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Pseudospectral calculation of the wave function of helium and the negative hydrogen ion
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We study the numerical solution of the nonrelativistic Schrödinger equation for two-electron atoms in ground
and excited S states using pseudospectral (PS) methods of calculation. The calculation achieves convergence
rates for the energy, Cauchy error in the wave function, and variance in local energy that are exponentially fast
for all practical purposes. The method requires three separate subdomains to handle the wave function’s cusplike
behavior near the two-particle coalescences. The use of three subdomains is essential to maintaining exponential
convergence and is more computationally efficient than a single subdomain. A comparison of several different
treatments of the cusps suggests that the simplest prescription is sufficient. We investigate two alternate methods
for handling the semi-infinite domain, one which involves a sequence of truncated versions of the domain and
the other which employs an algebraic mapping of the semi-infinite domain to a finite one and imposes no explicit
cutoffs on the wave function. The latter prescription proves superior. For many purposes it proves unnecessary
to handle the three-particle coalescence in a special way. The presence of logarithmic terms in the exact solution
is expected to limit the convergence to being nonexponential but the only clear evidence of that is the rate of
convergence of derivatives near the three-particle coalescence point. Higher resolution than achieved in this work
will ultimately be needed to see its limiting effect on other measures of error. As developed and applied here
the PS method has many virtues: no explicit assumptions need be made about the asymptotic behavior of the
wave function near cusps or at large distances, the local energy (Hψ/ψ) is exactly equal to the calculated global
energy at all collocation points, local errors go down everywhere with increasing resolution, the effective basis
using Chebyshev polynomials is complete and simple, and the method is easily extensible to other bound states.
As the number of collocation points grows, the method achieves exponential convergence up to the resolution
tested. This study serves as a proof-of-principle of the method for more general two- and possibly three-electron
applications.
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I. INTRODUCTION

The nonrelativistic, two-electron atom (H−, He, Li+) is the
simplest “hard” problem in quantum mechanics. It involves
strong electron-electron correlations, nontrivial symmetry
considerations, and single as well as double continua. Many
different solution techniques have been developed and applied
over the past 80 years. A thorough understanding of this simple
system is important not only because of its direct relevance
to experimental studies in atomic physics but also because
the best methods of solution may suggest generalizations
applicable to multielectron and/or multiatom systems.

Our own interest in this problem arose from investigating
bound-free and free-free opacity of the negative hydrogen ion
H−. As first conjectured by Wildt [1], H− gives the greatest
contribution to opacity in the atmosphere of the Sun and many
other stars. The photo-absorption cross section of H− is known
to an accuracy of a few percentage points [2] but little attention
has been devoted to H− in less-than-ideal circumstances (high
density, high magnetic field, etc.) of relevance to astrophysical
applications. We sought a first-principles approach that would
allow “exact” calculations of initial and final states as part
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of these investigations and were led to reconsider this classic
problem.

Ideally, there would exist a simple method capable of
handling any two-electron state in the presence of a nucleus
with any angular momentum whether bound or free. In
practice, many individual methods have been formulated each
having somewhat more specific goals. A common starting
point, for example, is finding the ground-state energy for zero
total angular momentum.

It is not possible in a single article, let alone an introduction,
to review the full range of methods that have been developed
and explored. We can briefly compare the strengths and
weaknesses of a few select approaches by assessing each
in terms of the generality (is it applicable to all states or
just the ground state?), the capability of achieving an exact
solution of the nonrelativistic Schrödinger equation in the limit
of infinite nuclear mass (is it in principle capable of finding
an exact solution [in the aforementioned sense] or are there
intrinsic approximations?), the degree of tuning required (is
it straightforward to apply or does it require an enlightened
guess for, say, the choice of basis functions?), and, of course,
the computational effort for a given level of accuracy.

The asymptotic rate of convergence of some error Rn as
a function of the number n of basis functions, grid size, etc.,
is of central importance in evaluating a numerical method. To
characterize the convergence rate the definitions of Boyd [3]
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are used in this article and reproduced here. The algebraic
index of convergence, k is defined as the maximum k so that

lim
n→∞ |Rn|nk < ∞. (1)

If k is finite then Rn converges algebraically. The simplest
example of algebraic convergence is an error Rn ∝ 1/nk . If k

is infinite then Rn converges exponentially. This latter category
is subdivided into three cases defined by the value of

l = lim
n→∞

log |Rn|
n

. (2)

If l is zero, a finite positive number, or infinite, the rate is
subgeometric, geometric, or supergeometric, respectively. For
example, if the error Rn ∝ exp(−nm), the conditions 0 < m <

1, m = 1, and m > 1 correspond to subgeometric, geometric,
and supergeometric convergence, respectively.

A. Variational method for two electrons and nucleus:
ground state

The first numerical explorations of two-electron ground
states adopted the approach of minimizing the global energy.
Once Hylleraas determined that only three coordinates were
needed to represent the wave function for S states he carried out
such variational calculations (prior to the advent of computers)
[4]. Pekeris and coworkers [5–8] did the first high precision
calculations on computers, expanding the wave function in
terms of Laguerre polynomials of linear combinations of the
interparticle distances times an appropriate exponential falloff.
They determined the energy of H− to eight decimal places and
that of He to nine, calculations that were the gold standard for
several decades.

Variational methods have been highly successful at calcu-
lating extremely precise eigenvalues of the ground state of
two-electron atoms. Indeed, eigenvalue energies have been
calculated to numerical accuracy—at least 42 digits—that far
exceeds the accuracy of the underlying physical description
based on nonrelativistic equations of motion [9–19]. A clear
strength of the general variational approach is that intrinsic
approximations to the Hamiltonian operator need not be made.
The principle drawbacks are related to the difficulties inherent
in the selection of the basis: it should be complete so that
convergence to the exact solution is possible and efficient so
that finite numbers of elements do a good job representing the
wave function.

Significant progress in choice of the basis for the two-
electron problem has taken place. The inclusion of new
functions (e.g., logarithmic terms) typically motivated by
known limiting forms of the wave function improves the rate
of convergence [7,9,11,20–24]. Furthermore, without special
additions, some bases are simply incapable of representing
the exact solution [25,26]. Klahn and Morgan have shown
that there are examples where the expectation value of an
operator (i.e., rk with k � 6) converges to the incorrect value or
diverges even if the basis is complete. In their example the basis
cannot accurately represent the derivatives of the hydrogenic
solution at r = 0 [27]. When employing such bases, one must
always check that the physical property one is calculating is
converging properly.

Schwartz [28] surveyed the convergence rate of the error in
the ground-state energy eigenvalue achieved by many different
strategies for basis set selection. His results for the error may be
expressed as a function of n, the total number of basis functions
selected according to a well-defined procedure. The error
generally converges algebraically with index, 1.5 � k � 8.3
(∝ n−k), depending on the basis. The range in k highlights
the significance that a good choice of basis can have on the
asymptotic convergence of a calculation. One basis set, which
included a single power of a logarithm, appeared to converge
exponentially fast as σ−n with σ in the range 0.51–0.54. Such
exponential behavior is often assumed of variational methods
if the basis can accurately describe the behavior of the wave
function everywhere. That is, the basis includes functions
which have the same analytic and nonanalytic behavior as
the exact solution.

Loosely speaking, even when convergence is assured, the
accuracy of the variationally inferred wave function (by many
different measures) is much less than that of the energy
eigenvalue. Parts of the wave function that have a small effect
on the total energy are not well-constrained by lowering the
energy. An alternative strategy to minimizing the global energy
is to minimize the variance in the local energy instead [29–31].
This approach can produce better local values of the wave
function but leads to nonlinear minimization problems which
are more difficult to handle numerically (minimization of the
variance in local energy with respect to parameters in the
trial wave function) but still tractable because one need not
calculate the global energy at each step.

B. Variational method for excited states

Variational methods [6,8,10,32,33] have been successful at
calculating precise excitation energies. In general, variational
methods extend naturally to excited, bound states whenever
the variational parameters enter in a linear fashion. It is
then straightforward to find multiple eigenstates of the linear
system. The more highly excited the state the less converged
the energy is, especially if the basis was optimized in order to
reproduce the features of the ground state only.1

C. Fourier spectral expansion

Griebel and Hamaekers [34] developed a Fourier expansion
method for multidimensional quantum mechanical systems.
They apply the hyperbolic cross truncation to their basis and
show that for smooth solutions the exponential convergence

1Drake [10] points out that alternative methods can calculate the
singly excited spectrum. For high angular momentum, the system
can be treated as an electron in the field of a perturbed core with
higher and higher moments of the core being included for higher and
higher accuracy. This calculation can be done analytically for the
two-electron problem. The approximation here is that the electron
correlation energy is ignored, but this is very small for such states.
For large principle quantum numbers, quantum defect approximations
work well. The energy is proportional to 1/(n − δl)2, instead of the
usual 1/n2, where n is the principle quantum number of the excited
electron, l is its angular momentum, and δl gives the effect of the
screening due to the inner electron.
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rate is not dependent on the dimensionality of the system. They
calculate the energies of several different systems including
hydrogen and helium. Unfortunately, they fail to achieve
exponential convergence because the cusps were not properly
treated, and hence their highest resolution runs for hydrogen
and helium are only good to about 2 and 10%, respectively.

D. Specialized methods for two-electron systems

Haftel and Mandelzweig and later other collaborators [35–
41] have presented an exact treatment of two-electron atoms
that begins by factoring out the correct cusp behavior and
posing the problem in terms of the remaining part of the wave
function. This piece which is continuous up to first derivatives
is expanded in terms of hyperspherical harmonics yielding a
set of coupled ordinary differential equations for coefficients
which are functions of the hyperradius. The method fully
accounts for the asymptotic behavior near coalescence points
and yields results with energies good to one part in 109. The
hyperspherical harmonic expansion converges more quickly
than if the cusp is not explicitly accommodated for but remains
algebraic because of the higher-order discontinuities. The
method accurately determines bound excited states as well.

E. Direct solution of partial differential equation for bound
and continuum states

Most of the bound-state techniques mentioned thus far
are unsuitable for calculating continuum states. In fact,
continuum-state calculations rely on totally different varia-
tional methods. The main ones are R-matrix [42], Schwinger
variational [43], and the complex Kohn variational [44]
methods. Accuracy for these methods lags far behind that of
bound-state calculations.

