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Electron penetration into the nucleus and its effect on the quadrupole interaction
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A series expansion of the interaction between a nucleus and its surrounding electron distribution provides
terms that are well-known in the study of hyperfine interactions: the familiar quadrupole interaction and the
less familiar hexadecapole interaction. If the penetration of electrons into the nucleus is taken into account,
various corrections to these multipole interactions appear. The best known correction is a scalar term related
to the isotope shift and the isomer shift. This paper discusses a related tensor correction, which modifies the
quadrupole interaction if electrons penetrate the nucleus: the quadrupole shift. We describe the mathematical
formalism and provide first-principles calculations of the quadrupole shift for a large set of solids. Fully relativistic
calculations that explicitly take a finite nucleus into account turn out to be mandatory. Our analysis shows that
the quadrupole shift becomes appreciably large for heavy elements. Implications for experimental high-precision
studies of quadrupole interactions and quadrupole moment ratios are discussed. A literature review of other small
quadrupole-like effects is presented as well (pseudoquadrupole effect, isotopologue anomaly, etc.).
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I. INTRODUCTION

For many purposes, atomic nuclei can be treated as math-
ematical point charges. There are some situations, however,
where their shape and size do play a role. This happens,
for instance, when electrons penetrate the nuclear volume
and render the usual “far-field” approximation invalid. These
“near-field” effects lead to small corrections to all terms in the
multipole expansion for the electrostatic interaction between
nuclei and electrons. The correction to the monopole term
corresponds to experimentally well-known phenomena: the
isotope shift in atomic spectroscopy and the isomer shift in
Mössbauer spectroscopy. Both effects are well-established and
give access to useful nuclear and solid-state information [1–3].
An analogous correction to the quadrupole term—coined
here the quadrupole shift [4] (QS)–should exist as well. The
existence of such an effect has been touched upon a few
times in the literature of the past decades [5–10], but to our
knowledge a systematic study is lacking. In this paper, we
present a mathematical treatment of the quadrupole shift by a
twofold application of first-order perturbation theory, which
leads to a simple analytical expression (Secs. II and III).
We point out that in order to compute numerical values for
the quadrupole shift from first principles, it is necessary to
perform fully relativistic calculations that take explicitly a
finite nucleus into account (Sec. IV). Density functional theory
calculations of the quadrupole shift for a set of simple crystals
show that the size of the quadrupole shift strongly grows with
the mass of the isotope, an effect that turns out to have an
electronic rather than a nuclear origin (Sec. V). Except for
the heaviest elements (actinides), the quadrupole shift is only
a minor correction to the quadrupole interaction. We discuss
how it shows up in experiments, and how it could possibly
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be exploited to improve the accuracy of experimentally
determined quadrupole moments (Sec. VI). Especially for the
experimental determination of ratios between nuclear electric
quadrupole moments, molecular spectroscopy experiments are
sufficiently accurate to be sensitive to the quadrupole shift
correction. The quadrupole shift is one of a set of small
effects that can affect the regular quadrupole interaction.
The (sometimes quite old) literature on these other effects is
reviewed in the Appendix. We suggest that for high-precision
studies, it is relevant to revisit these small quadrupole-like
perturbations with modern computational methods.

II. FORMALISM

A. Classical interaction energy without charge-charge overlap

The classical electrostatic interaction energy between a
positive (nuclear) charge distribution ρ(�r) and a potential v(�r),
due to a surrounding (electron) charge distribution n(�r ′), is
formally given by

E =
∫

ρ(�r)v(�r)d�r = 1

4πε0

∫ ∫
ρ(�r)n(�r ′)
|�r − �r ′| d�rd�r ′, (1)

with ε0 being the electric constant. Equation (1) can be
expressed by the standard multipole expansion in spherical
harmonics [11]

1

|�r − �r ′| =
∑
l,m

4π

2l + 1

rl
<

r>
l+1

Y ∗
l,m(�)Yl,m(�′), (2)

with r< = min(r, r ′) and r> = max(r, r ′). This leads to an
infinite sum of double integrals, each with the dimension of
energy

E =
∞∑
l=0

E2l = E0 + E2 + E4 + · · · . (3)
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Odd terms will vanish in the cases of interest here, see
Sec. II B. It is the second term E2 that will be of interest
in the present work:

E2 = hνQ

= 1

4πε0

4π

5

+2∑
m=−2

∫ ∫
ρ(�r)n(�r ′)

r2
<

r3
>

Y ∗
2,m(�)Y2,m(�′)d�rd�r ′.

