = 1/2 j = 3/2 j = 3/2 j = 5/2 j = 5/2 j = 7/2

0 1/2 1/2 3/2 3/2 5/2 5/2 7/2
1 1/2, 3/2 1/2, 3/2 1/2–5/2 1/2–5/2 3/2–7/2 3/2–7/2 5/2–9/2
2 3/2, 5/2 3/2, 5/2 1/2–7/2 1/2–7/2 1/2–9/2 1/2–9/2 3/2–11/2
3 5/2, 7/2 5/2, 7/2 3/2–9/2 3/2–9/2 1/2–11/2 1/2–11/2 1/2–13/2
1/2 0, 1 0, 1 1, 2 1, 2 2, 3 2, 3 3, 4
3/2 1, 2 1, 2 0–3 0–3 1–4 1–4 2–5

angular momenta of the Rydberg electron, and �I represents
the nuclear spin. In the long-range part of the electron-ion
collision, however, the energy level structure of the Rydberg
states corresponds primarily to the energy levels of the ionic
core. Thus the following (F+j ) coupling scheme (or J+j for
isotopes with zero nuclear spin) is used for the dissociation (or
fragmentation) channels [7]:

�L+ + �S+ = �J+, �J+ + �I = �F+, �� + �s = �j, �F+ + �j = �F .

(2)

An overview of all possible hyperfine levels with � � 3 is given
in Table II. The assignments of the Rydberg levels observed
in this study are made using the notation n� [K]J (F ) based on
the traditional Racah (J+�) coupling scheme [71]:

�L+ + �S+ = �J+, �J+ + �� = �K, �K + �s = �J , �J + �I = �F .

(3)

Table I summarizes all n� [K]J Rydberg series with � � 3
observed so far; a prime indicates, as usual, Rydberg states
belonging to series converging to the 2P1/2 ionization limit.

For atoms with a nuclear spin I = 0, the energies of the
bound states are well described by a set of MQDT parameters
consisting of the ionization thresholds Ei ≡ E(2PJ+ ), the
eigenchannel quantum defects µα , their energy dependence,
and the elements of the orthogonal transformation matrix Uiα

connecting the close-coupling eigenchannels α to the fragmen-
tation channels i. Each bound energy level is represented by
two effective principal quantum numbers ν3/2 and ν1/2, defined
by the relations

E = E
(2

P3/2
) − hcRM

(ν3/2)2
= E

(2
P1/2

) − hcRM

(ν1/2)2
, (4)

where the mass-dependent Rydberg constant RM is defined as
RM = R∞M+/M , with the atomic mass M and the ionic mass
M+ = M − me. The bound energy levels are the solutions
satisfying the relation∑

α

Uiα sin[π (νi + µα)]Aα = 0, (5)

which has nontrivial solutions when

det |Uiα sin[π (νi + µα)]| = 0. (6)

In Eqs. (5) and (6), νi is defined with respect to the
corresponding ionization limit according to Eq. (4), and Aα

is the expansion coefficient of the radial part of the Rydberg

electron wave function in the basis of the close-coupling
eigenchannels. The elements Uiα of the N × N transformation
matrix are conveniently factorized as

Uiα =
∑

ᾱ

UiᾱVᾱα, (7)

where Uiᾱ = 〈LSJ |J+jJ 〉 represents elements of the J+j -
LS frame-transformation matrix. Vᾱα accounts for the typ-
ically small departure of the close-coupling channels from
pure LS coupling and may be represented by N (N − 1)/2
generalized Euler angles θjk , as described by Lee and Lu [69]:

Vᾱα =
N∏
j

N∏
k>j

R(θjk) = R(θ12) · R(θ13) · · · · · R(θ23) · · · · ,
(8)

where R(θjk) are rotation matrices defined as

Rmm(θjk) =
{

cos θjk if m = j or m = k

1 otherwise
,

Rmn(θjk) =

⎧⎪⎨
⎪⎩

− sin θjk if m = j, n = k

sin θjk if m = k, n = j

0 otherwise

⎫⎪⎬
⎪⎭m 	= n. (9)

The energy dependence of µα can be approximated by

µα = µ0
α + ε µ1

α, (10)

where

ε = E − E(2P3/2)

hcRM

or ε = −(ν3/2)−2 (for ε < 0). (11)

Because the hyperfine interaction in the ionic core is
much smaller than the spin-orbit interaction, which leads to
a level separation of 10 536.92 cm−1 between the 2P3/2 and
2P1/2 levels [9], mixing of the spin-orbit components by the
hyperfine interaction is negligible. Therefore the hyperfine
structures of the two spin-orbit components (see Fig. 1) can be
treated separately and expressed as functions of the magnetic
dipole and electric quadrupole hyperfine coupling constants
AJ+ and BJ+ [BJ+ = 0 for I = 1/2 (129Xe) or J+ = 1/2] as

E(J+, F+)

hc
= E(J+)

hc
+ AJ+

C

2

+BJ+

3
4C(C + 1) − I (I + 1)J+(J+ + 1)

2I (2I − 1)J+(2J+ − 1)
,

(12)
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where C = F+(F+ + 1) − I (I + 1) − J+(J+ + 1) and
E(J+) is the energy of the center of gravity of the hyperfine
structure. The contribution from the octupole coupling is
many orders of magnitude smaller [12,72] and thus neglected
here. In analogy to Eq. (6), the Rydberg levels are determined
by solving the determinantal equation

det |UiF αF
sin[π (νiF + µαF

)]| = 0, (13)

where

UiF αF
=

∑
ᾱF

UiF ᾱF
VᾱF αF

, (14)

and νiF is an effective principal quantum number νJ+F+

defined relative to the position of the ionization threshold
EiF ≡ E(2PJ+F+) of the dissociation channel iF (i.e., the
position of one of the four or six hyperfine levels of
the ion):

E = E(2PJ+F+ ) − hcRM

(νJ+F+ )2
. (15)

The elements of the frame-transformation matrix UiF ᾱF
=

〈LSJF |J+F+jF 〉 are calculated as [6,7]

〈LSJF |J+F+jF 〉 = (2F + 1)
√

(2J + 1)(2L + 1)(2S + 1)(2j + 1)(2F+ + 1)(2J+ + 1)

×
∑

mj ,mJ+ ,mJ ,m�,mL+ ,mL,ms,mS+ ,mS,mF+ ,mI

(−1)F
+−j−J++2I−J+L−S−2s+3mF +mJ+ +2mJ

×
(

I J F

mI mJ −mF

) (
L S J

mL mS −mJ

) (
L+ � L

mL+ m� −mL

) (
S+ s S

mS+ ms −mS

)
(16)

×
(

F+ j F

mF+ mj −mF

) (
� s j

m� ms −mj

) (
I J+ F+

mI mJ+ −mF+

)(
L+ S+ J+

mL+ mS+ −mJ+

)

for any value of mF . Whereas the frame-transformation
matrix Uiα for I = 0 isotopes is block-diagonal in J , the
transformation matrix UiF αF

can be separated into individual
F blocks, of which the even-parity F = 5/2 matrix of 131Xe,
with dimension 19 × 19, is the largest. The dimensions of the
Uiα and UiF αF

matrices can be easily derived from Table II,
which summarizes all s, p, d, and f Rydberg series of xenon,
including hyperfine structure. Assuming that the eigenchannel
quantum defects µα are equal for all isotopes and that the
hyperfine interaction is negligible in the close-coupling region,
the eigenchannel quantum defects µα obtained from the
analysis of the Rydberg levels of any given I = 0 isotope
and the corresponding Vᾱα matrix elements can also be used
for the analysis of I > 0 isotopes, that is, µαF

= µα and
VᾱF αF

= Vᾱα . The signs of the elements of the corresponding
frame-transformation matrices of the different J values must
be consistent, which can be ensured by calculating the elements
Uiᾱ = 〈LSJ |J+jJ 〉 with Eq. (16) and setting I = 0 (in
which case, F+ = J+ and F = J ). Several of the Uiᾱ matrix
elements have a different sign than in Refs. [73,74].

