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Hooke’s law correlation in two-electron systems
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We study the properties of the Hooke’s law correlation energy (Ec), defined as the correlation energy when
two electrons interact via a harmonic potential in a D-dimensional space. More precisely, we investigate the 1S

ground-state properties of two model systems: the Moshinsky atom (in which the electrons move in a quadratic
potential) and the spherium model (in which they move on the surface of a sphere). A comparison with their
Coulombic counterparts is made that highlights the main differences of the Ec in both the weakly and strongly
correlated limits. Moreover, we show that the Schrödinger equation of the spherium model is exactly solvable
for two values of the dimension (D = 1 and 3) and that the exact wave function is based on Mathieu functions.
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I. INTRODUCTION

Understanding correlation effects remains a central prob-
lem in theoretical quantum chemistry and physics and is the
main goal of most of the new theories and models in this
research area [1,2]. In order to gain some insight into electron
correlation, two-electron model systems have always played
a key role by shedding new light on the relative motion of
electrons.

Two such models are the Hooke’s law atom (or harmo-
nium, or hookium) [3–6] and the spherium model [7–14].
In hookium, the two electrons are bound to the nucleus
by a harmonic potential, whereas in spherium, the position
of the electrons are restricted to the surface of a sphere.
In both cases, the electrons repel Coulombically. For these
systems, the exact solution of the Schrödinger equation can
be obtained for some discrete values of the confinement
parameter (the force constant for hookium and the radius of
the sphere for spherium) [4,5,14]. Consequently, these model
systems (and others [15–19]) have been extensively used to
test various approximations within density functional theory
(DFT) [12,20–26]. However, the Hartree-Fock (HF) solution
is not always available in closed form; in hookium, for
example, although accurate solutions have been found [27,28],
no closed-form expression of the ground-state HF orbital has
been obtained yet.

According to Löwdin [29], the correlation energy (Ec) is
defined as the error

Ec = E − EHF, (1)

which pertains to the HF approximation [30]. Ec is a function
of the external potential V (r), the dimensionality of the space
where the electrons are moving (D), and the interelectronic
potential w(u), where u ≡ |r1 − r2| is the distance between
the two electrons.

We define the Coulombic and the Hooke’s law correlation
energies as the correlation energies when the two electrons
interact via a repulsive Coulomb potential [w(u) = u−1] or an
attractive harmonic potential [w(u) = ω2u2/2], respectively.

We have recently shown that the Coulombic correlation
energy is rather insensitive to V (r) (at least in the high-density
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limit [31]) but strongly dependent on the number of degrees of
freedom of the electron pair (D). However, the question of how
the interelectronic potential w(u) influences the correlation
energy has not yet been addressed, and this is the purpose of
this article.

In the following, we consider the 1S ground state of the
Hooke’s law analog of D-hookium (known as the Moshinsky
atom [32]) and D-spherium (labeled as D-HL-spherium in the
following). We adopt the convention that a D-sphere is the
surface of a (D + 1)-dimensional ball. Thus, in 2-spherium,
for example, this is the surface of a three-dimensional ball.
For D = 3, both the exact and HF solutions of the Moshinsky
atom are known [32]. We generalize these results for any
value of D in Sec. II and derive the two-electron probability
distributions in both the position and momentum space. In
Sec. III, we analyze the energy behavior of D-HL-spherium in
both the weakly and strongly correlated regime. Moreover, we
demonstrate that the exact solution of the Schrödinger equation
can be found for two values of the dimensionality (D = 1 and
D = 3). Atomic units are used throughout.