(4)

The frequency νQ is experimentally accessible, and is called
the nuclear quadrupole coupling constant (NQCC). Due to the
varying assignment of r< and r> to “nuclear” (r) or “electron”
(r ′) coordinates, quantities as E2 are an intricate mixture of
properties of both charge distributions ρ(�r) and n(�r). Only in
the special case where both charge distributions do not overlap
(r< is then assigned to r and r> to r ′), Eq. (1) can be written
in terms of properties that depend entirely on only one of the
charge distributions

E =
∑
l,m

Q∗
lmVlm, (5)

where Qlm and Vlm are the components of the nuclear
multipole moment and electric multipole field tensors of rank l,
respectively,

Qlm =
√

4π

2l + 1

∫
rlρ(�r)Ylm(�)d�r, (6)

Vlm = 1

4πε0

√
4π

2l + 1

∫
1

r ′l+1
n(�r ′)Ylm(�′)d�r ′. (7)

When this formalism is applied to describe nuclei and
electrons, the simplification by Eq. (5) can never be made:
s electrons and relativistic p1/2 electrons have a nonzero
probability to appear at r = 0, and, therefore, the nuclear and
electron charge distributions always overlap. Nevertheless,
motivated by the very small size of the region where this
overlap happens compared to the volume of the rest of the
atom, one can neglect this overlap in a first approximation
and apply Eq. (5) to atoms, molecules and solids. This
approximate treatment leads to the commonly used concept
of an electric field gradient (EFG) tensor (V2m) that interacts
with a nuclear quadrupole moment tensor (Q2m) to produce an
experimentally observable interaction energy (E2). Although
E2 itself is a well-defined observable property, its description
by a quadrupole interaction energy only

E2 ≈
+2∑

m=−2

Q∗
2mV2m, (8)

rather than by Eq. (4), is an approximation.

B. Overlap corrections

We will now derive explicit expressions for the corrections
that need to be added to Eq. (8) to obtain Eq. (4) (and
similarly for other values of l). Rather than using the
multipole expansion in spherical harmonics from Eq. (2), we
start from a Taylor expansion of the electrostatic potential
v(�r) = 1/(4πε0)

∫
n(�r ′)/|�r − �r ′|d�r ′ in the interaction energy

of Eq. (1),

E =
∫

ρ(�r)v(�r)d�r = v(0)
∫

ρ(�r)d�r +
∑

i

vi(0)
∫

xiρ(�r)d�r

+ 1

2!

∑
i,j

vij (0)
∫

xixjρ(�r)d�r

+ 1

3!

∑
i,j,k

vijk(0)
∫

xixjxkρ(�r)d�r

+ 1

4!

∑
i,j,k,l

vijkl(0)
∫

xixjxkxlρ(�r)d�r + O(6), (9)

where the derivatives [e.g., vij (0)] of the potential v(�r) read
vij (0) ≡ ∂2v(�r)/(∂xi∂xj )|�r=0.