Above the 2P3/2 ionization threshold, the boundary condi-
tion for the dissociation channels which remain closed (i ∈ Q)
is still described by Eq. (5). The dissociation channels that are
open (i ∈ P ) are required to have a common eigenphase shift
πτ : ∑

α

Uiα sin[π (−τ + µα)]Aα = 0. (17)

This system of equations can be put into the standard form of
a generalized eigenvalue problem for tan(πτ ) [75]:

� A = tan(πτ )�A, (18)

with


iF αF
=

{
UiF αF

sin
[
π

(
νiF + µα(F )

)]
for iF ∈ Q,

UiF αF
sin

[
πµα(F )

]
for iF ∈ P,

(19)

�iF αF
=

{
0 for iF ∈ Q,

UiF αF
cos

[
πµα(F )

]
for iF ∈ P.

(20)

This eigenvalue problem has as many solutions (τρ and
expansion coefficients Aρ) as there are open channels. The
total photoionization cross section is

σ (ω) ∝ ω
∑
F

2F + 1

2F0 + 1

∑
ρ

1

Nρ

⎛
⎝∑

α(F )

Dα(F )A
ρ
α(F )

⎞
⎠

2

, (21)

where ω is the photon energy, F0 is the total angular momentum
quantum number of the initial state, Dα is the reduced dipole
matrix element, and the normalization factor Nρ is given by

N2
ρ =

∑
iF ∈P

⎧⎨
⎩

∑
α(F )

UiF αF
cos

[
π

(−τρ + µα(F )

)]
Aρ

α(F )

⎫⎬
⎭

2

. (22)

IV. RESULTS

Typical millimeter-wave overview spectra are shown in
Fig. 2. The spectra correspond to transitions from the
54d[3/2]1(F ) Rydberg state to 62p[K]J (F ′) Rydberg states
of xenon and cover a range of 4 GHz (0.13 cm−1). Recording
spectra of different isotopes simultaneously by setting several
temporal gates at the corresponding positions of the TOF
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TABLE III. Rydberg states of 132Xe observed by millimeter-wave spectroscopy. The energies/h (megahertz) are relative to the position of
the 52d[1/2]1 level. The differences between observed and calculated (MQDT) energies (Eo − Ec)/h (megahertz) are given in brackets. The
position of the 52d[1/2]1 level of 132Xe above the 1S0 ground state is 97 788.973(11) cm−1, as derived from the MQDT analysis. The last
column gives the effective quantum defects δ of the observed Rydberg states; the numbers in parentheses represent 1 standard deviation in
units of the last digit.

n� [K]J δ

n = 57 n = 58 n = 59 n = 60 n = 61
(n + 4)s[3/2]1 365 834[−0.3] 429 925[−0.5]
nf [5/2]2 329 949.9[0.2] 364 619.5[−0.1] 397 540.3[−0.2] 428 828.5[0.1] 458 589[−0.5] 0.03018(12)
nf [3/2]2 329 062.4[0.2] 363 777.5[0.3] 396 740.2[−0.1] 428 067.6[0.1] 457 865[−0.1] 0.05509(12)
nf [3/2]1 328 957.8[0.2] 363 677.8[0.1] 396 645.6[−0.1] 427 977.6[0.1] 457 779[−0.3] 0.05804(12)
(n + 3)p[1/2]0 384 395[0.3] 416 332[0.3] 446 700[0.3] 3.43567(14)
(n + 2)d[3/2]2 349 416[0.0] 383 100[0.1] 415 101[0.3] 2.47516(13)
(n + 3)p[3/2]2 313 003.8[−0.2] 348 539.2[−0.1] 382 267.2[−0.8] 414 309.5[−0.9] 3.50050(12)
(n + 2)d[1/2]1 312 389.4[1.0] 347 956.1[1.3] 381 713.6[1.1] 413 783.5[1.4] 2.51734(12)
(n + 3)p[3/2]1 312 362.8[−1.0] 347 931.3[−0.5] 381 689.6[−1.4] 413 760.4[−1.6] 3.51807(12)
(n + 3)p[5/2]2 310 876.6[−0.2] 346 521.0[0.1] 380 351.4[0.4] 412 488.7[0.6] 3.55872(12)
(n + 3)p[1/2]1 309 412.7[−0.2] 345 131.8[−0.4] 379 032.4[0.3] 411 235.2[0.6] 3.59870(12)

n = 50 n = 51 n = 52 n = 53
(n + 4)s[3/2]1 27 961.9[−0.3] 79 043.8[−0.3] 127 207.4[−0.3] 3.99423(8)
(n + 2)d[3/2]1 16 267.5[0.2] 68 022.6[0.0] 116 809.1[0.4] 162 849.0[0.1] 2.21505(8)
(n + 2)d[1/2]1 0.0[0.1] 52 702.1[0.3] 102 362.8[−0.1] 149 212.1[−0.1] 2.51732(8)

spectrum is very efficient and enables the detection of even
weak transitions. The shifts of isotopes with even mass
numbers are negligible, thus the transitions between high
Rydberg states are observed at almost the same frequencies
for all I = 0 isotopes but at different frequencies for the I 	= 0
isotopes because of the hyperfine splittings (see Fig. 3).

Transitions have been assigned using combination differ-
ences and the general �F = 0,±1 selection rule (�J = 0,±1
for I = 0 isotopes). Electric dipole transitions are expected
to occur between states of opposite parity and follow the
�� = ±1 selection rule. The latter does not strictly hold
because transitions between s and f Rydberg states could
be observed for all isotopes as a result of the mixing of s and
d eigenchannels. Indeed, transitions to states of all np[K]J
and nf [K]J Rydberg series of 132Xe with J = 1, 2 have
been observed not only from the intermediate nd[1/2]1 and
nd[3/2]1 Rydberg states but also from the ns[3/2]1 states.

For 132Xe with I = 0, effective quantum defects δ =
n − ν3/2 have been obtained for the n� [K]J series from a
fit to the observed transition frequencies and are given in
Table III. The quantum defects are almost constant for the
observed levels, except for the nd[3/2]1 series, for which
the quantum defect increases with increasing energy. These
quantum defects allowed us to assign the transitions located
in the immediate vicinity of the (power-broadened) transitions
to np[3/2]1 Rydberg states to transitions to (n − 1)d[1/2]1

Rydberg states (see Figs. 2 and 5). These transitions are for-
bidden according to the �� = ±1 and + ↔ − parity selection
rules for electric dipole transitions but become allowed in
the presence of residual electric fields, which mix the nearly
degenerate (�ν3/2 = 0.0007) np[3/2]1 and (n − 1)d[1/2]1

Rydberg states (see the following discussion). The assignment
is corroborated by the fact that the transition disappears
when the stray electric fields are minimized. “Forbidden”

n′s[3/2]1 ← nd[1/2]1 and n′d[3/2]2 ← nd[1/2]1 transitions
have been observed and assigned as well.

The positions of the observed Rydberg levels of 132Xe,
129Xe, and 131Xe relative to the positions of the 52d[1/2]1,
52d[1/2]1(3/2), and 52d[1/2]1(5/2) levels, respectively,
could be determined with an accuracy better than 1 MHz by
fitting the relative level energies to the observed transition
frequencies in a least squares fit, the results of which are
presented in Tables III–V. Some levels could only be observed
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61p[3/2]1 60d[1/2]1
from 53d[3/2]1
(shifted by +51755.1 MHz)

from 53d[1/2]1
(shifted by +36434.6 MHz)

from 54s[3/2]1
(shifted by +11694.4 MHz)

from 52d[3/2]1

FIG. 5. Millimeter-wave spectra exhibiting transitions from se-
lected nd and ns initial states to the 61p[3/2]1 and 60d[1/2]1

Rydberg states of 132Xe. Transitions from d or s states to d Rydberg
states are forbidden by the �� selection rule but become allowed
in the presence of electric fields. High-resolution spectra recorded
with reduced millimeter-wave power are presented below the low-
resolution overview spectra. The transitions to the 60d[1/2]1 state
disappeared after minimization of the stray electric field, as shown in
the bottom spectrum.
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TABLE IV. Rydberg states of 129Xe observed by millimeter-wave spectroscopy. The energies/h (megahertz) are relative to the position
of the 52d[1/2]1(3/2) level. The differences between observed and calculated energies (Eo − Ec)/h (megahertz) are given in brackets. The
position of the 52d[1/2]1(3/2) level of 129Xe above the 1S0 (F = 1/2) ground state is 97 788.938(11) cm−1.