II. MOSHINSKY ATOM

A. Exact solution

The Moshinsky atom [32] is defined by the Hamiltonian

Ĥ = −1

2

(∇2
r1

+ ∇2
r2

) + 1

2

(
r2

1 + r2
2

) + ω2

2
|r1 − r2|2, (2)

where ω2 is the force constant between the two electrons.
The Hamiltonian (2) can be separated into the extracule and
intracule coordinates, which read respectively

� = r1 + r2√
2

, λ = r1 − r2√
2

, (3)

yielding

Ĥ = 1
2

(−∇2
� + �2) + 1

2

[ − ∇2
λ + (2ω2 + 1)λ2]. (4)

For S states in a D-dimensional space, the Laplace operator is
given by [33]

∇2
r = ∂2

∂r2
+ D − 1

r

∂

∂r
. (5)
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This leads to the exact wave function

ψ(�,λ) = (2ω2 + 1)D/8

πD/2
e− 1

2 �2
e− 1

2

√
2ω2+1λ2

(6)

and energy

E = D

2
(1 +

√
2ω2 + 1). (7)

Equation (7) reveals that the exact energy is linear with respect
to the dimensionality D, as a result of the separability of the
Hamiltonian (2).

B. Hartree-Fock approximation

According to the HF approximation [34], the total HF wave
function of the singlet state is defined as

ψHF(r1, r2) = ϕHF(r1)ϕHF(r2), (8)

where ϕHF is the HF orbital eigenfunction of the Fock operator

F̂ = −1

2
∇2

r + 1

2
r2 + ω2

2

∫
r2

ϕ2
HF(r2)r2

2 d r2, (9)

associated with the eigenvalue

εHF = D

4

3ω2 + 2√
ω2 + 1

. (10)

It can be shown that

ϕHF(r) = (ω2 + 1)D/8

πD/4
e− 1

2

√
ω2+1r2

. (11)

Then, Eq. (8) is easily recast as

ψHF(�,λ) = (ω2 + 1)D/4

πD/2
e− 1

2

√
ω2+1(�2+λ2). (12)

The total HF energy, which also behaves linearly with D, is

EHF = D
√

1 + ω2. (13)

C. Correlation energy

According to Eq. (1), the explicit expression of the
correlation energy of the Moshinsky atom reads

Ec = D

2
(1 − 2

√
ω2 + 1 +

√
2ω2 + 1), (14)

which obviously decreases linearly with D.
Equations (7), (13), and (14) yield the small-ω expansion

E

D
= 1 + ω2

2
− ω4

4
+ O(ω6), (15)

EHF

D
= 1 + ω2

2
− ω4

8
+ O(ω6), (16)

Ec

D
= −ω4

8
+ O(ω6), (17)

and the large-ω expansion

E

D
= ω√

2
+ 1

2
+ 1

4
√

2ω
+ O

(
1

ω2

)
, (18)

EHF

D
= ω + 1

2ω
+ O

(
1

ω2

)
, (19)
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FIG. 1. −(Ec/D) in the Moshinsky atom as a function of ω

(solid). The small-ω (dashed) and large-ω (dotted) expansion are
also represented.

Ec

D
=

(
1√
2

− 1

)
ω + 1

2
+

√
2 − 4

8ω
+ O

(
1

ω2

)
. (20)

The correlation energy of the Moshinsky atom, represented
in Fig. 1, is quartic for small ω (weakly correlated regime),
and it decreases as ω in the large-ω regime (strongly correlated
regime). In comparison, the correlation energy of D-hookium
in the weakly correlated limit tends to a constant [6,31].

In the strongly correlated regime (ω → ∞), the exact and
HF wave functions of the Moshinsky atom become

ψ(�,λ) = (2ω)D/8

πD/2
e− 1

2 �2
e
− ω√

2
λ2

, (21)

ψHF(�,λ) = ωD/2

πD/2
e− 1

2 ω(�2+λ2), (22)

associated with the energies

E

D
= ω√

2
+ 1

2
, (23)

EHF

D
= ω + 1

2ω
. (24)

In Eq. (23), the second term (1/2) is related with the motion
of the center of mass, and the first term (ω/

√
2) is associated

with the zero-point oscillations of the electrons. Indeed, in the
strongly correlated regime, the electrons oscillate with an
angular frequency D

√
2ω. Such phenomena are ubiquitous in

strongly correlated systems, as demonstrated by Gori-Giorgi,
Seidl, and their coworkers [12,23,26,35–39].