Roughly speaking, the source of some of these difficulties is
related to describing the wave function over an infinite volume
while simultaneously controlling the errors of greatest signif-
icance. Typically, linear variational methods are equivalent to
spectral expansions of the wave function. The control one has
over the accuracy of an approximate description of the wave
function is indirect via the choice of the expansion. Instead,
one may be motivated for both bound and continuum problems
to consider solving the partial differential equation directly on
a grid where a greater degree of local control is possible.

Finite difference methods (FDM) [45–48] and finite el-
ement methods (FEM) [49–54] represent the solution and
the differential equation on a discrete grid. The FDM grid
is usually evenly spaced with derivatives calculated to some
small (usually second) order. FEM uses subdomains, concen-
trating grid points where more accuracy is needed. Recent
work achieves as many as seven decimal places in the energy
of the ground state but produces surprisingly nonsmooth wave
functions [53,54]. The rate of convergence of these methods
is limited by the order of the representation of derivatives and
is always algebraic with some small index dependent on the
order used for derivatives.

F. Pseudospectral approach

Some of the above considerations motivate an investigation
of the pseudospectral (PS) method. Like FDM and FEM meth-
ods the PS method represents the wave function by values on a

discrete grid of points rather than by coefficients of a spectral
expansion. However, the points are selected in a different
manner and the derivative order increases with grid resolution.
Roots of Jacobi polynomials are chosen in order to make
the asymptotic rate of convergence of an analytic function
constant across the entire finite nonperiodic domain. Such a
choice also has the advantage that exponential convergence
can be lost only by nonanalytic behavior within the domain.
By contrast, an equispaced grid is sensitive to singularities
nearby in the complex plane and can lead to divergences when
interpolating near the endpoints (Runge phenomenon). Of all
the Jacobi polynomials, Chebyshev polynomials vary the least
over [−1, 1] and hence produce the smallest residual from the
PS method. The mathematical theory of nonsmooth functions
is not well developed and precise convergence rates are usually
calculated empirically [55].

The PS method [3,55,56] has seen successes in many
fields including fluid dynamics [57], relativistic astrophysics
[58], and numerical relativity [59,60]. When the underlying
solution is smooth, the PS method typically requires less
computational run time and less memory than FDM and
FEM to achieve comparable precision. The method has been
applied in quantum mechanics to solve the full Schrödinger
equation for a single electron [61–63]. In addition, various
simplifications of the multielectron Schrödinger equation
have been treated, including the Hartree-Fock approximation
[64–69], Møller-Plesset perturbation theory [70], and density
functional theory [71,72].

To the authors’ knowledge, no one has solved the full three-
dimensional Schrödinger equation for heliumlike systems (the
“exact” problem) using PS methods. This article implements
the method, investigates several design choices and calculates
ground and excited bound S states. The convergence rate
is used as the metric to characterize different grid choices,
alternative methods for handling regularity conditions and
other practical considerations needed for an efficient algo-
rithm. No attempt to reproduce the ultrahigh precision results
of variational methods is made. The calculation employs a
standard Chebyshev basis without any specialized tuning.
The eigenvalue and eigenfunction problems are solved by
a standard method. All calculations are done on a single
processor with a speed of 6 GHz and 8 GB of memory.

The PS method is expected to be supergeometric on a finite
computational domain if no singularities exist in the solution
anywhere in the complex plane, geometric if singularities
are only outside the domain, and algebraic if singularities
exist within domain. If the domain is infinite or semi-infinite,
subgeometric convergence is expected when no singularities
are in the domain, and algebraic convergence is expected
otherwise [3].

II. SETTING UP THE PROBLEM

Let zi and ∇2
i be the position vector and the Laplacian of

the coordinates, respectively, of the ith electron if i is 1 or 2
and of the nucleus if i is 3. The nonrelativistic Schrödinger
equation for a heliumlike system is

H = −1

2

(∇2
1

m
+ ∇2

2

m
+ ∇2

3

M

)
+ V, (3)
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where

V = − Z

|z1 − z3| − Z

|z2 − z3| + α

|z1 − z2| , (4)

Z is the nuclear charge, α = 1 unless the electron-electron
interaction is suppressed (α = 0), m is the mass of the
electron, and M is the mass of the nucleus. The units are
e = h̄ = 1/4πε0 = 1. The Hamiltonian acts on functions of
nine dimensions, i.e., three coordinate positions for each
particle.

The relative and center of mass coordinates are

r1 = z1 − z3 (5)

r2 = z2 − z3 (6)

R = m(z1 + z2) + Mz3

M + 2m
. (7)

Define the coordinates

r1 = |r1| (8)

r2 = |r2| (9)

r12 = |r1 − r2|, (10)

and rewrite the Hamiltonian

H = T0 + Tcm + Tmp + V, (11)

where

T0 = − 1

2µ

(∇2
r1

+ ∇2
r2

)
, (12)

Tcm = − 1

2(M + 2m)
∇2

R, (13)

Tmp = − 1

M
∇r1 · ∇r2 , (14)

V = −Z

r1
− Z

r2
+ α

r12
, (15)

µ = mM/(M + m) is the reduced mass of the electron and
nucleus, and ∇x is the gradient operator with respect to the
vector x.

In the center-of-mass frame Tcm may be dropped bringing
to six the number of nontrivial coordinates on which the wave
function depends. Because m � M , the mass polarization
term Tmp is often ignored or treated perturbatively. While
unnecessary for many methods including PS, we use the
infinite nuclear mass approximation (M = ∞) to facilitate
comparison with previous results. In units with m = 1 (atomic
units) the Hamiltonian is

H = −1

2

(∇2
r1

+ ∇2
r2

) − Z

r1
− Z

r2
+ α

r12
. (16)

Atomic units are used throughout the rest of this article.
This operator is elliptic. All boundaries in physical space

require specification of the function or its normal derivative or
some combination of the two [73]. In the ideal problem, the
physical boundary is at infinity where the wave function must
be zero. The existence of the Coulomb potential’s singular
points at r1 = 0, r2 = 0, and r12 = 0 introduces complications
in any formal and practical analysis. Before the exact nature
of the Hermitian Hamiltonian operator and its spectrum was
understood, Kato [74] showed that discrete eigenstates existed

for the specific case of helium. In later work Kato [75] showed
that the wave function must be finite at the singular points
(which is also true everywhere else) and that the first derivative
of the wave function on the domain excluding the singular
points is bounded. This result allows discontinuities in the first
derivative at the singular points, called Kato cusps. Generally,
higher derivatives are not bounded at the singular points.

In any numerical treatment of the Hamiltonian operator a
decision must be made about how to handle the singular points.
In a formal mathematical sense, quantities at the singularities
are well defined only in the limit as one approaches the
singularity. This creates an effective inner boundary about
such points on which additional conditions on the function
and its normal derivative may be specified. Such conditions are
exploited to guarantee regularity in the limit that the excised
region shrinks to a point. This article assumes that it is correct
to excise such a point, either explicitly or implicitly.

III. COORDINATES AND THE HAMILTONIAN

The heliumlike atom is made of three particles: a nucleus
and two electrons. Six coordinates are required to describe
relative positions. Three coordinates describe the precise shape
and size of the triangle with a particle at each vertex, and
the other three describe the orientation of that triangle in
space (often taken to be Euler angles). The wave function
for S states is completely independent of the latter three [4].
For nonzero angular momentum one first expands the wave
function in generalized spherical harmonics of the Euler
angles. Only a finite number of terms are needed for a
given total angular momentum and its z component, and the
Shrödinger equation becomes a finite set of coupled partial
differential equations for the remaining three variables (e.g.,
Refs. [76,77]).

Two useful sets of coordinates for the triangle are
{r1, r2, r12} and {r1, r2, θ12}, where r1 and r2 are the proton-
electron distances, r12 is the electron-electron distance, and θ12

is the angle between the vectors pointing to the two electrons.
Four additional useful sets of coordinates {ρ or x, φ, C} and
{ρ or x, ζ, B} are defined by

r1 = ρ cos φ (17)

r2 = ρ sin φ (18)

C = − cos θ12 (19)√
2 sin ζ =

√
1 + C sin 2φ (20)

B = cos 2φ√
1 − C2 sin2 2φ

(21)

x = 1 − ρ

1 + ρ
. (22)

The ranges of these variables are given by:

0 � r1, r2, ρ < ∞
|r1 − r2| � r12 � r1 + r2

0 � θ12 � π

0 � φ, ζ � π/2
−1 � x, C,B � 1.

(23)
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The coordinate x maps the semi-infinite domain to a finite
domain.2 This simple choice works well because the wave
function is exponentially small at large ρ for bound states
which are the topic of interest here.

After integrating over the Euler angles the volume elements
are

∫
d3r1d

3r2 = 2π2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
∫

r1r2r12 dr1 dr2 dr12

4
∫

r2
1 r2

2 sin θ12 dr1 dr2dθ12∫
ρ5 sin2 2φdρ dφ dC

2
∫

ρ5 sin2 2ζdρ dζ dB

2
∫ (1−x)5

(1+x)7 sin2 2φdx dφ dC

4
∫ (1−x)5

(1+x)7 sin2 2ζdx dζ dB.

(24)

The Hamiltonian for S states can be written in hyperspher-
ical coordinates as:

H = Tρ + ρ−2(Tφ + csc2 2φTC) + ρ−1U (25)

= Tρ + ρ−2(Tζ + csc2 2ζTB) + ρ−1U , (26)

where

Tρ = −1

2
∂ρρ − 5

2ρ
∂ρ (27)

= − (1 + x)4

8
∂xx + (1 + x)3(4 + x)

4(1 − x)
∂x (28)

Tφ = −
(

1

2
∂φφ + 2 cot 2φ∂φ

)
(29)

TC = −2[(1 − C2)∂CC − 2C∂C] (30)

Tζ = −
(

1

2
∂ζζ + 2 cot 2ζ∂ζ

)
(31)

TB = −2[(1 − B2)∂BB − 2B∂B] (32)

U = α

σ [C, φ]
− Z csc φ − Z sec φ (33)

= α√
2 sin ζ

− Z
√

2

σ [B, ζ ]
− Z

√
2

σ [−B, ζ ]
, (34)

and

σ [x, y] =
√

1 + x sin 2y. (35)

IV. THE SINGULAR POINTS IN THE HAMILTONIAN

PS methods are very sensitive to discontinuous derivatives
of any order. If such discontinuities exist, the method loses its
exponential convergence and artificial oscillations may occur.
The wave function has discontinuities only at the singular
points which thus require special attention. Myers et al. [78]
discuss these singularities in detail. Here we reproduce some
of their discussion for completeness.