n� [K]J F

n = 57 n = 58 n = 59 n = 60 n = 61
nf [7/2]3 5/2 400 452[0.1] 431 731[0.2] 461 483[−0.3]
nf [5/2]3

a 5/2 366 865[−0.4] 399 807.6[−0.4] 431 116[0.0] 460 897[−0.5]
nf [5/2]2 3/2 332 129.7[0.4] 366 823[−0.4] 399 767.0[0.0] 431 076.4[0.0] 460 858[0.4]
nf [5/2]2

a 5/2 329 481.6[0.2] 364 146.4[0.0] 397 062.3[−0.8] 428 346[−0.3] 458 104[−0.4]
nf [3/2]1

a 3/2 328 951.0[0.2] 363 646.2[−0.1] 396 590.7[0.0] 427 901.2[0.7] 457 682[0.2]
nf [3/2]2 5/2 328 912.3[−0.3] 363 608.4[−0.3] 396 553.3[−0.8] 427 864[−0.2]
nf [3/2]2

a 3/2 328 484.0[0.5] 363 199.8[0.8] 396 163.1[0.4] 427 491.2[0.8] 457 290[1.3]
nf [3/2]1 1/2 328 392[1.1] 363 111.6[0.1] 396 079.8[0.3] 427 411.6[0.2] 457 214[0.4]
(n + 3)p[1/2]0 1/2 385 852[0.0] 417 822[0.1] 448 224[0.2]
(n + 3)p[3/2]2 3/2 315 457[0.4] 351 000[0.0] 384 736[−0.9] 416 786[−0.6] 447 260[−1.1]
(n + 3)p[5/2]3

a 5/2 314 571[0.7] 350 160[0.7] 383 938[0.2] 416 029[1.2] 446 541[1.0]
(n + 3)p[3/2]1 1/2 314 019[0.2] 349 586.4[−0.5] 383 347.6[−0.2] 415 421.9[−0.4] 445 922[0.5]
(n + 3)p[5/2]2

a 3/2 313 686.3[−0.2] 349 321.2[−0.4] 383 144.1[0.2] 415 274.9[0.6] 445 825[0.7]
(n + 2)d[3/2]2 5/2 349 332.1[−0.5] 414 990[−1.0] 445 405[−1.1]
(n + 2)d[1/2]1 3/2 347 828[0.8] 381 571.6[0.6] 413 628.0[1.0]
(n + 3)p[3/2]2

a 5/2 312 170.9[−0.5] 347 725.4[−1.2] 381 471.2[−1.9] 413 529.7[−1.6]
(n + 3)p[3/2]1

a 3/2 311 772.2[−0.3] 347 346.4[−0.3] 381 110.6[−0.3] 413 185.4[−0.7]
(n + 3)p[1/2]1 1/2 311 254.7[0.0] 346 940.6[0.2] 380 804.8[−0.1] 412 969.4[−0.4]
(n + 2)d[1/2]0 1/2 346 923[0.5]
(n + 3)p[5/2]2 5/2 310 311.5[−0.8] 345 956.4[0.3] 379 786.6[0.6] 411 923.6[0.5]
(n + 3)p[1/2]1 3/2 309 062.9[0.0] 344 777.2[0.7] 378 671.4[0.1] 410 868.7[0.5]

n = 50 n = 51 n = 52 n = 53
(n + 4)s[3/2]1 1/2 30 642[0.3] 81 723.6[−0.7] 129 887.2[−1.2]
(n + 4)s[3/2]1

a 3/2 27 309.1[−0.1] 78 403.1[−0.3] 126 577.3[−0.6]
(n + 2)d[3/2]1 3/2 17 461.6[1.3] 69 227.2[1.1] 118 024.5[1.3] 164 075.5[0.8]
(n + 2)d[3/2]1 1/2 16 290.9[0.4] 68 050.5[0.4] 116 841.4[0.4] 162 886.9[0.9]
(n + 2)d[1/2]1 1/2 1768[−0.9] 54 483.5[−0.8] 104 156.5[−1.1] 151 017[−1.6]
(n + 2)d[1/2]1 3/2 0.0[0.0] 52 684.7[0.1] 102 328.5[−0.1] 149 161.5[0.1]
(n + 2)d[1/2]0 1/2 −1344[−0.6] 51 410.4[0.0] 101 118.7[0.1] 148 011.4[0.2]

aThe assignment of the [K]J quantum numbers is ambiguous.

in one or two transitions in overview scans, and their positions
are indicated with one digit less (their absolute accuracy is
about 2 MHz). A few transitions involving np states are split
and shifted by small residual electric fields, which mix these
states with energetically close-lying (n − 1)d states (see the
earlier discussion and Figs. 5 and 6). Such cases are marked
in Table V and discussed later.

The energy level structures of the odd- and even-parity
states determined experimentally are presented in Figs. 7–9,
where they are compared with the calculated structures (see
below). The nd[3/2]1 states are well separated from the
other Rydberg states (see Fig. 7). Therefore the spectra with
nd[3/2]1(F ) as initial state are ideally suited to assign the
hyperfine structures of the observed transitions and to extract
the hyperfine structure of the ion using MQDT calculations.
The assignments of the Racah-type n� [K]J quantum numbers
of the Rydberg levels of 129Xe and 131Xe presented in
Tables IV and V are based on the correlation diagrams,
calculated by MQDT and depicted in Figs. 10–13, between
hyperfine levels of low-n states (n ≈ 30 for � < 3), for
which the hyperfine splitting is smaller than the separation
between the individual n� [K]J levels, and n ≈ 60. For a

few hyperfine levels, the assignment of the [K]J quantum
numbers is ambiguous because of avoided crossings; these
cases are marked in Tables IV and V. An example is the
avoided crossing between the F = 3/2 hyperfine levels of
the ns[3/2]1 and ns[3/2]2 states of 129Xe around n ≈ 40
(see the thick dashed lines in Fig. 11). The assignment of
the observed hyperfine levels to ns[3/2]1 is based on the
assumption that states with predominantly J = 1 character
are excited from the 6p[1/2]0(F = I ) intermediate state by
the second laser. Other examples are the avoided crossings
between the F = 3/2 hyperfine levels of the np[5/2]2 and
np[3/2]1 states of 129Xe (thick dashed lines) and between the
F = 5/2 hyperfine levels of the np[5/2]3 and np[3/2]2 states
of 129Xe (thin dash-dotted lines) around n ≈ 45 (see Fig. 12).
In the latter case, the assignment is based on the selection rules
for the Stark mixing with the neighboring (n − 1)d[1/2]1(3/2)
state (see the subsequent discussion). All assignments are
supported by the mixing coefficients Aα determined in the
MQDT calculations. For some of the strongly mixed nf

hyperfine states, only the K value of the Racah-type n� [K]J
quantum numbers could be assigned based on the correlation
to low-n states (n ≈ 20) (see Fig. 13).
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TABLE V. Rydberg states of 131Xe observed by millimeter-wave spectroscopy. The energies/h (megahertz) are relative to the position
of the 52d[1/2]1(5/2) level. The differences between observed and calculated energies (Eo − Ec)/h (megahertz) are given in brackets. The
position of the 52d[1/2]1(5/2) level of 131Xe above the 1S0 (F = 3/2) ground state is 97 788.960(11) cm−1.