As one can see, the HF solution does not describe these
oscillations properly and thus exhibits a wrong behavior in the
large-ω limit.

D. Position intracule

To study further the correlation effects in Hooke’s law
systems, we have determined the position intracule P(u) of
the Moshinsky atom (D � 2). P(u) gives the probability of
finding two electrons separated by a distance u [40,41] and is
defined by

P(u) =
∫

(�u)
ψ(r1, r2)2δ(|r1 − r2| − u) d�u, (25)
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where �u is the angular component of u and δ is the Dirac
delta function [42]. From Eqs. (6) and (8), it follows that

P(u, ω) = (2ω2 + 1)D/4uD−1

2
D
2 −1


(
D
2

) e− 1
2

√
2ω2+1u2

, (26)

PHF(u, ω) = (ω2 + 1)D/4uD−1

2
D
2 −1


(
D
2

) e− 1
2

√
ω2+1u2

. (27)

where 
 is the gamma function [42]. Surprisingly, we have the
relation

PHF(u, ω) = P
(

u,
ω√

2

)
, (28)

which means the HF intracule is related to the exact one by
scaling the confinement strength. This kind of relation could
be useful in the future development of intracule functional
theory [43–48].

In analogy with the Coulomb hole [40], we define the Hooke
hole as the difference between the position intracule obtained
from the exact wave function and the corresponding HF one:

�P(u, ω) = P(u, ω) − PHF(u, ω). (29)

Contrary to the Coulomb correlation [40,49], in the
Moshinsky atom the correlation increases the likelihood of
finding the two electrons close together and decreases the
probability of larger values of u. It implies that the Hooke hole
is positive for small u and negative for larger u. This behavior
is due to the attractive nature of the harmonic potential between
the electrons. It is illustrated in Fig. 2, where we have reported
the position intracules and the Hooke hole of the Moshinsky
atom for ω = 1 and D = 3.

E. Momentum intracule

The momentum intracule [50], which gives the probability
of finding the two electrons moving with a relative momenta
v, has been computed to give some insight into the relative
momenta of the electrons:

M(v) =
∫

(�v )
φ( p1, p2)2δ(| p1 − p2| − v) d�v, (30)

where φ( p1, p2) is the momentum wave function, p1 and p2

are the momenta of electrons 1 and 2, and �v is the angular
component of v. Then, φ( p1, p2) is obtained from the position
wave function by a Fourier transform:

φ(�̄, λ̄) = (2ω2 + 1)−D/8

πD/2
e− 1

2 �̄2
e
− 1

2
√

2ω2+1
λ̄2

, (31)
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FIG. 2. P (solid), PHF (dashed), and �P (dotted) in the
Moshinsky atom as a function of u for the unit force constant and
D = 3.
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FIG. 3. M (solid), MHF (dashed), and �M (dotted) in the
Moshinsky atom as a function of v for the unit force constant
and D = 3.

φHF(�̄, λ̄) = (ω2 + 1)−D/4

πD/2
e
− 1

2
√

ω2+1
(�̄2+λ̄2)

, (32)

where

�̄ = p1 + p2√
2

, λ̄ = p1 − p2√
2

, (33)

are the extracule and intracule coordinates in momentum
space. Using Eqs. (31) and (32), we find that the exact and
HF momentum intracules are given by

M(v, ω) = (2ω2 + 1)−D/4vD−1

2(D/2)−1
(D/2)
e
− 1

2
√

2ω2+1
v2

, (34)

MHF(v, ω) = (ω2 + 1)−D/4vD−1

2(D/2)−1
(D/2)
e
− 1

2
√

ω2+1
v2

. (35)

From Eqs. (34) and (35), we show that the property (28)
related to the position intracule is still valid for the momentum
intracule:

MHF(v, ω) = M
(

v,
ω√

2

)
. (36)