In order to recognize in this expression the multipole
moments and multipole fields from Eqs. (6) and (7), one has
to make substitutions like the following (the example is for the
quadrupole moment):∫

xixjρ(�r)d�r = 1

3

∫
(3xixj − r2δij )ρ(�r)d�r︸ ︷︷ ︸

Qij

+ 1

3

∫
r2ρ(�r)d�rδij , (10)

where Qij are the components of the quadrupole tensor Q2m

[Eq. (6)], but now in Cartesian form. This yields for the first
three even orders in Eq. (9) the following nuclear multipole
moments in Cartesian form:

M =
∫

ρ(�r)d�r = eZ, (11)

Qij =
∫

(3xixi − r2δij )ρ(�r)d�r, (12)

Hijkl =
∫

3 × 5[7xixjxkxl − f H (xi, xj , xk, xl)]ρ(�r)d�r,
(13)

with

f H (xi, xj , xk, xl) = r2[xixj δkl + xixkδjl + xixlδkj

+ xjxkδil + xjxlδik + xkxlδij ]

− r4

5
[δij δkl + δikδjl + δilδjk].

The corresponding electric multipole fields in Cartesian
form are

V = v(0), (14)

Vij = ∂i∂j v(0) − 1
3δij�v(0), (15)

Vijkl = ∂i∂j ∂k∂lv(0) − f V
ijkl�v(0), (16)

with f V
ijkl = 1

7 [∂i∂j δkl + ∂i∂kδjl + ∂i∂lδkj + ∂j ∂kδil +
∂j ∂lδik + ∂k∂lδij ] − �

35 [δij δkl + δikδjl + δilδjk]. The expres-
sions in Eqs. (11)–(13) and Eqs. (14)–(16) are identical to
the ones in Eqs. (6) and (7), respectively. They have the same
number of degrees of freedom: 1, 5, and 9 for the zeroth,
second, and fourth-order moment or field, respectively. When
slightly different sign conventions are taken into account,
Eqs. (13) and (16) are a generalized form of Eqs. (7g)–(7j)
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TABLE I. Systematic overview of nuclear multipole and quasi-multipole-moments and electric multipole and quasi-multipole-fields
that appear in the multipole expansion of two interacting (and overlapping) classical charge distributions. The first column gives the
regular multipole expansion for point nuclei: the monopole, quadrupole, and hexadecapole interactions. The next columns give the
quasi-multipole-moments/fields for every multipole interaction, denoted by a tilde: these are corrections to the multipole interactions due
to electron penetration into an extended nucleus. Entries in the large round brackets are by generalization only, and are not systematically
derived in this work. The objects in each line are spherical tensors of a given rank (rank 0 for line 1, rank 2 for line 2, and rank 4 for
line 3).

Multipole First-order Second-order
moment quasimoment quasimoment

Order or field or quasifield or quasifield . . .

O(0) MI: MS(1): MS(2): . . .

M ∝ r0Y00 M̃ (1) ∝ {r2Y00} M̃ (2) ∝ {r4Y00}
V ∝ v(0) Ṽ (1) ∝ �v(0) Ṽ (2) ∝ �2v(0)

O(2) QI:

Q ∝ r2Y20

Vij ∝ ∂ij v(0)

QS(1):

Q̃(1) ∝ {r4Y20}
Ṽ

(1)
ij ∝ ∂ij�v(0)

⎛
⎜⎝

QS(2):

Q̃(2) ∝ {r6Y20}
Ṽ

(2)
ij ∝ ∂ij�

2v(0)

⎞
⎟⎠ . . .

O(4) HDI:

H ∝ r4Y40

Vijkl ∝ ∂ijklv(0)

⎛
⎜⎝

HDS(1):

H̃ (1) ∝ {r6Y40}
Ṽ

(1)
ijkl ∝ ∂ijkl�v(0)

⎞
⎟⎠

⎛
⎜⎝

HDS(2):

H̃ (2) ∝ {r8Y40}
Ṽ

(2)
ijkl ∝ ∂ijkl�

2v(0)

⎞
⎟⎠ . . .

. . . . . . . . . . . . . . .

and Eqs. (13) from Ref. [9], which is a strong check of mutual
correctness [12] (see also the discussion at the end of Sec. II C).