n� [K]J F

n = 57 n = 58 n = 59 n = 60 n = 61
nf [7/2]3

a 7/2 398 976.0[−0.2] 430 258[0.3] 460 013[0.9]
nf [7/2]J a 5/2 365 911[0.3] 398 830.0[0.0] 430 117.3[0.2] 459 877.5[0.0]
nf [7/2]4

a 7/2 398 780.6[0.1] 430 070[0.2] 459 832[0.2]
nf [7/2]3 3/2 365 662.7[0.0] 398 592.4[0.1] 429 889.0[0.1] 459 658.4[−0.1]
nf [7/2]J a 5/2 365 583.1[1.0] 398 516.2[0.4] 429 817[0.6] 459 589[0.6]
nf [5/2]2 1/2 330 694.6[0.2] 365 386[−0.4] 398 329.0[−0.4] 429 638.1[−0.1] 459 419[−0.2]
nf [5/2]2

a 3/2 330 573.3[0.4] 365 273.1[0.3] 398 222.6[0.2] 429 538.2[0.4] 459 325[0.0]
nf [3/2]2

a 1/2 330 321[−0.9] 398 004.5[−0.5] 429 333.9[−0.6] 459 133[−1.4]
nf [5/2]J a 5/2 329 481.4[0.9] 364 148.4[0.5] 397 067.0[0.2] 428 354.0[1.0] 458 114[0.6]
nf [5/2]2

a 7/2 329 458.6[0.1] 364 129[0.6] 397 050[0.5] 428 338.5[0.8] 458 099[0.1]
nf [5/2]3

a 3/2 329 437.4[−0.1] 364 103.7[−0.1] 397 021.0[−0.9] 428 308.0[0.0] 458 067[−1.0]
nf [5/2]J a 5/2 329 424.1[−0.8] 397 014.1[0.0] 428 301.7[−0.2]
nf [5/2]3

a 7/2 329 417.3[0.0] 364 087[−1.2] 397 010[0.4] 428 299[0.2] 458 061[−0.1]
nf [3/2]2 3/2 329 231.3[0.4] 363 922.2[0.8] 396 861.6[0.4] 428 166.8[0.7] 457 943.1[0.4]
nf [3/2]1

a 1/2 329 177[0.4] 363 872[0.0] 396 815[−0.6] 428 124.5[0.2] 457 905[0.3]
nf [3/2]2 5/2 328 622.5[−0.2] 363 314.5[−0.2] 396 255.1[−0.4] 427 561.2[0.0] 457 338[−0.1]
nf [3/2]1 3/2 328 548.3[−0.5] 363 247.1[0.4] 396 194[0.5] 427 503[−0.1]
nf [9/2]4 7/2 328 541.2[0.6] 363 231[0.9] 396 171[0.4] 427 475.8[0.8] 457 252[0.6]
nf [9/2]4 5/2 328 235[0.8] 362 931[0.9] 395 877[1.2] 427 187[1.3]
nf [9/2]5 7/2 328 215[−0.5] 362 914[0.0] 395 863[0.6] 427 177[0.2] 456 963[0.1]
nf [3/2]2 7/2 362 860[0.2] 395 810[0.7] 427 124[0.0] 456 909[−0.1]
nf [3/2]1 5/2 328 057[−0.5] 362 768[0.0] 395 725.5[−0.3] 427 048[0.1] 456 840[0.0]
(n + 3)p[1/2]0 3/2 384 861[0.0] 447 194[0.7]
(n + 3)p[3/2]2 7/2 349 655.8[−0.4] 383 389.3[−1.3] 415 436.5[−2.2] 445 913[2.6]
(n + 3)p[3/2]2 5/2 349 411.3[−0.4] 383 157[−1.2] 415 216.3[−1.2] 445 699[−1.3]
(n + 2)d[1/2]1 3/2 312 756b[5.9] 348 311b[5.6] 382 054b[5.5] 414 108b[7.1]
(n + 3)p[3/2]2 3/2 312 746b[−2.3] 348 286b[−2.0] 382 020b[−0.9] 414 066b[−1.1]
(n + 3)p[3/2]1 5/2 312 672.9[−0.6] 348 244.0[−1.0] 382 009b[−0.6] 414 084b[−2.2]
(n + 3)p[5/2]2

a 7/2 312 201.1[−1.1] 347 845.2[−0.1] 381 674.7[0.0] 413 811.4[0.4]
(n + 3)p[3/2]2 1/2 312 169.7[1.3] 347 711.8[1.5] 381 448.3[2.8] 413 498b[3.4]
(n + 2)d[1/2]1 1/2 312 078[−0.8] 347 638.0[−1.4] 381 388.1[−2.6] 413 450b[−3.3]
(n + 3)p[3/2]1 3/2 311 719.2[−0.1] 347 276.2[−0.1] 381 024.4[−0.4] 413 085.6[−0.2]
(n + 3)p[3/2]1 1/2 311 471.9[−0.1] 347 035.4[−0.2] 380 789.9[−0.2] 412 855.9[−0.3]
(n + 3)p[5/2]3

a 7/2 311 368.0[0.2] 346 971.1[0.0] 380 762.9[0.1] 412 864.0[0.3]
(n + 3)p[5/2]3

a 5/2 310 830[−0.6] 346 461.4[−0.2] 380 283.0[−0.3] 412 415.2[0.1]
(n + 3)p[5/2]2

a 5/2 310 606.3[−0.3] 346 226.8[−0.6] 380 032.1[−0.1] 412 142.7[−0.3]
(n + 3)p[5/2]3 3/2 310 391.2[−0.1] 345 999[0.2] 379 793.9[−0.6] 411 898.7[−1.1]
(n + 3)p[1/2]1 5/2 309 960.7[0.0] 345 658.2[0.3] 379 535.8[0.4] 411 714.4[−0.1]
(n + 3)p[5/2]2 3/2 309 945.6[0.7] 345 591.1[−0.6] 379 423.1[0.1] 411 562.0[0.6]
(n + 3)p[5/2]2 1/2 309 615.0[−1.0] 345 260.0[−0.1] 379 089.9[−0.4] 411 228.2[0.5]
(n + 3)p[1/2]1 3/2 308 894[0.8] 344 604[0.1] 378 496.5[0.4] 410 690.2[0.0]
(n + 3)p[1/2]1 1/2 308 391[0.3] 344 108[0.0] 378 007[0.6] 410 206[−0.3]

n = 50 n = 51 n = 52 n = 53
(n + 4)s[3/2]1 5/2 29 149.2[0.0] 80 234.8[0.4] 128 402.4[1.2]
(n + 4)s[3/2]1 3/2 27 440.8[0.4] 78 524.9[0.3] 126 690.8[0.4]
(n + 4)s[3/2]1 1/2 26 802.2[−0.1] 77 884.5[−0.4] 126 049.0[−0.4]
(n + 2)d[3/2]1 1/2 16 962.6[−0.5] 68 719.7[−0.2] 117 507.8[0.1] 163 549.2[0.0]
(n + 2)d[3/2]1 3/2 16 691.1[0.0] 68 450.4[0.6] 117 240.4[0.8] 163 284.0[0.7]
(n + 2)d[3/2]1 5/2 16 178.6[−0.1] 67 939.2[0.5] 116 730.9[1.0] 162 776.1[0.9]
(n + 2)d[1/2]1 3/2 53 101.7[0.1] 102 760.5[−0.4]
(n + 2)d[1/2]1 5/2 0.0[0.2] 52 686.8[0.8] 102 331.6[1.0] 149 164.8[1.2]
(n + 2)d[1/2]1 1/2 52 426.0[0.2] 102 081.7[0.0]

aThe assignment of the [K]J quantum numbers is ambiguous.
bFound to be strongly perturbed by the Stark effect caused by the stray field.
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FIG. 6. (left) Millimeter-wave overview spectra of transitions
from nd[3/2]1(F ) (n = 52, 53) hyperfine levels to 60p[K]J (F )
Rydberg states of 131Xe. The spectra are shifted by the frequencies
corresponding to the positions of the initial hyperfine levels relative
to the 52d[1/2]1(5/2) level (cf. Table V). For the traces shifted by
+68 450.3 MHz, the overlap region of two consecutive scans can be
compared. The intense lines appearing near the position 312 713 MHz
are the transitions to the 60p[5/2]3(7/2) state originating from the
52d[3/2]1(5/2) or 53d[3/2]1(5/2) state, respectively. (right) The
Stark effect of the 60p[3/2]2(3/2) and 59d[1/2]1(3/2) Rydberg
states has been calculated assuming a field-free state separation of
10 MHz and two different values of f (M) using Eq. (28). The vertical
gray lines indicate for each value of f (M) the estimated stray field
corresponding to the scans shown in the upper half of the left panel.
The scans in the lower half of the left panel were recorded under
conditions with very small stray fields so that only transitions to p

states were observed.