2One can introduce a free parameter L by defining x = (1 −
ρ/L)/(1 + ρ/L) and vary L to optimize convergence but doing this
led to only slight improvements. This finding is in agreement with
Boyd et al. [63], who showed that L has a small effect for the hydrogen
atom when using a Chebyshev basis.

A. Two-particle coalescences

There exist three lines corresponding to two-particle co-
alescences: two for the proton and each electron at φ = 0
and φ = π/2 and one for the two electrons at ζ = 0. Only
one of the proton-electron coalescence lines need appear in
the numerical domain which takes advantage of the explicit
symmetry of the spatial part of the wave function about
φ = π/4.

Kato [79] analyzed the discontinuity in the derivative of a
wave function at two particle coalescence points and showed
that

∂ψ̂

∂r

∣∣∣∣∣
r=0

= µijqiqjψ(r = 0), (36)

where ψ is the wave function, r is the particle-particle distance,
ψ̂ is the limit of the average value of the wave function on a
sphere centered at r = 0 as its radius shrinks to zero, µij is
the reduced mass of the two particles, and qi and qj are the
charges of the two particles.

Pack and Byers Brown [80] extended the analysis to
show that the wave function could be expanded in terms of
hydrogenic solutions.

ψ =
∑
lm

almrlYm
l [θ, φ]

(
1 + qiqjµij

l + 1
r + O[r2]

)
, (37)

where l � 0, |m| � l, alm is an expansion coefficient, θ and φ

are the usual spherical angles giving the orientation of the two
particles, and Ym

l is the usual spherical harmonic.
These results describe the regularity required at the

Coulomb singularities. There are three practical approaches
to making sure the solution has the appropriate behavior.

1. Behavioral
Assume that local solutions to the Schrödinger

equation that fail to satisfy Eqs. (36) and (37) are not
analytic; assume that the expansion (cardinal functions)
employed in the numerical treatment is incapable of
representing this nonanalytic behavior. Granted these
assumptions, all numerical solutions will automatically
be regular at the point in question.3 According to Boyd
[3], in many contexts this approach is sufficient. If the
solutions that do not satisfy Eqs. (36) and (37) have only
weakly singular behavior, the convergence rate may be
slow.

2. Regularity
Replace the Hamiltonian at the singular points with

the Kato cusp conditions without otherwise altering the
domain. The cusp conditions are

∂ψ̂

∂φ

∣∣∣∣∣
φ=0

= −Zρψ(φ = 0) (38)

3Because it is impossible to work where the potential diverges, the
grid must be designed to exclude the point in question. The fact the
grid does not contain the point is not a requirement of the behavioral
approach.
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∂ψ̂

∂φ

∣∣∣∣∣
φ=π/2

= Zρψ
(
φ = π

2

)
(39)

∂ψ̂

∂ζ

∣∣∣∣∣
ζ=0

= αρ

2
ψ(ζ = 0) (40)

or

ψ(φ = 0) = 0 (41)

ψ
(
φ = π

2

)
= 0 (42)

ψ(ζ = 0) = 0, (43)

where these two sets are mixed and matched while
preserving the appropriate symmetry or antisymmetry.
The choice depends on precisely which state one wishes
to calculate.

3. Excision
Excise a small sphere around the singular points and

impose boundary conditions on its surface that yield the
correct behavior at the singularity as the sphere shrinks.
From Eq. (37)

ψ =
∑

l

blρ
lφlPl[C]

(
1 − Zρφ

l + 1
+ O[ρ2φ2]

)
(44)

ψ =
∑

l

clρ
lφ̃lPl[C]

(
1 − Zρφ̃

l + 1
+ O[ρ2φ̃2]

)
(45)

ψ =
∑

l

dlρ
lζ lPl[B]

(
1 + αρζ

√
2

2(l + 1)
+ O[ρ2ζ 2]

)
,

(46)

where φ̃ = π/2 − φ, Pl is a Legendre polynomial of
order l, and bl , cl , and dl are unknown constants. Define

ξl =
∫ 1

−1
ψPl[C] dC (47)

χl =
∫ 1

−1
ψPl[B] dB, (48)

and write the conditions as

0 = φ
∂ξl

∂φ
+

(
−l + ρφ

Z

l + 1

)
ξl (49)

= −φ̃
∂ξl

∂φ
+

(
−l + ρφ̃

Z

l + 1

)
ξl (50)

= ζ
∂χl

∂ζ
−

(
l + αρζ

√
2

2(l + 1)

)
χl. (51)

These conditions become exact as the excised volume
shrinks to a point. For PS methods the volume should be
reduced exponentially with increasing resolution. The
changes do not increase the computational cost but may
adversely affect the condition number of the matrix.

The difficulty of implementation increases with number on
the list.

B. Three particle coalescence

The potential is also singular when all three particles collide
(i.e., when the hyperradius, ρ goes to zero). The behavior of
the wave function about this point is much less well understood
than two-particle coalescences and cannot be handled in the
same way. Instead of simply having a discontinuity in the
wave function’s first derivative (the value of which is finite
on both sides of the singularity), the second derivative grows
logarithmically near ρ = 0. Bartlett [26] was the first to show
that a simple Frobenius type expansion in powers of ρ about
ρ = 0 fails at second order on account of the electron-electron
interaction. He suggested that logarithmic terms exist in the
exact solution of helium. Fock [81,82] introduced an expansion
of the form

ψ =
∞∑

n=0

�n/2�∑
m=0

enmρn(log ρ)m, (52)

where enm are two dimensional functions of the hyperangles
{φ,C} or {ζ, B} determined through the recursive relationship

[n(n + 4) + 	]enm = 2V en−1,m − 2Een−2,m

− 2(n + 2)(m + 1)en,m+1

− (m + 1)(m + 2)en,m+2, (53)

and 	 is the two-dimensional Laplacian over the hyperangles.
All enm with n � 2 are known analytically plus a few additional
terms with higher n [83–86]. Morgan proved that the series
is convergent everywhere [87], and it has been shown that
variational calculations converge faster when a single power
of a logarithm is included in the basis [7].4

Again, there are three basic strategies for a numerical
scheme:

1. Behavioral
Do nothing special and rely on the regularity of

the cardinal functions. This is an imperfect approach
since the exact wave function has unbounded second
derivatives as ρ → 0. If the basis set can only represent
regular behavior as discussed in the case of two-particle
coalescence it will not produce the exact solution.
However, since the volume element scales as ρ5dρ such
inexactness may have negligible effect on observables
calculated from the wave function.

2. Regularity
Impose a regularity-like condition at the singular

point. For the ground state (and many other S states),
the first-order solution [81,82] to the Fock Eqs. (53) is

e00 = c (54)

e10 = c
{
−Z(cos φ + sin φ) + α

2
σ [C, φ]

}
, (55)

where c is a constant given by the normalization. These
solutions imply either

∂ρψ |ρ=0 =
{
−Z(cos φ + sin φ) + α

2
σ [C, φ]

}
×ψ(ρ = 0), (56)

4Curiously, higher powers of the logarithm do not seem to improve
the convergence rate of variational calculations [28].
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which is valid for the ground state, or

ψ(ρ = 0) = 0. (57)

Note that this regularity-like condition says nothing
about the second derivatives. For the same reasons as
above this method can never give the exact solution at
ρ = 0.

3. Excision
Excise a small domain with ρ < ρmin, where ρmin is

the cutoff. A boundary condition can be calculated on
this inner surface by solving Eq. (53) to relate the wave
function and normal derivative on the surface.5 As the
resolution increases, more terms must be calculated
so that the truncation error in the Fock expansion
equals the error due to having finite resolution in
the numerical calculation. The basis set expansion in
the bulk remains completely regular. While exact, the
method is complicated and will be pursued at a later
time.

C. Infinite separation

The domain of the ideal problem extends to infinity. The
bound-state wave functions fall off exponentially. The outer
boundary condition must be approximated in the numerical
method. There are several approaches.

1. Behavioral
Rely on the regularity of the cardinal functions to

exclude exponentially growing solutions as ρ → ∞.
One must map the semi-infinite domain to a finite one
to use Chebyshev collocation points or work with semi-
infinite functions like Laguerre polynomials.

2. Regularity
Again map the domain to a finite one but replace the

Schrödinger equation at ρ = ∞ by

ψ(ρ = ∞) = 0. (58)

Note that if one includes the endpoints using the
behavioral method, this method is effectively the same
as the behavioral condition because the Schrödinger
equation reduces to Eψ = 0 at x = −1 (ρ = ∞).

3. Excision
Excise the region with ρ > ρmax where ρmax is the

cutoff and impose a suitable boundary condition. As
in the three-particle coalescence, one may develop a
more and more accurate representation at fixed ρmax

and/or an approximate condition at increasing ρmax. It
is easiest to set

ψ(ρ = ρmax) = 0 (59)

or

∂ψ

∂ρ

∣∣∣∣
ρ=ρmax

= 0 (60)

5The boundary condition is not known in analytic form (except at
low order) but must be inferred by a numerical technique. Solutions
to Eq. (53) can be found numerically with similar techniques as
employed here for the full three-dimensional problem.

and vary ρmax, which is what is done in this article
when using this method. In a PS numerical scheme one
should vary ρmax ∝ n1/2 for large n where n is the radial
resolution (see Appendix A).

D. Collinearity (B or C = ±1)

The coefficients multiplying the second derivatives with
respect to B and C at B,C = ±1 go to zero. In ordinary
differential equations this allows irregular solutions that
behave as linear combinations of Legendre functions of the
second kind. Regularity of the cardinal functions excludes
such solutions. Since the Schrödinger equation at these points
contains no infinities it does not matter if the grid includes these
points. The partial differential equation is parabolic along this
boundary. So no boundary conditions or regularity conditions
need to be given.