After having inserted all substitutions as in Eq. (10) into
Eq. (9), the interaction energy can be written as

E =M · V︸ ︷︷ ︸
MI

+ 1

3!
{r2}�v(0)︸ ︷︷ ︸

MS(1)

+ 1

5!
{r4}�2v(0)︸ ︷︷ ︸

MS(2)

+ 1

2!

1

3

∑
ij

QijVij

︸ ︷︷ ︸
QI

+ 1

28

∑
ij

{(
xixj − r2

3
δij

)
r2

} (
∂i∂j − �

3
δij

)
�v(0)

︸ ︷︷ ︸
QS(1)

+ 1

4!

1

105

∑
ijkl

HijklVijkl

︸ ︷︷ ︸
HDI

+O(6), (17)

where all integrations over the nuclear charge density ρ(�r) are
noted in short-hand by {curled brackets}. Equation (17) con-
tains no odd order terms (dipole, octupole, . . . ), since nuclei
have no odd order electric moments due to time reversal sym-
metry [7]. We see that Eq. (17) contains dot products between
multipole moments and fields as in Eq. (5): the monopole (MI),
quadrupole (QI), hexadecapole (HDI), . . . , interactions. These
are the only contributions in the case without charge-charge
overlap. Additionally, an infinite set of even order correction
terms appears now as well—due to parity, there are no odd
order corrections. In Table I, a general naming system and
a corresponding set of symbols are presented: the nth order
quasi-multipole-moment multiplied (dot product) with the nth

order quasi-multipole-field leads to the nth order multipole
shift. From the general trends in this table one can infer the
structure of the higher order corrections that were not explicitly

derived in Eq. (17)—they are shown in the table in large round
brackets.

There is a qualitative difference between the multipole
fields in the first column of Table I and the quasi-multipole-
fields in all other columns. The multipole fields depend on the
potential v(0) at the nucleus, which depends via integration on
the charge distribution everywhere else in the system. Multi-
pole fields are, therefore, integrated quantities, determined by
the entire density. The quasi-multipole-fields depend on the
Laplacian of the potential at the nucleus [�v(0)], which is
by the Poisson equation proportional to the electron charge
density at the nucleus [n(0)] [�v(0) = −n(0)/ε0]. Quasi-
multipole-fields are, therefore, point quantities, determined by
the electron density or its derivatives in a single point only.

In the next section, the results of Eq. (17) and Table I for a
system of two classical charge distributions will be translated
to a quantum formulation. This translation will make the
formalism applicable to atoms, molecules, and solids. Known
experimental consequences of the overlap correction terms
will be summarized in Sec. III. The core of the present work
deals with the first-order quadrupole shift QS(1), which is the
first-order correction to the quadrupole interaction.

C. Quantum formulation

In order to express Eq. (17) in a quantum mechanical
formulation, Hamilton operators corresponding to all its terms
are required. The structure of Eq. (17) suggests a perturbation
theory treatment, with the monopole interaction term as
the unperturbed Hamiltonian, and the other terms as small
perturbations. The monopole term depends via r0 on the
(small) nuclear coordinate (r ∝ 10−15 m) and via 1/r ′ on
the electronic coordinate (r ′ ∝ 10−10 m). Among all small
corrections in Table I, the two largest ones are the quadrupole
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interaction QI and the first-order monopole shift MS(1)—both
have a r2 in their nuclear parts and a second derivative of
the electrostatic potential (leading to 1/r ′3) in their electronic
parts. These two leading corrections will be taken as the small
perturbation.