The MQDT analysis of the hyperfine structure requires
complete sets of MQDT parameters for the even- (p, f )
and odd-parity (s, d) states. As a primary data source to
determine these parameters, the compilation by Saloman
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FIG. 7. Calculated (crosses) and observed (circles) positions of
the fine and hyperfine levels of the 53d and 55s Rydberg states of
132Xe, 129Xe, and 131Xe. The sequence of the Rydberg levels of 132Xe
with increasing energy is nd[1/2]0, nd[1/2]1, nd[7/2]4, nd[3/2]2,
nd[7/2]3, nd[5/2]2, nd[5/2]3, nd[3/2]1, (n + 2)s[3/2]2, and
(n + 2)s[3/2]1.
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FIG. 8. Calculated (crosses) and observed (circles) positions of
the fine and hyperfine levels of the 62p Rydberg states of 132Xe,
129Xe, and 131Xe. The sequence of the Rydberg levels of 132Xe
with increasing energy is np[1/2]1, np[5/2]2, np[5/2]3, np[3/2]1,
np[3/2]2, and np[1/2]0. Gray crosses indicate the calculated fine and
hyperfine levels of the 61d Rydberg states (see Fig. 7), whereas gray
circles indicate the observed ones.

[49] has been used. This reference contains the term values
of all known Rydberg states with n � 20 for a natural
isotope mix. Only a few isotope-selective measurements have
been reported, notably the interferometric measurements on
136Xe by Humphreys and Paul [15] and the VUV reference
measurement by Brandi et al. [48]. Because the isotope shift
between the mean level positions of a natural mix and the
132Xe isotope is small (0.002–0.003 cm−1 [48]), that is, smaller
than the accuracy of most of the earlier experiments and also
smaller than the accuracy of the MQDT calculations at low
energies, the mean values of the natural mix can be used for
the 132Xe isotope. In the following cases, different values than
those listed in Ref. [49] have been used: (1) The term values of
L’Huillier et al. [36] have been found to need a correction of
−0.7 cm−1, and the corrected values have been used; (2) the
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FIG. 9. Calculated (crosses) and observed (circles) positions of
the fine and hyperfine levels of the 59f Rydberg states of 132Xe,
129Xe, and 131Xe. The sequence of the Rydberg levels of 132Xe
with increasing energy is nf [3/2]1, nf [3/2]2, nf [9/2]5, nf [9/2]4,
nf [5/2]3, nf [5/2]2, nf [7/2]4, and nf [7/2]3. Gray crosses indicate
the calculated fine and hyperfine levels of the 63s Rydberg states
(see Fig. 7).
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FIG. 10. Calculated hyperfine structure of high-nd Rydberg
states relative to the hyperfine level with the highest F value (F = 9/2
level for 129Xe and F = 11/2 level for 131Xe) belonging to the
nd[7/2]4 Rydberg series. The calculated levels with F = 1/2 are
connected by thick lines, those with F = 3/2 by thick dashed lines,
those with F = 5/2 by thin dash-dotted lines, those with F = 7/2
by thin solid lines, and those with F � 9/2 by thin dotted lines. The
adjacent (n + 1)s and (n + 2)s Rydberg states are marked with gray
lines. On the right-hand side of each panel, the derived hyperfine
structure of the cation is shown, labeled with the values of F +. The
number of hyperfine series (and their F values) converging to each
ion level can be found in Table II.
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FIG. 11. Calculated hyperfine structure of high-ns Rydberg states
relative to the highest hyperfine level (F = 1/2 for 129Xe and F =
5/2 for 131Xe) of the ns[3/2]1 state. The calculated levels with F =
1/2 are connected by thick lines, those with F = 3/2 by thick dashed
lines, those with F = 5/2 by thin dash-dotted lines, those with F =
7/2 by thin solid lines, and those with F � 9/2 (d states only) by
thin dotted lines. The adjacent (n − 2)d and (n − 1)d Rydberg states
are marked with gray lines. The hyperfine levels of the ns states mix
with (n − 2)d states above n = 80 and with (n − 1)d states above
n = 100 (for 129Xe). Note the avoided crossing between the F = 3/2
hyperfine levels of the ns[3/2]1 and ns[3/2]2 Rydberg states of 129Xe
around n ≈ 40. On the right-hand side of each panel, the derived
hyperfine structure of the cation is shown, labeled with the values
of F +.
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FIG. 12. Calculated hyperfine structure of high-np Rydberg
states relative to the hyperfine level with the highest F value (F = 7/2
level for 129Xe and F = 9/2 level for 131Xe) belonging to the np[5/2]3

Rydberg series. The calculated levels with F = 1/2 are connected by
thick lines, those with F = 3/2 by thick dashed lines, those with
F = 5/2 by thin dash-dotted lines, those with F = 7/2 by thin solid
lines, and those with F = 9/2 by thin dotted lines. Gray lines indicate
the hyperfine levels of the (n − 3)f and (n − 2)f Rydberg states; p-f
mixing can be studied in the region where the f states approach the
p states, that is, above n = 90 for 129Xe and n > 100 for 131Xe. On
the right-hand side of each panel, the derived hyperfine structure of
the cation is shown, labeled with the values of F +.

values of Refs. [41,44] for the nf ′[5/2]2 autoionizing Rydberg
series have been adopted, instead of the values of Ref. [11];
and (3) the resonance positions given in Refs. [39,45] have
been used for the nd ′[3/2]1 autoionizing Rydberg series. For
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FIG. 13. Calculated hyperfine structure of nf Rydberg states of
(left)129Xe and (right) 131Xe, expressed as ν3/2 − n (with ν3/2 defined
relative to the center of gravity of the hyperfine structure of the 2P3/2

state). The calculated levels with F = 1/2 are connected by thick
lines, those with F = 3/2 by thick dashed lines, those with F = 5/2
by thick dash-dotted lines, those with F = 7/2 by thin solid lines,
those with F = 9/2 by thin dotted lines, those with F = 11/2 with
thin dashed lines, and that with F = 13/2 with a thin dash-dotted
line. At low n, the typical pattern of Racah-type coupling (with the
sequence nf [3/2]1,2, nf [9/2]5,4, nf [5/2]3,2, nf [7/2]4,3) is observed.
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the terms missing in Ref. [49], the values from the references
given in Table I have been used. The energies of the states
observed in this study relative to the (5p)6 1S0 ground state
have been obtained by combining the present results with the
laser spectroscopic data of the nf [3/2]1 (n � 73) series [29]
and the high-resolution data in Refs. [15,48], that is, the values
on which the currently adopted ionization energy [48,49] is
based.

The autoionizing states between the 2P3/2 and 2P1/2

ionization limits (ns ′ levels with n > 7, np′ levels with n > 6,
nd ′ levels with n > 5, and all nf ′ levels) were included in
the fit by treating them as bound states by neglecting the
coupling to the open channels, that is, by setting νi(F ) = 0
for the open channels (where E > Ei(F ) ) in Eqs. (6) and (13).
The experimental resonance positions were adopted from the
results of the line-shape analysis in the literature. The positions
of the sharp ns ′[1/2]1 resonances (with 33 � ν1/2 � 90) for
129Xe and 131Xe [76] have been included to ensure that
the fitted MQDT parameters describe the autoionizing states
as well. The A1/2 hyperfine coupling constants for 129Xe
and 131Xe and the positions of the ionization thresholds
E(2P1/2) were fixed to the values reported in Ref. [9]. The
quality of the MQDT parameters were checked by simulating
the line shapes of the autoionizing Rydberg states using
Eqs. (18)–(22) and comparing them to the experimental line
shapes [9,50,57].

Because of the large number of parameters and correlations
between parameters, some parameters, in particular, the energy
dependence of the quantum defects and several Euler angles
θjk , have been either set to zero or constrained to other values,
as follows. For the interactions between the LS-coupled eigen-
channels p5� 2S+1LJ , only interactions between channels with
(1) �� = �J = 0, �L = 0,±1, and �S = 0,±1 or (2) �� =
±2 and �L = �S = �J = 0 were considered. Case 1 rep-
resents the nonvanishing matrix elements 〈L′S ′J | ∑i ξ (ri)��i ·
�si |LSJ 〉 of the spin-orbit interaction [74,77]. The mixing of
the s and d eigenchannels (or between p and f channels) (case
2) can be understood as an effect of short-range electrostatic
interactions, that is, quadrupole and exchange interactions,
and occurs between channels with the same values of L

and S [78]. For the energy dependence of the eigenchannel
quantum defects µ1

α , the values for the channels differing only
in J were constrained to a common value.