V. THE PSEUDOSPECTRAL METHOD

Boyd [3], Fornberg [55], Pfeiffer et al. [59], and the third
edition of Numerical Recipes [56] cover the PS method in
detail. A brief review of some aspects pertinent to our work
follows.

The main advantage of this method is that it provides
exponentially fast convergence for smooth solutions. Unlike
finite difference and finite element algorithms, all derivatives
are calculated to higher and higher order with increasing
resolution.

It is also noteworthy that the grid points are clustered more
closely near the boundary of a domain than in its center.
With this arrangement the representation of a function and its
derivative is more uniformly accurate across the whole domain
than is possible using an equal number of equidistant points.
Finite difference and finite element methods typically use an
equal-spaced grid and the derivatives are less accurate at the
edge than at the center.

Let nd be the number of coordinate dimensions and Ni the
resolution in the ith dimension. The differential equation is
enforced at nt = ∏nd

i=1 Ni collocation or grid points chosen
to be the roots or extrema of a Jacobi polynomial of order
Ni in each dimension. Boyd’s recommendation that one use
Chebyshev polynomials to generate the grid points in lieu of
special circumstances is followed here [3].

The derivatives in the ith direction are calculated to Nth
i

order in terms of the function values at the collocation points.
To illustrate this it is useful to define the cardinal functions:

CN
j [x] =

N∏
i=1
i 
=j

x − xi

xj − xi
, (61)

where the xi’s are the collocation points and i and j are
superscripts not exponents. These functions have the property
that

CN
j [xi] = δi

j . (62)

The PS representation of a function at an arbitrary nd -
dimensional position (x1, . . . , xnd

) is expanded as

ψ ≈ ψN1,...,Nnd
= ψj1,...,jnd F

N1,...,Nnd

j1,...,jnd

[
x1, . . . , xnd

]
, (63)
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(using the Einstein summation convention) in terms of its grid
values and the cardinal functions

ψj1,...,jnd = ψN1,...,Nnd

[
x

j1
1 , . . . , x

jnd
nd

]
(64)

F
N1,...,Nnd

j1,...,jnd
=

nd∏
i=1

C
Ni

ji
[xi]. (65)

Such an expansion is equivalent (up to an exponentially small
error for smooth functions) to a spectral one,

ψ = sj1,...,jnd Gj1,...,jnd
[x1, . . . , xnd

], (66)

where

Gj =
nd∏
i=1

uji
[xi] (67)

sj1,...,jnd =
∫

ψGj

nd∏
i=1

w[xi]dxi (68)

≈ ψi1,...,ind Gj
[
x

i1
1 , . . . , x

ind
nd

] nd∏
k=1

vik , (69)

j means j1, . . . , jnd
, uji

are orthonormal polynomials chosen
here to be Chebyshev polynomials, w is the weight function
over which they are orthonormal, and vik are the corresponding
quadrature weights. Note, the collocation points are also
quadrature points which allow exponential convergence of the
quadrature. Derivatives of ψ are approximated by differentiat-
ing Eq. (63). To this end, it is useful to introduce differentiation
matrices,

(DN )ij = ∂xC
N
j [x]|x=xi . (70)

This method is readily applied to linear eigenvalue prob-
lems as arise from the Schrödinger equation6

(H − E)ψ = 0, (71)

where H is the Hamiltonian operator, ψ is the wave function,
and E is the energy eigenvalue. Discretizing on the grid gives
the tensor equation

H
i1,i2,...,ind

j1,j2,...,jnd
ψj1,j2,...,jnd = Eψi1,i2,...,ind , (72)

where

H
i1,i2,...,ind

j1,j2,...,jnd
= HFj1,j2,...,jnd

[
x

i1
1 , x

i2
2 , . . . , x

ind
nd

]
. (73)

Unlike finite difference methods, the tensor H
i1,i2,...,ind

j1,j2,...,jnd
is

dense. Write this as H
k(i1,i2,...,ind

)
l(j1,j2,...,jnd

) or for short Hk
l , where k

and l are one-to-one functions mapping the set of nd indices
to the lowest nt positive integers. This recasts the tensor as a
large matrix so that standard matrix methods can be employed.

One way to carry out the mapping employs the Kronecker
product as follows. If H is given by

H =
∑

i1...,ind

fi1,...,ind

[
x1, . . . , xnd

]
(∂x1 )i1 · · · (∂xnd

)ind , (74)

6Linearity is not required for the PS method.

where fi1,...,ind
is a function coefficient, then the matrix, H is

given by

Hk
l =

∑
i1,...,ind

fi1,...,ind
[xk]

⎛
⎝ nd⊗

j=1

(DNj
)ij

⎞
⎠k

l

, (75)

where xk is the nd -dimensional vector of coordinates with
indices that map to k, Nj is the number of grid points in the
j th direction, ij is an exponent, and DNj

is the differential
matrix based on Nj points.

VI. PSEUDOSPECTRAL CONVERGENCE FOR
NONSMOOTH FUNCTIONS

To make appropriate design algorithmic choices it is im-
portant to investigate how the PS method handles nonsmooth
behavior of solutions. This section explores the convergence of
truncated cardinal function expansions to cusps and logarith-
mic terms and then employs a toy model that illustrates how
the triple coalescence is expected to influence the numerical
results.

A. Kato cusps

Consider the ground state of the hydrogen atom with wave
function

ψ = e−r = e−
√

x2+y2+z2
. (76)

In Cartesian coordinates, there is a discontinuity in the first
derivative at the origin,

lim
x→0+

∂ψ

∂x

∣∣∣∣
y=z=0


= lim
x→0−

∂ψ

∂x

∣∣∣∣
y=z=0

. (77)

In spherical coordinates no discontinuity exists for r � 0. All
the derivatives at r = 0 are well defined and a PS code has no
problem exponentially converging toward the correct answer.
The essence of this observation can be seen by considering the
one-dimensional exponential functions

g1[x] = e−|x| (78)

g2[x] = e−(x+1), (79)

on the domain −1 � x � 1 with weight x2 (analogous to the
three dimensional hydrogen atom). As a measure of error
between the function f and its cardinal expansion truncated at
order n define

δN
RMS[f ] =

√√√√∫ 1

−1
x2

(
f [x] −

N∑
i=1

CN
i [x]f [xi]

)2

dx. (80)

Figure 1 compares δn
RMS[g1] to δn

RMS[g2] as a function of
n. Evidently the cusp is poorly represented compared to
the smooth function at a given n. The PS representation of the
cusp converges algebraically while the representation of the
smooth function converges supergeometrically (see Appendix
B for fits).

The basic strategy in more complicated problems is to adopt
a coordinate system with a radial-like coordinate at each cusp.
For two-electron atoms no global coordinate system exists
with the desired property at each of the three separate two-
particle coalescences. This article uses three individual but

032508-8



PSEUDOSPECTRAL CALCULATION OF THE . . . PHYSICAL REVIEW A 81, 032508 (2010)

0 2 4 6 8 10 12 14

−14

−12

−10

−8

−6

−4

−2

−0

N

lo
g 1

0
R

M
S

N
δ

g 1
,2

g2

g1

FIG. 1. (Color online) The logarithm base 10 of δN
RMS[g1] (blue

circles) and δN
RMS[g2] (red crosses) with solid blue and dashed red fits,

respectively. See Appendix B for fitting functions.

overlapping domains to guarantee appropriate treatment near
each coalescence point.

B. Logarithmic terms

Consider the one-dimensional function

f [x] = {
1 + 1

2αρ[x]2 log[ρ[x]]
}
e−ρ[x], (81)

where

ρ[x] = 1 − x

1 + x
. (82)

Here ρ ∈ [0,∞), x ∈ [−1, 1] and f are analogous to the
hyperspherical radius, its algebraic transformation and the
heliumlike wave function ψ , respectively. As in the full
three-dimensional problem, the presence or absence of the
logarithmic terms is controlled by α, which can be set to
0 or 1.

There are two types of errors considered here: interpolation
error and operator error. These are different sorts of error,
but qualitative features (e.g., exponential or algebraic conver-
gence) are expected to be the same.

1. Interpolation error

The pointwise error between f and its truncated expansion
is

�f = f [x] −
N∑

i=1

CN
i [x]f [xi], (83)

where xi refers to the ith grid point.
Figure 2 shows that the behavior of �f at three different

values of ρ. For each value the apparent rate of convergence
starts out exponential before becoming algebraic at large N .
The algebraic convergence known with the highest accuracy
in Fig. 2 is for ρ = 10−6, which asymptotically goes as
1/N3.82±0.09 (see Appendix B). This algebraic behavior is
expected when trying to represent a nonanalytic function
(log[ρ]) with an analytic basis. Such behavior disappears if
α is set to zero.

The onset of algebraic convergence varies from N ≈ 40 to
N ≈ 80 as ρ, moving away from the singularity, increases by
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FIG. 2. (Color online) The logarithm base 10 of the error in f [x]
using cardinal functions at ρ = 10−6 (green pluses), ρ = 10−1 (red
crosses), and ρ = 104 (blue circles) with solid blue, dashed red, and
dotted green fits, respectively. See Appendix B for fitting functions
and method.

10 orders of magnitude. The error at the transition is <10−6.
Typically, energy errors vary as the square of wave function
errors and would already be very small compared to relativistic
corrections. This calculation shows that it is possible to get
precise values with apparent exponential convergence before
reaching the asymptotic algebraic regime. As a practical
matter, one may never reach the latter limit.

2. Operator error

In order to estimate the error in the eigenvalue, it would
help to have a one-dimensional toy eigenvalue problem with
an eigenfunction similar to the function in Eq. (81). It is
impossible to construct a one-dimensional eigenvalue problem
with solutions that have logarithmic singularities without
explicitly introducing such singularities into the differential
operator. So here a more limited test problem is used. Instead of
solving for an eigenvalue, the error in the operator is measured.
This would contribute to the eigenvalue error along with the
error in the wave function.

Let �H be the difference between the true Hamiltonian and
the Hamiltonian constructed from PS differentiation matrices.
The associated energy error is 〈ψ |�H|ψ〉. The aim is to
construct an analog of the integrand of the energy error and
use it to assess pointwise and integral errors.