The Hamiltonians that correspond to the entries in Table I
operate on the direct product space of wave functions for the
nuclear and the electron subspaces. The ground state of the
monopole Hamiltonian is a direct product between the nuclear
ground state and the electronic ground state wave function.
With M̂ = eZ1 [Eq. (11), 1 is the identity operator on the
nuclear space] and V̂ = v̂(0) [Eq. (14), v̂(0) is an operator on
the electronic space that returns the potential at �r = �0 due to a
given wave function 	], the unperturbed monopole interaction
Hamiltonian is

ĤMI = eZ1 ⊗ v̂(0). (18)

Evaluating this for the ground state wave function |I ⊗ 	0〉 of
the combined nuclear and electronic system (|I 〉 is the ground
state of the nucleus, and |	0〉 the ground state of the electron
system with a point nucleus) leads to

E
pn

0 = 〈	0 ⊗ I |ĤMI|I ⊗ |	0〉
= 〈I |eZ1|I 〉 · 〈	0|v̂(0)|	0〉 = eZv(0), (19)

which is the leading term in Eqs. (5) or (17). The superscript
pn (“point nucleus”) emphasizes the difference with E0

from Eq. (3). The quantity v(0)—the electrostatic potential
at the nuclear site for a point nucleus—is accessible by
first-principles codes.

The perturbing Hamiltonian ĤP reads (see Table I for the
notation)

ĤP = ĤQI + ĤMS(1) . (20)

In first-order perturbation theory, the energy corrections due
to this perturbation are found by evaluating the perturb-
ing Hamiltonian in the ground state of the unperturbed
Hamiltonian. Assuming a nondegenerate ground state in the
electron subspace, it is advantageous to write the Hamiltonians
immediately in a more familiar form where the electronic
matrix elements are already evaluated and are treated as
known (i.e., computable) quantities. After similar algebra as
for the monopole Hamiltonian, this leads to this form for the
monopole shift Hamiltonian

ĤMS(1) = − eZ

6ε0
n(0)〈r2〉1. (21)

ĤMS(1) contains the mean square radius 〈r2〉 of the nucleus
and the electron density n(0) at the position of the nucleus. The
quadrupole Hamiltonian ĤQI contains the quadrupole moment
of the nucleus Q and the quadrupole field of the electrons Vzz

(principle component of the electric field gradient tensor) (see,
e.g., Ref. [11].)

ĤQI = eQVzz

4(2I − 1)Ih̄2

[(
3Î 2

z − Î 2
) + 1

2
η(Î 2

+ + Î 2
−)

]
, (22)

with Î± = Îx ± iÎy . Diagonalizing these two Hamiltonians in
the nuclear states leads to the desired energy corrections in

first-order perturbation. Formally,

E[1] = E
pn

0 + 〈I |ĤMS(1) + ĤQI |I 〉
= E

pn

0 + 〈I |ĤMS(1) |I 〉 + 〈I |ĤQI |I 〉
= E

pn

0 + E
[1]
MS(1) + E

[1]
QI . (23)

Here, E
[1]
MS(1) is a correction to the monopole energy E

pn

0 for
a point nucleus due to (s or p1/2) electron penetration into
the volume of a spherical nucleus. The quadrupole interaction
energy E

[1]
QI is a further correction if this nucleus deviates from

spherical symmetry.
There is a second group of entries in Table I with even much

smaller corrections: the HDI, QS(1), and MS(2) terms all have
r4 and four derivatives of the electrostatic potential (→ 1/r ′5).
The corresponding Hamiltonians are

ĤHDI = eHVzzzz

128I (I − 1) (2I − 1) (2I − 3) h̄4

· [35Î 4
z − 30Î 2

z Î 2 + 3Î 4 + 25h̄2I 2
z − 6h̄2Î 2

]
, (24)

ĤQS(1) = − 1

14ε0

eQ̃nzz

4 (2I − 1) Ih̄2

×
[(

3Î 2
z − Î 2) + 1

2
ηQS(Î 2

+ + Î 2
−)

]
, (25)

ĤMS(2) = − eZ

120ε0
�n(0)〈r4〉1. (26)