The close-coupling channel parameters µα and Vᾱα (ex-
pressed in terms of the generalized Euler angles θjk) obtained
in the fit and the transformation matrix Uiα for the I = 0
isotopes are listed in Tables VI and VII, together with the
designations of the LS-coupled eigenchannels ᾱ and of the
dissociation channels i. The remaining parameters and results
of the MQDT analysis are summarized in Table VIII. The
differences between observed and calculated positions of the
odd- and even-parity levels presented in Tables III–V are about
1 MHz or less, that is, on the order of the experimental accuracy
of our millimeter-wave spectroscopic measurements.

V. DISCUSSION

It has already been mentioned that the �� = ±1 selection
rule for electric dipole transitions does not strictly hold for
the observed millimeter-wave transitions. The occurrence of

f ↔ s transitions (where the + ↔ − selection rule for the
parity still holds) can be explained by s-d mixing resulting
from the nonspherical charge distribution of the ion core.
Transitions between d[1/2]1 and s or d Rydberg states (see
Fig. 5) are, in addition, forbidden according to the + ↔ −
parity selection rule. Such transitions can be interpreted either
as electric quadrupole transitions (selection rules �� = 0,±2
and |J − J ′| � 2 � J + J ′) occurring at high millimeter-
wave power densities or as arising from Stark mixing of the
initial or final state with an energetically close-lying state,
with � differing by ±1, induced by a residual electric field.
The matrix element describing the coupling between two states
with �� = ±1 caused by an electric fieldE in the J+� coupling
scheme is [30]

〈(ν�J+)KJM|Eez|(ν ′�′J+)K ′J ′M〉
= (−1)J+J ′+K+K ′+l+J++s−M [(2J + 1)

× (2J ′ + 1)(2K + 1)(2K ′ + 1)]1/2

×
(

J 1 J ′

−M 0 M

){
K J s

J ′ K ′ 1

}

×
{

� K J+

K ′ �′ 1

}
〈ν�||r||ν ′�′〉 Ee, (23)

with

〈ν�||r||ν ′� − 1〉 =
√

�〈ν�|r|ν ′� − 1〉,
〈ν�||r||ν ′� + 1〉 = −√

� + 1〈ν�|r|ν ′� + 1〉.
For isotopes with nonzero nuclear spin, the elements of the
Stark-effect operator are

〈(ν�J+)KJFM|Eez|(ν ′�′J+)K ′J ′F ′M〉
= (−1)F+F ′+J+J ′+K+K ′+l+J++s+I+1−M

× [(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)

× (2K + 1)(2K ′ + 1)]1/2

×
(

F 1 F ′
−M 0 M

) {
J F I

F ′ J ′ 1

}{
K J s

J ′ K ′ 1

}

×
{

� K J+
K ′ �′ 1

}
〈ν�||r||ν ′�′〉 Ee

≡ f (M) 〈ν�|r|ν ′�′〉 Ee. (24)

The six-j symbols in Eqs. (23) and (24) imply the selection
rules �F = 0,±1, �J = 0,±1, and �K = 0,±1. For nearly
degenerate high-n levels (|�ν| � 1), the radial integral can be
approximated by [79,80]

〈ν�|r|ν ′� − 1〉 ≈ 3
2νν ′[1 − �2/(νν ′)]1/2a0, (25)

where ν = n∗ stands for the effective principal quantum
number and a0 is the Bohr radius. In the first approximation of
perturbation theory, the admixture of a state �2 in a state �1

is
〈�2|Eez|�1〉

E1 − E2
�1. (26)

Thus the matrix element of the “forbidden” transition between
initial state �1 and final state �3 contains a term

〈�2|Eez|�1〉〈�3|µ|�2〉
E1 − E2

, (27)
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TABLE VI. MQDT parameters for odd-parity states of xenon.

1 2 3 4 5

J = 0
ᾱ p5d 3P0 p5s 3P0

i [2P3/2] d3/2 [2P1/2] s1/2

µ0
α 0.54310(21) 0.05125(195)

µ1
α −0.3035(92) −0.3938(64)

U1α 0.9932 −0.1165
U2α 0.1165 0.9932
θ1k 0.1168(30)

J = 1
ᾱ p5d 1P1 p5d 3P1 p5d 3D1 p5s 1P1 p5s 3P1

i [2P3/2] d5/2 [2P3/2] d3/2 [2P1/2] d3/2 [2P3/2] s1/2 [2P1/2] s1/2

µ0
α 0.12802(59) 0.54037(29) 0.37839(101) 0.98705(16) 0.04201(27)

µ1
α 0.0793(222) −0.3035a 0.3560(155) −0.2651(163) −0.3938b

U1α 0.7490 −0.5535 −0.3323 0.1457 0.0331
U2α 0.2717 0.7363 −0.6116 0.0275 −0.0961
U3α 0.5780 0.3710 0.7181 0.0908 −0.0665
U4α −0.1441 0.0679 0.0000 0.9135 0.3744
U5α 0.1019 0.0961 0.0000 −0.3678 0.9193
θ1k 0.0246(12) 0.0 −0.1774(13) 0.0
θ2k −0.0285(26) 0.0 0.1179(11)
θ3k 0.0 0.0
θ4k 0.2307(37)

J = 2
ᾱ p5d 3P2 p5d 3D2 p5d 3F2 p5d 1D2 p5s 3P2

i [2P3/2] d5/2 [2P3/2] d3/2 [2P1/2] d3/2 [2P1/2] d5/2 [2P3/2] s1/2

µ0
α 0.53373(53) 0.37551(105) 0.49912(107) 0.38706(68) 0.01802(11)

µ1
α −0.3035a 0.3560c −0.1301(104) 0.1809(181) −0.3938b

U1α 0.6526 −0.2107 −0.1848 0.6978 −0.0934
U2α −0.3101 0.7380 −0.4427 0.4016 0.0444
U3α −0.1475 0.2171 0.8614 0.4344 0.0211
U4α 0.6604 0.6032 0.1670 −0.4039 −0.0945
U5α 0.1417 0.0000 0.0000 0.0000 0.9899
θ1k −0.0420(25) 0.0 0.0 0.1422(32)
θ2k 0.0149(51) 0.0630(221) 0.0
θ3k 0.0 0.0
θ4k 0.0

J = 3
ᾱ p5d 3D3 p5d 3F3 p5d 1F3

i [2P3/2] d5/2 [2P3/2] d3/2 [2P1/2] d5/2

µ0
α 0.37942(97) 0.48994(82) 0.37801(198)

µ1
α 0.3560c −0.1301d −0.0779(198)

U1α 0.8494 −0.0599 0.5244
U2α −0.2923 0.7739 0.5619
U3α 0.4395 0.6305 −0.6398
θ1k −0.0471(99) 0.0
θ2k 0.0946(79)

J = 4
ᾱ p5d 3F4

i [2P3/2] d5/2

µ0
α 0.47993(23)

µ1
α −0.1301d

aConstrained to the value of the d 3P0 eigenchannel.
bConstrained to the value of the s 3P0 eigenchannel.
cConstrained to the value of the d 3D1 eigenchannel.
dConstrained to the value of the d 3F2 eigenchannel.
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TABLE VII. MQDT parameters for even-parity states of xenon.