Construct a differential operator D similar to the full
Hamiltonian H [see Eq. (25)] but in terms of the coordinate x,

D = p2[x]∂xx + p1[x]∂x + p0[x], (84)

where

p2[x] = − (1 + x)4

8
(85)

p1[x] = (1 + x)3

4

(
4 + x

1 − x

)
(86)

p0[x] = − 1

ρ[x]
. (87)

Note, the first two terms are identical to the operator Tρ and
the last term is a Coulomb potential.
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FIG. 3. (Color online) The logarithm base 10 of the maximum
error of a pseudospectral matrix. The dark blue circles are for α = 1
and the light red crosses for α = 0 with solid blue and dashed red fits,
respectively. See Appendix B for fitting functions and method.

The corresponding matrix operator is

(dN )ij = p2[xi](DN )ik(DN )kj + p1[xi](DN )ij + p0[xi]δi
j ,

(88)

where Einstein’s summation convention is used and δi
j is the

Kronecker delta function. The pointwise error on the grid and
its maximum are

(�HN )i = w[xi]

⎛
⎝(Df )[xi] −

∑
j

(dN )ij f [xj ]

⎞
⎠ (89)

�H max
N = max

i
|(�HN )i |, (90)

where

w[x] = (1 − x)5

(1 + x)7
f [x] (91)

The factor (1 − x)5/(1 + x)7 comes from the Jacobian.
Figure 3 shows �H max

N , the maximum error anywhere
on the grid, as a function of n for α = 0 and α = 1. The
decrease appears to be exponential, not unanticipated when
α = 0 but perhaps a surprise for α = 1. The slopes of the
two curves are roughly the same and the offset is due to the
variation of the magnitude of f with α. An explanation is
immediately suggested by Fig. 4 which shows the error at the
grid point closest to the singularity (�HN )i

∗
(here i∗ refers

to that point). The data for α = 1 is well fit by an algebraic
rate of convergence (1/N10.36±0.08) at large N while α = 0
has an approximately exponential fall-off (the convergence is
subgeometric because the calculation is done on a semi-infinite
domain). The log term does spoil the method’s exponential
convergence. Assuming that the effect is greatest at i = i∗, the
maximum error is dominated by the log term when N is greater
than about 200 and the error is very small. This is exponential
convergence “for all practical purposes.”

C. Conclusion

For the interpolation and operator errors, the logarithmic
term does not slow convergence unless one is at high resolution
or interested in small values of ρ. For those cases, one would
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FIG. 4. (Color online) The logarithm base 10 of the error of a
pseudospectral matrix near the singularity. The dark blue circles are
for α = 1 and the light red pluses for α = 0 with solid blue and
dashed red fits, respectively. See Appendix B for fitting functions and
method.

need to apply the excision method about the triple coalescence
point in order to retain exponential convergence. For most
applications the level of precision needed is obtained before
the algebraic behavior becomes apparent.

VII. NUMERICAL DOMAINS AND COLLOCATION
POINTS

Because the two electrons are identical particles the full
wave function is antisymmetric. In the ground state, the spins
are antisymmetric and the spatial part is symmetric. The spatial
domain may be taken as φ < π/4 and B > 0. The complete
numerical domain is

D0 : −1 � x � 1 0 � φ � π
4 −1 � C � 1

or
D0 : −1 � x � 1 0 � ζ � π

2 0 � B � 1.

(92)

A single domain does not allow the proper treatment of the two-
particle coalescences. Therefore, introduce three subdomains
to cover D0 using two different sets of variables:

D1 : −1 � x � 1 0 � φ � 1
2 −1 � C � 1

D2 : −1 � x � 1 1
2 � φ � π

4 − 2
3 � C � 1

D3 : −1 � x � 1 0 � ζ � 1
2 0 � B � 1.

(93)

For calculations done on a finite domain, the condition −1 �
x � 1 is replaced by 0 � ρ � ρmax. Cross sections of these
domains at fixed ρ are shown in Fig. 5. An electron-proton
singularity lies in D1, while the electron-electron singularity
lies in D3. The radial-like coordinates in D1 (φ) and D3 (ζ )
accommodate the cusps just like the usual radial coordinate
does in the hydrogen atom. D2 fills in the remaining volume.
All three domains have boundaries that touch the triple
coalescence point (not pictured).

Consideration of the electron-electron singularity shows
why the single domain D0 is inadequate. Byers Brown
and White [88] showed that the wave function can be
expanded in powers of r12 about r12 = 0. Using such
a coordinate accurately treats the cusp away from the
triple coalescence point. The expansion in powers of ζ

is very similar [see Eq. (46)] or equivalently powers of
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FIG. 5. (Color online) This is the arrangement of grid points of
the three domains at a constant value of ρ in φ and C coordinates.
Note that the point density becomes larger at the boundary of each
subdomain and that no grid points sit on the Coulomb singularities.
The blue circles, red crosses, and green pluses belong to domains D1,
D2, and D3, respectively. D1 and D2 are rectangular domains, while
D3 has the curved boundary in φ, C coordinates but is rectangular in
ζ , B coordinates. The electron-proton singularity occurs on the left
side (solid line at φ = 0). The entire line corresponds to one physical
point. The electron-electron singularity occurs at the lower right-hand
corner (solid disk at φ = π/4, C = −1). A line of symmetry falls on
the right side (dashed line at φ = π/4 where r1 = r2).

√
2 sin ζ = √

1 + C sin 2φ.7 Re-expanding in φ and C coordi-
nates gives derivatives of

√
1 + C sin 2φ with respect to C and

φ, terms that are either infinite or undefined at φ = π/4 and
C = −1. This is why the PS method fails to converge rapidly
using D0 alone.

Within each domain, grid points are set as follows. Let
the ith dimension extend from xi,min to xi,max and have Ni

collocation points. These points are the roots or antinodes
plus endpoints of the N th

i order Chebyshev polynomial8

stretched to fit length �xi = xi,max − xi,min. The j th point (for
j = 1, 2, . . . , Ni) of dimension i is

x
j

i = �xi

2

(
y

j

i + 1
)
, (94)

where

y
j

i = cos

[
(Ni − j + λ)π

Ni

]
(95)

and λ is 0 or 1/2 for nodes or antinodes plus endpoints, respec-
tively.9 In this article, nodes are generally used except when

7The radius of convergence of the Byers Brown and White
expansion is unknown to the authors but is clearly invalid at ρ = 0,
the location of the triple coalescence point. Here only the effect of
the double coalescence point is being considered.

8When the excision method is used near the two-particle coales-
cence points, the nodes of Legendre polynomials are used in the B

and C directions. This choice makes it easier to apply Eq. (49) with
a simple quadrature.

9It is also possible to use the so-called Chebyshev-Randau points,
which include one endpoint on one side of the domain but not the
other.

explicit boundary conditions are needed at both endpoints,
xi,min and xi,max.

Potentially each dimension and domain could have its
own Ni but in this article the x direction is set to be twice
as large as the other two dimensions and all are varied in
lockstep. That is, {Nx,NC,Nφ} = {2n, n, n} in domains D1

and D2 and {Nx,NB,Nζ } = {2n, n, n} in domain D3. The
total number of grid points is nt = 3 × (2n × n × n) = 6n3

points. Twice as many points were used in the x dimension, an
arbitrary choice but one motivated by the semi-infinite range
of the hyperspherical coordinate and by the wave function’s
logarithmic dependence on the hyperspherical radius near the
triple coalescence point.

VIII. BOUNDARY CONDITIONS

A. Internal boundary conditions

It is necessary to ensure continuity of the wave function
and its normal derivative at internal boundaries. There are
two ways in which the subdomains can touch: they can
overlap or they can barely touch. For clarity, consider a
one-dimensional problem with two domains. Let the first
domain be domain 1 and the second be domain 2 with extrema
x1,min < x2,min � x1,max < x2,max, where the 1 and 2 now refer
to domain number. The first case corresponds to x2,min < x1,max

and the second to x2,min = x1,max ≡ x∗. For both cases, exactly
two conditions are need to make the wave function and its
derivative continuous. The simplest choice for the first case is

ψ1[x1,max] = ψ2[x1,max] (96)

ψ1[x2,min] = ψ2[x2,min], (97)

and for the second case is

ψ1[x∗] = ψ2[x∗] (98)
d

dx
ψ1[x∗] = d

dx
ψ2[x∗]. (99)

For multidimensional grids, the situation is analogous. The
conditions are applied on surfaces and the derivatives are
normal derivatives at the surface. On a discrete grid, a finite
number of conditions are given which, in the limit of an
infinitely fine mesh, would cover the entire surface. There
is a great deal of freedom in the selection of the points but in
this article the edge of a domain has one constant coordinate so
there is a natural choice. Conditions are imposed at the points
of the finite mesh formed by varying all the other coordinates
(in general, these are not collocation points). In other words,
the matching points lie at the intersection of the coordinate
lines normal to the surface with the surface itself. The positions
of the crosses in Figs. 6 and 7 illustrate where the matching
occurs when the domains overlap and when they just touch.

For touching domains, the black and white crosses in
Fig. 7 are used. Note that four (three) crosses are defined
by the coordinate lines in D2 (D1). At the set of four
crosses, function values are equated, and at the set of three
crosses, normal derivatives are equated. In general, function
values (derivatives) are equated at points stemming from the
subdomain with a greater (lesser) density of points along the
boundary.
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FIG. 6. The intersection (gray) of domains D1 (white) with black
grid points and D3 (black) with white grid points. The boundary
points are depicted as black and white crosses and are connected via
black and white lines to the grid points that they replace.

For overlapping domains, the function values are equated at
the black and white crosses in Fig. 6 which lie on two separate
surfaces. The points are selected in a manner similar to that
of touching domains, i.e., in terms of the intersection of the
coordinate lines in D1 and D3 with the surface. In all cases,
values and derivatives at all points are calculated using Eq. (63)
and are ultimately linear combinations of the grid point values.

B. Symmetry and regularity conditions

For this problem there are two types of boundary conditions
on the boundary of the numerical domain: the symmetry
condition from electron exchange and the regularity conditions
imposed near singular points.