The (diagonal part of the) hexadecapole Hamiltonian,
Eq. (24), is taken from the literature [13], the quadrupole shift
Hamiltonian, Eq. (25), is derived explicitly in [14], and similar
algebra as for the first-order monopole shift Hamiltonian leads
to the second-order monopole shift Hamiltonian, Eq. (26). As
they are much smaller than the QI and MS(1) terms, it does not
make much sense to add these corrections to the Hamiltonian
of Eq. (20) right away. Rather, one should consider a first-order
perturbation to the Hamiltonian of Eq. (20), which itself
was already a perturbation to the monopole Hamiltonian of
Eq. (18). This means: find the perturbed eigenstates of Eq. (20)
in first order, and evaluate the new perturbations as given by
the Hamiltonians in Eqs. (24)–(26) in these eigenstates. In
the present work, we are interested in ĤQS(1) , because it has
the symmetry of a quadrupole interaction: this Hamiltonian,
evaluated in the (approximate) eigenstates for a system with a
finite and quadrupolarly deformed nucleus, gives an additional
contribution to the regular quadrupole interaction. It can be
interpreted as the influence of the electron penetration into the
nuclear volume on the quadrupole interaction: the quadrupole
shift. The quadrupole shift Hamiltonian of Eq. (25) expresses
the influence of the finite nucleus on the multipole expansion.
Evaluating this Hamiltonian for a density obtained from a
first-principles calculation with a finite nucleus expresses the
influence of the finite nucleus on the electronic wave functions.
Finite nucleus models in the context of electronic structure
calculations have been reviewed by Andrae [15].

There is an alternative way to express this same effect:
consider the Hamiltonian of Eq. (20) up to second-order pertur-
bation. Among others, the second-order energy expression will
contain a cross-term between QI and MS(1), which has the same
symmetry as the quadrupole interaction (this can be easily
seen because the Y00 term of the monopole shift is a scalar
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quantity that does not change the symmetry). Compared to the
previous strategy this method has the advantage that the same
Hamiltonian is kept, but the disadvantage that second-order
matrix elements in excited states have to be evaluated. It is
technically easier to evaluate a new perturbation in the ground
state of the previous perturbation. The underlying physics,
however, is the same.

The second-order perturbation description has been applied
in 1970 by Pyykkö for approximate and nonrelativistic
calculations in a few test molecules (see also Fig. 4) [5]. The
first-order plus first-order perturbation description has been
used in 2003 by Thyssen et al. [9] for the case of LiI, albeit in an
implicit way that did not clearly show the twofold application
of first-order perturbation theory. The twofold application of
perturbation theory will be the method used in the present
work as well, in particular because it leads to concise analytical
formulas. In 2006, also Karl and Novikov derived the so-called
“contact terms” of the quadrupole interaction. They used the
Feynman diagram technique and evaluated the results for
hyperonic atoms [16,17]. Our derivation was made completely
independent from the ones by Thyssen et al. and by Karl and
Novikov, and the observation that the final expressions agree
is a strong test of mutual correctness.

D. Focusing on E2

The regular quadrupole interaction and first-order
quadrupole shift together provide our approximation to E2

E2 = hνQ ≈ EQI + EQS(1) = hνQI + hνQS(1) . (27)

Both terms consist each of a product between a nuclear quan-
tity and an electron quantity. As this shows to which nuclear
and/or electronic properties one gets access by measuring E2,
we discuss them now. The two relevant nuclear quantities are
[see Eqs. (22) and (25)]

ĤQI → eQ =
∫

ρ(�r)(3z2 − r2)d�r ∝ 〈r2Y20〉, (28)

ĤQS(1) → eQ̃ =
∫

ρ(�r)(3z2 − r2)r2d�r ∝ 〈r4Y20〉. (29)

The quasi-quadrupole-moment Q̃ has an additional r2 in the
integral compared to the quadrupole moment Q. It is, therefore,
a quantity that bears similarity with the quadrupole moment
〈r2Y20〉 (through the Y20-dependence) as well as with the
hexadecapole moment 〈r4Y40〉 (through the r4-dependence).