1 2 3 4 5 6

J = 0
ᾱ p5p 1S0 p5p 3P0

i [2P1/2] p1/2 [2P3/2] p3/2

µ0
α 0.41217(89) 0.56131(175)

µ1
α −0.4886(206) −0.4021(153)

U1α 0.3413 0.9400
U2α 0.9400 −0.3413
θ1k −0.2672(43)

J = 1
ᾱ p5p 3S1 p5p 1P1 p5p 3P1 p5p 3D1 p5f 3D1

i [2P1/2] p1/2 [2P1/2] p3/2 [2P3/2] p1/2 [2P3/2] p3/2 [2P3/2] f5/2

µ0
α 0.53163(195) 0.63549(69) 0.51197(27) 0.61857(116) 0.05763(10)

µ1
α −0.4723(340) −0.4877(218) −0.4021a −0.3964(17) 0.3693(154)

U1α −0.1883 0.1636 0.2212 0.9422 −0.0338
U2α 0.6785 −0.6662 −0.1289 0.2812 −0.0101
U3α −0.3867 −0.5875 0.6972 −0.1388 0.0050
U4α 0.5955 0.4293 0.6696 −0.1126 0.0040
U5α 0.0000 0.0000 0.0000 0.0358 0.9994
θ1k 0.0 0.2078(32) 0.0 0.0
θ2k −1.1337(27) 0.0 0.0
θ3k −0.2457(31) 0.0
θ4k 0.0359(28)

J = 2
ᾱ p5p 3P2 p5p 1D2 p5p 3D2 p5f 1D2 p5f 3D2 p5f 3F2

i [2P1/2] p3/2 [2P3/2] p1/2 [2P3/2] p3/2 [2P1/2] f5/2 [2P3/2] f5/2 [2P3/2] f7/2

µ0
α 0.49701(21) 0.50998(51) 0.61608(66) 0.05052(13) 0.05849(11) 0.01368(15)

µ1
α −0.4021a −0.7647(227) −0.3964b 0.0 0.3693c 0.0434(206)

U1α 0.3219 −0.5146 0.7947 −0.0044 −0.0011 0.0000
U2α −0.4889 0.6284 0.6050 0.0054 −0.0005 0.0000
U3α 0.8108 0.5832 0.0493 0.0050 0.0001 0.0000
U4α 0.0000 −0.0050 0.0058 0.5594 0.4885 0.6697
U5α 0.0000 −0.0027 0.0077 0.2849 0.6453 −0.7087
U6α 0.0000 −0.0065 −0.0075 0.7783 −0.5873 −0.2218
θ1k 0.0 −0.1184(28) 0.0 0.0 0.0
θ2k 0.0812(27) −0.0086(32) 0.0 0.0
θ3k 0.0 0.0012(39) 0.0
θ4k −0.0372(30) 0.0
θ5k −0.0061(27)

J = 3
ᾱ p5p 3D3 p5f 3D3 p5f 1F3 p5f 3F3 p5f 3G3

i [2P3/2] p3/2 [2P1/2] f5/2 [2P1/2] f7/2 [2P3/2] f5/2 [2P3/2] f7/2

µ0
α 0.53968(5) 0.05538(22) 0.01714(5) 0.01764(17) 0.03657(5)

µ1
α −0.3964b 0.3693c 0.2277(516) 0.0434d 0.2188(354)

U1α 0.9993 0.0375 0.0000 −0.0003 0.0000
U2α 0.0040 −0.1043 0.4465 0.2038 0.8650
U3α −0.0276 0.7418 −0.3554 0.5497 0.1435
U4α 0.0071 −0.1844 0.5167 0.7019 −0.4543
U5α −0.0239 0.6352 0.6383 −0.4046 −0.1574
θ1k −0.0375(31) 0.0 0.0 0.0
θ2k 0.0 0.0084(31) 0.0
θ3k 0.0413(98) 0.0
θ4k −0.0358(42)

J = 4
ᾱ p5f 3F4 p5f 1G4 p5f 3G4

i [2P1/2] f7/2 [2P3/2] f5/2 [2P3/2] f7/2

µ0
α 0.01429(11) 0.04508(15) 0.04681(20)

µ1
α 0.0434d 0.2607(501) 0.2188e
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TABLE VII. (Continued.)

1 2 3 4 5 6

U1α 0.4923 −0.5735 0.6548
U2α −0.1977 0.6590 0.7257
U3α 0.8477 0.4867 −0.2110
θ1k 0.0 −0.0119(43)
θ2k 0.0059(83)

J = 5
ᾱ p5f 3G5

i [2P3/2] f7/2

µ0
α 0.04655(5)

µ1
α 0.2188e

aConstrained to the value of the p 3P0 eigenchannel.
bConstrained to the value of the p 3D1 eigenchannel.
cConstrained to the value of the f 3D1 eigenchannel.
dConstrained to the value of the f 3F2 eigenchannel.
eConstrained to the value of the f 3G3 eigenchannel.

which is not zero if transitions from the “intermediate” state
�2 to the initial state �1 and final state �3 are allowed [81].
Significant Stark mixing occurs when the matrix element is of
the same order of magnitude as the energy difference between
the states �E ≈ 2hcRM�ν/ν3, that is, at electric fields E ∼
�ν/ν5 (in atomic units of the electric field1). As a consequence
of this n−5 scaling law, such mixing occurs easily for very high
n Rydberg states. For instance, transitions from d states to nd

or ns Rydberg states with n > 150 have been observed in
millimeter-wave spectra of krypton induced by electric fields
as low as 2.5 mV/cm [67]. Because the np[3/2]1 and (n −
1)d[1/2]1 Rydberg states are energetically very close (�ν3/2 =
0.0007), �ν/ν5 corresponds to an electric field of 10 mV/cm
for n = 55 or 4.8 mV/cm for n = 63, and observable mixing
arises at even smaller stray fields.

The field-induced shift of the energies of two near-
degenerate levels (separated by �ν/ν3) with �� = ±1 can
be estimated from the relation (expressed in atomic units; see

1Atomic units: energy Eh = h̄2/mea
2
0 = 2R∞hc = 4.3597 ×

10−18 J; electric field Eh/ea0 = 5.1422 × 1012 mV/cm.

Footnote 1)

|�E| =
[∣∣〈ν�FM|Eez|ν ′�′F ′M〉∣∣2 +

(
�ν

2ν3

)2
]1/2

− �ν

2ν3

≈ �ν

2ν3

⎧⎨
⎩

[(
3f (M)Eν5

�ν

)2

+ 1

]1/2

− 1

⎫⎬
⎭ . (28)

For weak fields or Eν5/�ν � 1, a quadratic Stark shift

|�E| = �ν

ν3

(
3f (M)Eν5

2�ν

)2

|�E/h| = 5.60 × 10−13 kHz [f (M)(E/mV cm−1)]2 ν7

�ν

(29)

results, whereas in the case Eν5/�ν � 1, a linear Stark shift

|�E = 3
2 |f (M)E |ν2

(30)|�E/h| = 1.92 kHz |f (M)(E/mV cm−1)|ν2

is obtained with |f (M)| < 0.5 for interacting p and d states.
Numerical evaluation of Eq. (28) yields, for a residual field of

TABLE VIII. The fine and hyperfine structure of the 2P ground state of Xe+ as determined from the MQDT analysis.

129Xe 131Xe 132Xe

RM (cm−1) 109 736.8487 109 736.8558 109 736.8593
E(2P3/2)/hc (cm−1) 97 833.778a 97 833.783a 97 833.790a

E(2P1/2)/hc (cm−1) 108 370.705b,c 108 370.711b,c 108 370.714b,c

(E(2P3/2) − Eref )/hc d (cm−1) 44.839 718(29) 44.822 516(28) 44.817 421(31)
A3/2 (cm−1) −0.054 9265(52) 0.016 2829(21)
B3/2 (cm−1) 0.008 6887(82)
A1/2 (cm−1) −0.4071b 0.1206b

σmmwave (MHz) 0.6 0.7 0.5

aFixed to the value given in Ref. [48] (with uncertainty of 0.011 cm−1).
bFixed to the value given in Ref. [9].
cThe uncertainty in the VUV calibration is 0.016 cm−1.
dThe reference level Eref is 52d[1/2]1 (or its F = 3/2 or F = 5/2 hyperfine level for 129Xe and 131Xe, respectively).
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5 mV/cm, a Stark shift of 0.29 MHz for the M = 1 levels of
the 63p[3/2]1 and 62d[1/2]1 states of 132Xe [f (1) = 0.0745
for purely J+�-coupled states]; the magnitude of this shift is
less than the frequency accuracy estimated in Sec. II. Thus the
presence of a stray electric field is revealed by the observation
of the “forbidden” transition to the nd[1/2]1 state rather than
by a measurable shift of the transition frequency. The ex-
cessive broadening of the np[3/2]1 ← n′d[3/2]1 transitions,
compared to the “forbidden” (n − 1)d[1/2]1 ← n′d[3/2]1

transitions and transitions to other np states (see Figs. 2
and 5), can be attributed to power broadening. The same
arguments have been used for the assignment of several
transitions of 129Xe or 131Xe; for example, the transitions to the
np[3/2]2(5/2) states of 129Xe are broader than the transition
to the neighboring (n − 1)d[1/2]1(3/2) states.