The symmetry condition is related to the total spin of
the two electrons, S. If S = 0 (S = 1) the wave function is
symmetric (antisymmetric) about φ = π/4 or B = 0 and the
normal derivative (value) of the wave function is equal to zero.
This condition is enforced at all the points on the boundary that
have the same ρ and C coordinates as grid points in D2 or the
same ρ and ζ coordinates in D3. This gives 2 × 2n × n = 4n2

boundary conditions.
Regularity conditions are imposed as boundary conditions

at four two-dimensional surfaces: ρ = 0, ρ = ∞, φ = 0, and

FIG. 7. Barely touching domains D1 (white) with black grid
points and D2 (black) with white grid points. The boundary points
are depicted as black and white crosses and are connected via gray
lines to the grid points that they replace.

ζ = 0. These are similar in form to the symmetry condition
except involve linear combinations of derivative and value.
Depending on which type of conditions are given at singular
points (behavioral versus regularity or excision) are used,
there are 0 to 10n2 conditions. These conditions replace an
equal number of equations. The particular equation replaced
is the one that stems from enforcement of the discretized
Schrödinger equation at the collocation point nearest to the
boundary at which the condition applies.

The most complicated type of boundary condition arises
when a region is excised about a two-particle coalescence.
First, one must project out terms proportional to each Legendre
polynomial by performing an integral over C or B. This can be
done by quadrature over the grid points in those dimensions.
For example, Eq. (47) turns into

ξl[ρ
i, φj ] =

∑
k

wkPl[C
k]ψ[ρi, φj , Ck], (100)

where wk are the quadrature weights. Then Eq. (49) becomes
for j = 1 (the excision boundary)

0 =
[
φj (DNφ

)jk +
(

−l + ρiφjZ

l + 1

)
δ

j

k

]
ξl[ρ

i, φk], (101)

which is NρNC conditions (0 � l � NC − 1 and 1 � i � Nρ).

C. Incorporating boundary conditions into the matrix problem

All of the above boundary conditions are expressed as a
linear combination of the function values at the grid points
equal zero. In matrix form

nb{(B1B2)︸ ︷︷ ︸
nb+ni

(
ψ1

ψ2

) }nb

}ni

= 0, (102)

where ψ1 (ψ2) is a vector of the nb (ni) wave function values
at all the boundary (interior) points, the boundary condition
matrix has been broken into an nb by nb matrix B1 and an
nb by ni matrix B2, and nb + ni = nt . For the case where an
endpoint is not a collocation point, the grid point nearest to the
boundary, at which an explicit boundary condition is given,
is considered as a boundary point. All the points near where
behavioral boundary conditions are given are not included in
this definition. These points are the ones that give rise to the
first nb rows in Eqs. (102) and (103). Note, that this ordering
was chosen for clarity in this section.

There is also the Hamiltonian matrix equation

nb{
ni{

(
H11 − E

H21

H12

H22 − E

)
︸ ︷︷ ︸

nb+ni

(
ψ1

ψ2

)
= 0, (103)

where the Hamiltonian matrix has also been divided into four
matrices: H11, H12, H21, and H22.

So there are nt + nb equations and nt unknowns (ψ1 and
ψ2) as well as the eigenvalue. One could approximately solve
these equations with singular value decomposition [56], but
it is much faster to simply discard the first nb rows of the
Hamiltonian matrix and incorporate the boundary conditions
into the remaining eigenvalue problem:(

H22 − H21B
−1
1 B2 − E

)
ψ2 = 0, (104)
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where B1 has an inverse because all of its rows are linearly
independent (otherwise more than one boundary condition
would have been specified for a given boundary point).
Calculating the inverse is not too computationally expensive
because nb � nt . Then solve for ψ1 afterwards with

ψ1 = −B−1
1 B2ψ2. (105)

IX. MATRIX METHODS

In one dimension the Hamiltonian matrix for the PS method
is dense but in three dimensions with three domains the
number of nonzero elements scales as 24n4 out of a possible
36n6. The boundary condition matrix is also sparse with 8n4

nonzero elements out of 48n5 (for the simplest case where
behavioral conditions are used whenever possible). Therefore,
any attempt to solve these equations should take advantage of
these memory savings.

Equation (104) is solved by the method of inverse iteration
[56] after shifting the eigenvalue with an approximately
known value. In cases where the exact eigenvalue is not
known a priori, one solves the full eigenvalue problem
for a low resolution case first and then at each successive
iteration shifts the eigenvalue using the result of the previous
iteration. Because the Hamiltonian matrix is not symmetric,
a complex eigenvalue may occur. There is no theoretical
reason prohibiting the numerical eigenvalue from containing
an imaginary part at finite resolution but, in fact, none were
generated for n > 5. Of course, the imaginary part contributes
to the error which must converge to zero.

The above solution method can yield highly oscillatory
wave functions which appear to diverge on the boundaries of
the computational domain. These nonphysical wave functions
do not satisfy the first nb rows of Eq. (103) and arise as an
artifact of solving a subset of equations of the overdetermined
system. They are easily identified and rejected and in no way
affect the true solution.

The entire calculation for n = 14 took only about 20 min
on a 6-GHz machine. Memory needed to solve the linear
equations was the limiting factor because inverting the equa-
tion has requirements scaling as n6. The generalized minimal
residual (GMRES) algorithm [89] might reduce the memory
requirements of the solution of the linear equations that arise
in the inverse iteration. For simplicity of coding, the above
calculations were done using MATHEMATICA [90]. Care was
taken to use predefined functions whenever such choice was
more efficient.

X. RESULTS

This article is an exploration of the PS method as applied
to heliumlike systems, not an attempt to improve the energy
eigenvalues for bound states. That has already been done
to a higher precision than will ever be needed [9–19]. The
focus here is on showing that the PS method works in a new
application and assessing its convergence properties. Table I
gives a list of runs used in this section to discuss the effects
of the Coulomb terms, energy level (ground or excited),
computational domains and numerical methodology on the
convergence of the solution to the two-electron problem.

TABLE I. A list of the different cases that are compared in this
section. Exc refers to the first excited S state. Grd refers to the ground
state. ND is the number of domains. B, R, and E refer to behavioral,
regularity, and excision, respectively.

Potential State Domain Boundary conditions

Case Z α Exc/Grd ND ρ = 0 φ, ζ = 0 ρ = ∞
A 1 1 Grd 3 B B B
B 1 0 Grd 3 B B B
C 2 1 Grd 3 B B B
D 2 1 Exc 3 B B B
E 1 1 Grd 1 B B B
F 1 0 Grd 1 B B B
G 1 1 Grd 3 R B R
H 1 1 Grd 3 R B E
I 1 1 Grd 3 B R B
J 1 1 Grd 3 B E B

A. Convergence in energy

In this section, the energy error means the difference
between the numerical energy eigenvalue at finite resolution
and the exact energy eigenvalue of the nonrelativistic infinite-
mass-nucleus Hamiltonian. When no analytic value exists,
highly precise variationally calculated values are used [9–19].

The energy errors for H−, H− with the electron-electron
interaction turned off, the ground states of helium, and the
first excited S state of helium (cases A, B, C, and D) are
shown in Fig. 8. The first important result is that the energies
appear to converge in an approximate exponential fashion.
Since these are not variational calculations there is no reason
to expect monotonically decreasing energy errors. Detailed
inspection of the solutions suggests that the kinks in the graphs
are discreteness effects. That is, the precise positioning of the
grid points has a large effect on the magnitude of the error.

A potentially significant issue is the impact on convergence
of logarithmic terms present in the Fock expansion. Prior

4 6 8 10 12 14
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4

2

0

n

lo
g 1

0
E

a.
u. Z 1, 0 Grd

Z 1, 1 Grd

Z 2, 1 Grd

Z 2, 1 Exc

FIG. 8. (Color online) The convergence of the energy of H−, case
A (red pluses), two non-interacting electrons in the field of a proton;
case B (green stars), the ground state of He; case C (blue crosses),
and its first excited S state; case D (black circles) as a function of
grid resolution n, with dotted red, dot-dashed green, dashed blue, and
solid black fits, respectively. See Appendix B for fitting functions and
method.
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authors have been able to calculate very accurate energies
without adverse effects of the infinite second derivative at
ρ = 0, but the PS method is sensitive to singularities anywhere
within the domain. Figure 8 includes a calculation of the
H− system with the electron-electron interaction turned off,
altering the exact solution and removing the logarithmic term.
The rate of convergence is comparable in all cases, suggesting
that the influence of the logarithmic term on convergence
is subdominant for n � 14. This conclusion agrees with the
analysis in Sec. VI B.

Ideally, the numerical method should handle states other
than the ground state. Figure 8 shows the convergence of
energies for the ground state and the first excited S state of
helium. The important result is that the convergence of both
calculations is approximately exponential with a similar rate.

The relative sizes of the magnitude of the error at fixed grid
size for H−, He, and excited He are roughly consistent with
the general expectation set by the difficulty in resolving the
solution’s small-scale structure. Errors for ground state He are
larger than H− because the exponential length scale for falloff
of the He wave function is smaller than that of H−; errors
for the excited state of He are larger than the ground state of
He because the oscillatory length scale of the excited state is
smaller than the exponential length scale of the ground state.

Figure 9 shows the impact on convergence of using a
single numerical subdomain, D0, versus three, {D1,D2,D3}.
The single domain had one third as many points as the
computation with three domains. However, the resolution
in the x direction dominates the convergence and in that
dimension the resolution is identical. Domain D0 has radial-
like coordinates near the electron-proton cusp but not near the
electron-electron cusp. One anticipates slower convergence in
the energy using D0. Comparison shows that two interacting
electrons on three domains (case A) or two noninteracting
electrons on D0 (case F) have similar exponential rates of
convergence. On the other hand, two interacting electrons on
D0 (case E) converge more slowly. This result shows multiple
grids are essential for achieving superior convergence and that
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FIG. 9. (Color online) The convergence of the energy of, case E,
H− using only one computational domain with the electron-electron
interaction on (blue circles); case F, one domain with the interaction
off (red crosses); and case A, three domains with the interaction
on (green pluses) with dashed blue, dotted red, and solid green fits,
respectively. See Appendix B for fitting functions and method.
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FIG. 10. (Color online) The convergence of the energy of, case
H, H− doing the calculation on a finite domain (blue circles); and case
A, semi-infinite domain (red pluses) with dashed blue and solid red
fits, respectively. See Appendix B for fitting functions and method.

the electron-electron cusp drives this requirement. If the single
domain data were adjusted to account for the fact that they used
fewer points, they would be shifted to the left by a factor of
31/3 ≈ 1.44. This would not affect the conclusion that using
three domains is more efficient because the single domain
solution is only algebraically convergent starting at about
n = 8. Using three subdomains is more efficient because the
work involved in the calculation has the same scaling whether
one or three subdomains is used.