The results are gathered in Fig. 3, where we have represented
the momentum intracules and the Hooke hole in momentum
space:

�M(v, ω) = M(v, ω) − MHF(v, ω). (37)

The exact and HF momentum intracules exhibit a shape
similar to the position intracules, but the Hooke hole in
momentum space is drastically different from its position
space counterpart. Indeed, the correlation in momentum
space favors electrons moving with high relative momentum,
while correlation in position space evidences a decrease of
the probability of finding electrons further apart. Once again,
this behavior is different in hookium, in which correlation
favors both lower and higher relative momenta [27]. This is
also due to the attractive nature of the interelectronic potential.

III. HOOKE’S LAW SPHERIUM

A. Expansion of the exact energy

In terms of the interelectronic angle (0 � θ � π ), the
Hamiltonian of two electrons on a D-sphere of radius R, and
interacting with a force constant �2, is [12–14]

Ĥ = − 1

R2

[
d2

dθ2
+ (D − 1) cot θ

d

dθ

]
+ �2R2(1 − cos θ ).

(38)
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After the energy scaling E ← R2E and the definition of
the dimensionless variable ω = �R2, the Hamiltonian (38)
reduces to

Ĥ = −
[

d2

dθ2
+ (D − 1) cot θ

d

dθ

]
+ ω2(1 − cos θ ). (39)

Then, perturbation theory [6,12,13,31,51,52] can be ap-
plied. By expanding E up to the second order in ω2, it is
straightforward to show that

E � ω2 − ω4

D(D + 1)
+ · · · , (40)

which is valid for the small-ω regime (weakly correlated limit).
For large ω (strongly correlated limit), the potential dom-

inates the kinetic energy, and the electrons tend to localize
on the same side of the sphere and oscillate around their
equilibrium position (zero-point oscillations). However, in
Coulombic systems, the localization takes place on opposite
sides of the sphere (formation of a Wigner molecule [53])
because of the repulsive nature of the Coulombic interaction.

In this limit, the Hamiltonian (39) becomes, for small
oscillations (θ � 0),

Ĥ (0) = −
(

d2

dθ2
+ D − 1

θ

d

dθ

)
+ ω2

2
θ2, (41)

where we have used the Taylor expansions:

cot θ � 1

θ
− θ

3
+ · · · , cos θ � 1 − θ2

2
+ · · · (42)

The corresponding ground-state eigenfunction and eigenvalue
of Eq. (41) are

ψ (0)(θ ) =
√

1

2(D/4)−1
(D/2)
e
− ω

2
√

2
θ2

, E(0) = Dω√
2

. (43)

The electrons are localized on the same side of the sphere
and oscillate around their equilibrium position with an angular
frequency of D

√
2ω. One notes that the electrons oscillate

with the same angular frequency in both the Moshinsky atom
and D-HL-spherium.

The first-order correction of the kinetic energy

Ĥ (1) = D − 1

3
θ

d

dθ
(44)

and the zeroth-order wave function (43) yield the asymptotic
expansion [12,13]

E � Dω√
2

− D(D − 1)

6
+ · · · , (45)

which shows that the next term of this expansion is different in
the Moshinsky atom and D-HL-spherium than their Coulom-
bic analogs.

For comparison, in D-spherium (the Coulombic analog of
D-HL-spherium), one can eventually show that the angular
frequency is equal to D/(2R3/2), and the asymptotic expansion
reads [54]

E � 1

2R
+ D

4R3/2
− D(9D − 14)

64R2
+ · · · , (46)

where the first term in Eq. (46) represents the classical
mechanical energy of two electrons sitting on opposite sides of
a sphere of radius R and the third term is the first anharmonic
correction.