In several overview scans for 131Xe recorded without
compensation of stray fields, series of four almost equidistant
lines separated by about 11 MHz were observed in the
region of the 60p[3/2]2(3/2) final state (see Fig. 6). Such
a quartet structure can be explained by two almost degenerate
(separated by �E/h <∼ 10 MHz) np and (n − 1)d levels with
F = 3/2, split by an electric stray field. If we assume that
the interacting state is a pure 59d[1/2]1(3/2) state, for which
f (M) = 0.069M , the stray field must have been of the order of
E = 24 mV/cm according to Eq. (30). The avoided crossings
between the F = 3/2 series (thick dashed lines) in Fig. 10
indicate an admixture of the 59d[3/2]2(3/2) state, which
would lead to a larger value for the Stark effect matrix element
[f (M) = −0.143M] so that the magnitude of the stray field
was probably less than the value calculated previously. In other
scans with smaller stray fields, only one line was observed
corresponding to the position of the 60p[3/2]2(3/2) state.

Depending on the experimental conditions, the Stark effect
also led, in some spectra, to a broadening (and a shift) of the
transitions to f levels, which can be mixed with � > 3 states
(see Fig. 4).

The MQDT parameters in Tables VI and VII represent ef-
fective parameters which describe the Rydberg states observed
in the millimeter-wave experiments with very high accuracy.
For low-n Rydberg states (ν3/2 � 10), the agreement between
calculated and experimental positions is not as good because
solely a linear energy dependence of the quantum defects
was included in the fit. In addition, the use of µ quantum
defects yields at very low energies unphysical solutions of the
MQDT equation corresponding to nonexistant � > 0 states. An
approach which does not give such “spurious” roots and avoids
an unconvenient energy dependence of the MQDT parameters
has been proposed recently [82]. Nevertheless, for most of
the low-n Rydberg levels, the errors in the effective quantum
number ν3/2 obtained using our MQDT parameters are much
smaller than 0.01, and the calculated hyperfine structure of
levels with ν3/2 as low as 4.40 agrees reasonably well with the
experimental results (see Table IX).

Even though the MQDT parameters in Tables VI and VII
are effective ones, which depend on the selections (constraints)
made in the fit, some conclusions on the odd-parity channels
can be derived from these parameters. As has been observed
for krypton [6], the quantum defects µα are almost indepen-
dent of the J value, and only the Euler angles θjk which

TABLE IX. Calculated (MQDT) and observed hyperfine structure
of low-n Rydberg states of xenon.

Statea �νcalc (MHz) �νobs (MHz)

8p[1/2]1
129Xe 1/2–3/2 2262 2340(3) [35]

(92 153.279 cm−1) 131Xe 5/2–3/2 1160 1215(3) [35]
131Xe 3/2–1/2 596 585(3) [35]

7d[3/2]1
129Xe 3/2–1/2 236 206(11) [53]

(92 714.038 cm−1) 131Xe 3/2–1/2 76 75(33) [53]
131Xe 1/2–5/2 122 115(41) [53]

5d ′[3/2]1
129Xe 3/2–1/2 2563 2486(18) [48]

(93 618.24 cm−1) 131Xe 1/2–3/2 803 797(23) [48]
131Xe 3/2–5/2 1242 1200(18) [48]

8d[1/2]1
129Xe 1/2–3/2 894 869(9) [48]

(94 228.006 cm−1) 131Xe 5/2–3/2 324 328(19) [48]
131Xe 3/2–1/2 474 398(14) [48]

8d[3/2]1
129Xe 3/2–1/2 1558 1369(34) [48]

(94 685.470 cm−1) 131Xe 1/2–3/2 504 467(20) [48]
131Xe 3/2–5/2 746 625(30) [48]

7s ′[1/2]1
129Xe 1/2–3/2 6314 6822(23) [48]

(95 800.587 cm−1) 131Xe 5/2–3/2 3089 3336(9) [48]
131Xe 3/2–1/2 1922 2063(17) [48]

aThe experimental level positions of the 132Xe isotope are given.

correspond to the s-d interaction [θ (d 1P1–s 1P1) ≈ 0.18 and
θ (d 3PJ –s 3PJ ) ≈ 0.12] (see Table X) and to the singlet-
triplet interaction (|θ | � 0.3) are significant. Comparing the
results with literature values for J = 1, it is found that the
absolute values of the Euler angles (or the transformation
matrix elements Uiα) and the energy dependencies of the
eigenchannel quantum defects µ1

α obtained by Johnson et al.
[60] from ab initio calculations and adjusted to spectra of the
autoionizing Rydberg series are the ones which come closest

TABLE X. s-d and singlet-triplet channel interactions in rare
gas atoms. The parameters are expressed as absolute values of the
generalized Euler angles θ (radian).

s-d 1P1-3P1

1P1
3P0

3P1
3P2 s d Note

Ne 0.032 0.0374 0.051 0 0 Ref. [85]
0.008 0.0374 0.050 0.038 0 0 Ref. [86]
0.0315 0.0489 0 0 Ref. [87]

Ar 0.02 0.18 0.02 0.0 Ref. [78]a

0.042 0.097 0.023 (0.006) Ref. [60]b

0.101 Ref. [88]
Kr 0.485 0.154 0.142 0.128 0.037 0.016 Ref. [6]

0.495 0.148 0.125 (0.009) Ref. [60]b

(0.0) 0.172 0.102 0.12 0.038 (0.0) Ref. [73]c

(0.018) 0.080 (0.002) 0.042 Ref. [59]d

Xe 0.177 0.117 0.118 0.142 0.231 0.025 This study
0.099 0.109 0.245 0.038 Ref. [60]b

(0.014) 0.062 0.378 0.043 Ref. [59]d

0.1065 Ref. [61]

aAb initio values.
bDerived from the Uiα matrix based on ab initio values.
cDerived from the Uiα matrices.
dDerived from the Uiα matrix.
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to the values of this study. A similar observation was made in
the millimeter-wave study of Rydberg states of krypton [6].
That study differs from the present one by the fact that more
information about the s and d Rydberg states were obtained
because p Rydberg states with J = 1, 2 were used as initial
states for the millimeter-wave transitions, giving access to
a broader range of s and d Rydberg states. In addition, an
avoided crossing between hyperfine levels of nd[3/2]1 and
(n + 2)s[3/2]J was directly observed near n ≈ 70 and could
be exploited to derive accurate s-d channel-mixing parameters;
to obtain such information with the same accuracy in xenon,
Rydberg states above n = 80 would have to be accessed (see
Fig. 11). Another range to study the s-d interaction is where
the highest (n − 1)s hyperfine level meets the lowest nd level;
in 129Xe, this range is located around n = 100. In Table X,
the s-d and singlet-triplet channel-interaction parameters of
xenon are compared to those of other rare gases. Values
in parentheses are considered to be not significant because
other interaction parameters (not included in this table) are
much larger. Despite significant differences between the results
of different studies, the singlet-triplet interaction parameters
show a tendency to increase with increasing nuclear charge.
For the s-d interaction, the largest values are obtained for
krypton. Considering the MQDT parameters of the even-parity
states, it might be noted that most Euler angles are small, except

for J = 1. To study the interaction between p and f states, it
would be necessary to access Rydberg states around n = 100
for 129Xe and n = 120 for 131Xe.

The hyperfine structures of the 2P3/2 state of 129Xe+

and 131Xe+ determined in this study are summarized in
Table VIII and displayed in Fig. 1. The ratio
A(129Xe)/A(131Xe) provides a consistency check of the hyper-
fine constants. The magnetic dipole constant A is proportional
to the ratio of the nuclear magnetic moment µ and the
nuclear spin quantum number I , thus A(129Xe)/A(131Xe) =
[µ(129Xe)I (131Xe)]/[µ(131Xe)I (129Xe)]. The ratio of the
constants determined in this work, A(129Xe)/A(131Xe) =
−3.373 26(75) for the 2P3/2 state, corresponds well to the value
A(129Xe)/A(131Xe) = −3.375(12) determined for the 2P1/2

state [9] and to A(129Xe)/A(131Xe) = 3.373 40(5) obtained
using the literature values µ(129Xe) = 0.777 976(8) µN and
µ(131Xe) = 0.691 862(4) µN from Refs. [83,84].
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