Figure 10 presents a comparison of calculations having the
full semi-infinite domain (case A) to those with a finite cutoff
in ρ (case H). The scaling of the cutoff ρmax ∝ √

n imposed
in case H is derived in Appendix A by balancing the error
due to finite resolution from the numerical scheme with errors
introduced by truncating the bound state. The figure shows
that the semi-infinite calculation fairs better. This is a con-
sequence of the two different sets of assumptions used to
distribute the points. The grid points in the semi-infinite
scheme are more often found where the wave function is
large. Half the points have ρ < 1 (x > 0) because 0 is the
center of the x dimension. By comparison, half the points
have ρ < ρmax/2 in the finite calculation. The number of
points where the wave function is large is smaller in this latter
scheme. Although the semi-infinite strategy is more effective,
nothing can be said about the optimal strategy because other
distribution methods were not considered. The main advantage
of the method is simplicity since there are no adjustable
parameters.

Figure 11 presents a comparison of the different ways of
handling the regularity of the wave function at the two-particle
coalescence points. The simplest method, relying on the
regularity of the Chebyshev polynomials (case A), does as
well or better than the other methods (cases I and J).

Figure 12 compares two ways of handling the wave function
at ρ = 0, case A, relying on the regularity of the Chebyshev
polynomials (behavioral) and case G, directly specifying
a logarithmic derivative (regularity). The latter method is
slightly better but both have roughly the same convergence
rate.
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FIG. 11. (Color online) The convergence of the energy of H−

using three different methods of ensuring regularity at the two-particle
coalescence points: case A, relying on the regularity of the Chebyshev
polynomials (green pluses); case I, using the Kato cusp condition as a
regularity condition (red crosses); and case J, excising the singularity
(blue circles) with green dotted, solid red, and dashed blue fits,
respectively. See Appendix B for fitting functions.

B. Convergence in local energy

Another useful measure of convergence is the local energy,

Eloc = Hψ

ψ
. (106)

which is constant only for an exact eigenfunction ψ of
Hamiltonian H. Throughout this subsection all analysis and
data refers to case A.

The difference between the local energy and the numeri-
cally evaluated eigenvalue E gives a local measure of the error
in ψ in a particular calculation. Define

�Eloc = Eloc − E. (107)
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FIG. 12. (Color online) The convergence of the energy of H−

using two different methods of ensuring regularity at the three-particle
coalescence point: case A, relying on the regularity of the Chebyshev
polynomials (blue circles); and case G, using the Fock condition to
specify a logarithmic derivative (red pluses) with dashed blue and
solid red fits, respectively. See Appendix B for fitting functions and
method.
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FIG. 13. (Color online) The convergence of the local energy of
H− at a four points in the domain: the center of the computational
domain (black circles), near the triple coalescence point (blue
crosses), near the proton-electron coalescence point (red pluses),
and at large ρ (green stars). Their geometric fits are given by the
solid black, dashed blue, dotted red, and dot-dashed green lines,
respectively. See Appendix B for fitting functions and method.

For the PS method, �Eloc is zero at all grid points (subject to
limits of finite precision arithmetic). Nonzero differences exist
between grid points. Figure 13 illustrates the convergence of
local energy at four different points. Of the four points, the
error in local energy is lowest at the point in the center of the
computational domain ({ρ, φ,C} = {1, π/8, 0}). It is larger in
magnitude near the singularities ({ρ, φ,C} = {10−4, π/8, 0}
and {1, 10−4, 0}) because near these points Eloc → ∞ for
any nonexact ψ . However, the geometric fits show that the
rate of convergence is approximately the same at all three
of those points. A different behavior is seen at {ρ, φ,C} =
{15, π/8, 0}. The error is roughly constant over much of the
graph but begins to decrease at high resolution. This is not
surprising given the fact that there are only a few grid points
at such large hyperradius.

Figure 14 displays the convergence of the local energy
as a function of x at fixed angular coordinates. For a
perfect exponential decrease in local energy error, the curves
would be equidistant from each other. This is approximately
true throughout the domain except near x = ±1 (small and
large ρ).

If the numerical solution is considered to be trustworthy
where the local energy error is less than some threshold (e.g.,
|�Eloc| < 10−2), then the wave function is well represented
in an intermediate range of ρ (10−2 < ρ < 101.3) but not near
the triple coalescence point nor at infinity.10

At large ρ (x ≈ −1), the true wave function falls off
exponentially (in fact, with respect to the x coordinate it falls
off even faster). The PS method represents the exponential
in terms of a polynomial. When one extrapolates using the
polynomial to x = −1, the wave function is small but nonzero

10The error in the function value is roughly constant everywhere in
the domain, but the magnitude of derivatives and the wave function
becomes large compared to the magnitude of the wave function at
small and large ρ.

032508-15



PAUL E. GRABOWSKI AND DAVID F. CHERNOFF PHYSICAL REVIEW A 81, 032508 (2010)

1.0 0.5 0.0 0.5 1.0

6

4

2

0

2

x

lo
g 1

0
E

lo
c

a.
u.

n 14
n 11
n 8
n 5

FIG. 14. (Color online) The error in the local energy of H− as a
function of x with r1 = 2r2, and C = −1 (the electrons are on the
same side of the nucleus) at four different resolutions: n = 5 green
dot-dashed, n = 8 red dotted, n = 11 blue dashed, n = 14 black solid.

(the exact value should be zero). However, the Hamiltonian
acting on the polynomial is guaranteed to be zero because
every coefficient in the Hamiltonian operator has a factor of
(1 + x). So

lim
ρ→∞

Hψ

ψ
= 0, (108)

and �Eloc → −E, a constant at large ρ as seen in Fig. 14.
Detailed inspection of the data near x = −1 suggests that for
any finite ρ there exists a resolution above which the solution
becomes trustworthy.

The local energy behavior near the triple-coalescence point
(ρ = 0) is of special interest as a probe of the wave function’s
nonanalytic behavior. Figure 15 displays �Eloc as a function
of θ12, the angle between the two electrons, for fixed r2/r1

and for a number of choices of ρ, following a similar figure
from Myers et al. [78]. In this small ρ regime, the terms
that dominate the Hamiltonian are the kinetic energies in the
various directions. Each of these, individually, scales as 1/ρ2

1
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FIG. 15. (Color online) The error in local energy of H− plotted
at different values of the angle θ12 with r1 = 2r2 and at resolution
n = 14 and at ρ = 1 (solid black), ρ = 0.1 (dashed blue), ρ = 0.01
(dotted red), ρ = 0.001 (solid greed), and ρ = 0.0001 (dot-dashed
purple).

[see Eq. (25)]. For the exact solution, these terms cancel each
other, but for almost any solution which is not exact, the local
energy scales as 1/ρ2. This scaling is shown in Figs. 14 and 15.
Again detailed inspection of the data near x = 1 suggests that
for any finite nonzero ρ there exists a resolution above which
the solution becomes trustworthy. Furthermore, Fig. 13 shows
that there is no sign of the convergence rate being slowed due
to the logarithmic terms at this resolution.

C. Cauchy errors

Throughout this subsection all data refers to cases A, B,
and C. The Cauchy error is a measure of the difference
between numerical solutions with different resolution. One
such measure is the normed quantity

�n =
√∫

d3r1d3r2(ψn − ψn−1)2. (109)

The true ψ satisfies

1 =
∫

d3r1d3r2ψ
2, (110)

but integrating ψn all the way to ρ = ∞ would diverge. This
is a consequence of having small but nonzero errors at ρ =
∞ in the value of ψn. An upper limit ρ = 10 is adopted in
the normalization of ψn and calculation of �n. It is arbitrary
but encompasses most of the physical extent of the solution.
The Cauchy error in any subinterval of the full interval must
converge. To the extent that the error in the interval calculated
is dominant, the rate of convergence can be assessed.

Figure 16 gives �n as a function of resolution while
Fig. 17 gives the pointwise difference at ρ = 0 where the
wave function is maximum. Both plots show that convergence
is approximately exponential.

D. The logarithmic derivative at the triple coalescence point

Throughout this subsection all data refers to cases A, B,
and C. The only direct evidence that the convergence of the
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FIG. 16. (Color online) The root-mean-square average Cauchy
error is plotted with increasing resolution for three cases: H− with
noninteracting electrons (blue circles); H− with interacting electrons
(red crosses); and helium with interacting electrons (green pluses)
with dashed blue, solid red, and dotted green fits, respectively. See
Appendix B for fitting functions and method.

032508-16



PSEUDOSPECTRAL CALCULATION OF THE . . . PHYSICAL REVIEW A 81, 032508 (2010)

6 8 10 12 14

6

5

4

3

2

1

0

n

lo
g 1

0
n

0
n

1
0

a.
u.

Z 2, 1

Z 1, 1

Z 1, 0

FIG. 17. (Color online) Pointwise differences in the wave func-
tion evaluated at ρ = 0 for increasing resolution for three cases:
H− with noninteracting electrons (blue circles); H− with interacting
electrons (red crosses); and helium with interacting electrons (green
pluses) with dashed blue, solid red, and dotted green fits, respectively.
See Appendix B for fitting functions and method.

solutions is slowed by the logarithmic terms in the exact
solution comes from evaluating the logarithmic derivative with
respect to ρ at ρ = 0. The exact value is

∂xψ

ψ

∣∣∣∣
x=1

= −1

2

{
−Z(cos φ + sin φ) + α

2
σ [C, φ]

}
. (111)

The root-mean-square error is

δRMS =
√∫

d�

(
∂xψ

ψ
− ∂xψn

ψn

)2

x=1

, (112)

where ∫
d� =

∫ π/4

0
dφ sin2 2φ

∫ 1

−1
dC. (113)

Figure 18 displays δRMS. Turning off the electron-electron
interaction, the convergence is noticeably faster. The important
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FIG. 18. (Color online) The root mean square error in the
logarithmic derivative evaluated at ρ = 0 with increasing resolution
for three cases: H− with noninteracting electrons (blue circles); H−

with interacting electrons (red crosses); and helium with interacting
electrons (green pluses) with dashed blue, solid red, and dotted green
fits, respectively. See Appendix B for fitting functions and method.