B. Exact solvability for D = 1 and D = 3

By using the ansatz

ψ(θ ) = (sin θ )[2/(D−1)]χ (θ ), (47)

we recast Eq. (39) as

d2χ (θ )

dθ2
+

[
D − 1

2
− (D − 1)(D − 3)

4
cot2 θ

]
χ (θ )

−ω2(1 − cos θ )χ (θ ) + Eχ (θ ) = 0, (48)

which coincides with the Mathieu differential equation [42,55]
for D = 1 and 3 because of the cancellation of the second term
in brackets in Eq. (48).

Then, the cases D = 1 and D = 3 are exactly solvable, and
the exact wave functions of the nth excited state are

ψ1D
n (θ ) = se

(
b2(n−1),−2ω2,

θ

2

)
, (49)

ψ3D
n (θ ) = 1

sin θ
se

(
b2(n−1),−2ω2,

θ

2

)
, (50)

where se is the sine elliptic odd Mathieu function and b2(n−1)

is its characteristic value (n ∈ N is the number of nodes in the
wave function between 0 and π ) [42]. The energies of the nth
excited state are given by

E1D
n = ω2 + b2(n−1)

4
, (51)

E3D
n = ω2 + b2(n−1)

4
− 1, (52)

The Taylor expansions of Eqs. (51) and (52) demonstrate that
the ground-state energy behaves consistently with Eqs. (40)
and (45) for small and large ω, respectively. Figure 4 shows

π
2

π
θ a.u.

1

1
2

1
2

1

ψn θ a.u.

π
2

π
θ a.u.

4

2

2

4
ψn θ a.u.

(a) D = 1 (b) D = 3  

FIG. 4. ψn as a function of
θ for the unit force constant,
and various n [n = 0 (solid), 1
(dashed), 2 (dotted), and 3 (dot-
dashed)].
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FIG. 5. −Ec in 3-HL-spherium as a function of ω (solid curve).
The small- and large-ω expansions are also represented (dashed and
dotted curves, respectively).

the ground state and the first three excited states for D = 1
and D = 3 (ω = 1 in both cases).

C. Hartree-Fock approximation

Following our previous work [13,31], it is straightforward
to show that, for D � 2, the HF wave function and energy are

ψHF(θ ) = 
[(D + 1)/2]

2π [(D+1)/2]
, EHF = ω2, (53)

which yields an uniform electron density over the surface of
the hypersphere.

D. Correlation energy

Following the results of the previous section, for small ω,
the correlation energy for two electrons on a D-sphere behaves
as

Ec � − ω4

D(D + 1)
+ · · · , (54)

which, like the Moshinsky atom, is quartic in ω but exhibits
a different behavior with respect to D. The correlation energy
in 3-HL-spherium is represented in Fig. 5.

From Eq. (54), it is obvious that Ec behaves quadratically
with respect to D in the large-D limit [Ec � −ω4/D2], like
D-spherium [Ec � −1/(8D2)] [31]. However, the prefactor is
different.

IV. CONCLUSION

In this article, we have studied the Hooke’s law correlation
energy of two model systems: the Moshinsky atom and the
spherium model.

We have shown that, in the weakly correlated regime
(small-ω limit), the correlation energy is quartic in ω in
both systems but behaves differently with respect to the
dimensionality of the space. This feature reveals the difference
between the Coulombic and the Hooke’s law system. Indeed,
the correlation energy of both D-hookium and D-spherium
tends to a constant in the high-density limit.

In the strongly correlated regime (large-ω limit) [38,39], the
leading terms of the asymptotic expansion in the Moshinsky
atom and D-HL-spherium are identical, and they represent the
zero-point oscillations of the electrons when the kinetic energy
tends to zero. This could be viewed as an “attractive” version
of the Wigner crystallization [53], which involves electrons in
the low-density limit (quantum dots).

Moreover, we have shown that the Schrödinger equation
of the D-HL-spherium reduces to a Mathieu differential
equation [42,55] for two specific values of the dimension:
the model of two electrons on the surface of a sphere and
interacting via a Hookean potential is exactly solvable for
D = 1 and 3, and the exact wave function is based on Mathieu
functions.
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