Fit: log10 E 0.2089 ρmax 0.4313
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FIG. 19. Energy error from truncation as a function of ρmax with
a fit to the points from ρmax = 15 to ρmax = 25.

conclusion is that the wave functions’ convergence is indistin-
guishable from exponentially fast, while the convergence of its
derivatives, at least near ρ = 0 is slower. Of course, the second
derivative with respect to ρ is infinitely wrong at ρ = 0. It
converges to a finite value, and the exact value is infinite.

XI. CONCLUSION

This article demonstrates the application of PS methods
for solving the nonrelativistic Schrödinger equation for a
system with two electrons. The method successfully handled
both ground and excited S states of heliumlike systems.
The rate of convergence for most properties measured was
indistinguishable from being exponentially fast. Local errors
decrease in the same manner.

The choice of variables in the vicinity of the two-particle
coalescence and the use of multiple, overlapping domains are
the critical requirements. These are important so the PS method
can represent the analytic form of the solution near all the
two-particle cusps and ensure a more efficient algorithm. In
other respects the most straightforward choices work well. For
example, grid points are determined by the roots of Chebyshev

Fit: log10 E 0.6387 n 1.1344
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FIG. 20. Energy error from finite resolution as a function of
resolution at ρmax = 20 with a fit.
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TABLE II. The algebraic fits of quantities, Q, displayed in figures
throughout the article.

Figure
Q number a1 �a1 a2 �a2

δN
RMS[g1] 1 0.470 0.189 −1.852 0.206

δRMS(Z = 1, α = 1) 18 10.3 6.1 −3.71 0.27
δRMS(Z = 2, α = 1) 18 0.883 0.275 −2.65 0.14

polynomials, which experience shows generally produce the
best convergence in PS methods [3,55]. Behavioral boundary
conditions (no explicit regularity conditions) are sufficient to
handle the wave function in the vicinity of the coalescence
points and also produce convergence as good as or better than
the other possibilities tested.

The energy eigenvalue found by the variational method
converges most efficiently when basis functions which behave
like the exact solution are included but this selection process
can be time-consuming and problematic. Of course, much
higher precision than reported here was obtained long ago
by variational methods. The PS method has the advantage in
new and possibly also in more complex applications of not
needing the same sort of specialized tuning that has benefited
variational calculations. Although this article does not attempt
to reproduce the ultra-high-precision results achieved by
variational methods it strongly suggests that the PS method
will ultimately prove to be a superior approach for reaching
such results in systems with a small number of electrons.

The local energy is not directly controlled when total energy
is minimized. Local energy minimization schemes exist and

TABLE III. The geometric fits of quantities, Q, displayed in
figures throughout the article.

Q Figure number a1 �a1 a2 �a2

|�Eloc|a 13 2.35 1.97 0.426 0.037
|�Eloc|b 13 2.02 × 107 2.42 × 107 0.395 0.050
|�Eloc|c 13 21700 21900 0.415 0.044
|�Eloc|d 13 9.33 10.73 0.616 0.074

aρ = 1, φ = π/8, C = 0.
bρ = 10−4, φ = π/8, C = 0.
cρ = 1, φ = 10−4, C = 0.
dρ = 15, φ = π/8, C = 0.

have the advantage that excited states are found at local minima
of the variance in local energy instead of just the ground state as
is true for the standard variational method [31]. However, they
lead to nonlinear problems which may be difficult to handle
numerically (minimization of the variance in local energy with
respect to parameters in the trial wave function), but still
tractable because one need not calculate the energy at each
step. By contrast, the PS method controls local energy while
the numerical solution remains a linear one. At the same time,
the PS method is superior in terms of its convergence rate to
other direct partial differential equation solvers (grid based
methods) such as finite differencing and finite element which
also control the local error.

We plan to extend the method to calculate non-S states and
continuum two-electron states to compute the photoabsorption
bound-free cross sections with both initial and final states
evaluated with the same methodology.

TABLE IV. The supergeometric or subgeometric fits of quantities, Q, displayed in figures throughout the article.

Q Fig(s). a1 �a1 a2 �a2 a3 �a3

δN
RMS[g2] 1 0.895 0.070 0.4031 0.0015 1.3846 0.0017

|�H max
N |(α = 1) 3 936 418 0.5943 0.0089 0.8348 0.0067

|�H max
N |(α = 0) 3 14.6 6 0.3282 0.0073 0.7209 0.0047

|(�HN )i
∗ |(α = 0) 4 181 84 2.90 × 10−6 3.1 × 10−7 0.3733 0.0020

|�E| (Case A) 8,9,10,11,12 121000 64000 0.00138 0.00022 0.549 0.01
|�E| (Case B) 8 1.17 × 1011 6.7 × 1010 1.53 × 10−8 4.3 × 10−9 0.3262 0.0070
|�E| (Case C) 8 1.28 × 1011 5.7 × 1010 5.71 × 10−9 1.39 × 10−9 0.2796 0.0057
|�E| (Case D) 8 1.62 × 106 880000 0.000385 0.000073 0.478 0.011
|�E| (Case F) 9 286000 126000 0.00100 0.00012 0.5604 0.0069
|�E| (Case G) 12 30 19.3 0.0972 0.0100 0.819 0.019
|�E| (Case H) 10 2.10 × 1010 1.52 × 1010 5.73 × 10−9 2.36 × 10−9 0.2614 0.0097
|�E| (Case I) 11 3.89 × 109 3.10 × 109 4.08 × 10−8 1.73 × 10−8 0.289 0.011
|�E| (Case J) 11 5.26 × 106 5.68 × 106 0.0000263 0.0000114 0.417 0.018
�n(Z = 1, α = 0) 16 7260 1200 0.0394 0.0016 0.6282 0.0053
�n(Z = 1, α = 1) 16 2.77 × 106 590000 0.000876 0.000068 0.4541 0.0047
�n(Z = 2, α = 1) 16 472 58 0.2406 0.0038 0.9001 0.0047
|ψn − ψn−1|a 17 27300 5900 0.0520 0.0019 0.7833 0.0052
|ψn − ψn−1|b 17 1.17 × 1012 6.9 × 1011 1.49 × 10−8 4.5 × 10−9 0.3046 0.0073
|ψn − ψn−1|c 17 1.63 × 1014 8.6 × 1013 1.49 × 10−8 3.6 × 10−9 0.3475 0.0059
δRMS(Z = 1, α = 0) 18 170 23 0.00418 0.00022 0.4404 0.0041

aρ = 0, Z = 1, α = 0.
bρ = 0, Z = 1, α = 1.
cρ = 0, Z = 2, α = 1.
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TABLE V. The mixed geometric and algebraic fits of quantities, Q, displayed in figures throughout the article.

Q Fig. a1 �a1 a2 �a2 a3 �a3 a4 �a4

|�f [ρ = 10−6]| 2 0.0818 0.0487 0.696 0.022 0.295 0.113 −3.822 0.092
|�f [ρ = 10−1]| 2 0.0264 0.0306 0.725 0.027 0.472 0.595 −5.172 0.290
|�f [ρ = 104]| 2 0.161 0.112 0.743 0.011 1.29 × 10−7 2.16 × 10−7 −2.460 0.372
|(�HN )i

∗ |a 4 1.96 × 10−7 1.36 × 10−7 0.491 0.018 0.263 0.091 −10.358 0.083
|�E| (Case E) 9 193 140 0.169 0.021 0.190 0.087 −3.39 0.18

aα = 1.
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APPENDIX A: SETTING ρmax FOR THE TRUNCATED
DOMAIN

When truncating the domain at a finite ρ, it is wise to
balance the error produced by the cutoff with that given by
the finite resolution. The former was studied by calculating
the energy of case H as a function of ρmax. Figure 19 shows
that difference between the truncated energy and the correct
value of the H− energy falls off as an exponential. The
calculation was done with n = 14. We see at large values of
ρmax that this finite resolution ruins the exponential behavior.
There is a minimum at ρmax = 31. This is probably where
the resolution error happens to cancel the truncation error.
At larger ρmax, the resolution error dominates. Therefore,
only the points with 15 � ρmax � 25 were used for the fit,
log10 |�E| = Aρmax + B. A and B were found to be −0.2089
and −0.4313, respectively.

In order to measure the effect of finite resolution ρmax was
fixed at 20 and the difference between the energy at resolution n

and 14 was plotted in Fig. 20. The error from resolution effects
should increase when ρmax is increased because the density of
points goes down. So the resolution error is assumed to be
of the form log10 |�E| = Cn/ρmax + D. C/20 and D were
found to be −0.6387 and 1.1344, respectively.

Setting the two errors equal to each other yields the formula

ρmax = −3.7476 + 7.8100
√

n + 0.2297. (A1)

It is technically possible to get better energies as was shown
in Fig. 19 (due to error cancellations), but taking advantage of
that kind of effect is fine-tuning.

APPENDIX B: FITS

Numerical rates for convergence are summarized in
Tables II, III, IV, and V. The method is as follows: let Qn be
the quantity converging to zero as n goes to infinity, consider
fitting functions of the forms

fgeom[n] = a1(a2)n (B1)

falg[n] = a1n
a2 (B2)

fsup/sub[n] = a1(a2)n
a3 (B3)

fgeom/alg[n] = a1(a2)n + a3n
a4 , (B4)

which are geometric, algebraic, supergeometric (a3 > 1), or
subgeometric (a3 < 1) and mixed geometric and algebraic fits,
respectively. A χ2 fitting method is used:

χ2 =
∑

n

(
log10

∣∣∣∣ Qn

f [n]

∣∣∣∣
)2

, (B5)

where Qn is the quantity Q evaluated at resolution n and the
sum over n goes from the even numbers from 8 to 100 for the
one-dimensional models, 5 to 14 for the Cauchy errors, and
from 4 to 14 for all others. χ2 is minimized with respect to all
ai for the fit which is most reasonable on theoretical grounds.
Errors in the ai are estimated by calculating

�ai =
√

χ2

∂aiai
χ2

(B6)

at the minimum of χ2. Of course large error in the values of
amplitudes a1 and a3 for the mixed geometric and algebraic fit
imply that the other parameters that multiply that amplitude
may be meaningless.
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