The corresponding electronic quantities are

ĤQI → Vzz =
(

∂zz − �

3

)
v(0), (30)

ĤQS(1) → nzz = − 1

ε0

(
∂zz − �

3

)
�v(0). (31)

The integrated quantity (cf. Sec. II B) Vzz is the principal
component of the electric field gradient tensor. The point
quantity nzz is the main component of the tensor nij =
(∂i∂j − �

3 δij )n(0), which has, via the Laplacian, two deriva-
tives more than the main component of the EFG tensor
Vzz. It can be shown that nzz is proportional to 〈Y2m/r5〉
and, therefore, bears similarities with the electric quadrupole
field 〈Y2m/r3〉 as well as with the electric hexadecapole field
〈Y4m/r5〉, cf. Eq. (7).

Quadrupole
Interaction

Quadrupole
Shift

++

mI = +− 1
2

I =

2vQI 2 (vQI + vQS) 

vQI + vQSvQI

5
2

mI = +− 5
2

mI = +− 3
2

FIG. 1. (Color online) Energy levels for a nuclear spin of I = 5/2.
This picture is not on scale: the shift in the levels as indicated by the
arrow is in the most favorable cases (= heavy nuclei) only 0.1% of
νQI.

III. OBSERVABLE CONSEQUENCES

All classical expressions in Table I correspond to an
experimentally observable correction to the total energy. The
first row lists energy corrections which are a product of scalar
quantities. The leading term after the monopole contribution
MI (or E

pn

0 ) is the first-order monopole shift MS(1), which
experimentally manifests its presence in the well-known
isomer shift. The second-order monopole shift MS(2) is only
very rarely taken into account. One example where it matters
is the case of muonic atoms [6,7] (atoms where a muon rather
than an electron orbits the nucleus). Because a muon is much
heavier than an electron, it is much closer to the nucleus and
the overlap with the nuclear charge distribution becomes much
larger. This makes the second-order monopole shift for muons
much larger than it is for electrons [18].

All entries in the second row of Table I are dot products
between spherical tensors of rank 2. The first one is the
quadrupole interaction term QI, which splits, according to
Eq. (22), energy levels that were degenerate for the monopole
term. An example for the axially symmetric case (η = 0) and
nuclear spin I = 5/2 is presented in Fig. 1. The second term
in the second row (Table I) is the first-order quadrupole shift
QS(1), which shifts the energy levels that were split by the
quadrupole Hamiltonian, but preserves their overall symmetry
(Fig. 1, example for η = ηQS = 0 [19]). The frequencies
(energies) that set the scale for the quadrupole and quadrupole
shift splittings are (still considering η = ηQS = 0):

νQI = eQVzz

h
, (32)

νQS = −eQ̃nzz

14ε0h
. (33)

(For the sake of a simplified notation, we will use νQS rather
than νQS(1) from here on: we will not consider second-order
quadrupole shifts and therefore no confusion will be possible.)
The quadrupole shift does not change the overall symmetry,
which in the example of Fig. 1 means that the 1:2 ratio between
the two energy differences is preserved. An experiment that
measures such energy differences is not able to distinguish
between the contribution by νQI and the one by νQS: it measures
their sum only. A discussion of the trends in the order of
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magnitude of the quadrupole shift will be given in Sec. V C,
and several experimental and computational strategies to
exploit the quadrupole shift will be suggested in Sec. VI.

Finally, the third row in Table I lists dot products between
tensors of rank 4. The leading term here is the hexadecapole
interaction for point nuclei. This term can, in principle, be
distinguished experimentally from a quadrupole interaction
because its symmetry is different (for instance, in Fig. 1 the
1:2 ratio would be slightly violated). The HDI appears only for
nuclei with l � 2, since only they have hexadecapole moments
(2I � l rule for 2l multipole moments). Whereas the QI is
well-known and experimentally accessible by, e.g., NMR or
molecular spectroscopies (see Sec. VI A), the situation for the
HDI is different. Since it was reported in 1955 for the first time
[20], it has gone through cycles of confirmatory measurements
and refutations. An overview is given in Ref. [9].

IV. COMPUTATIONAL ASPECTS

A. Formulation in spherical notation

The electronic part nzz of the quadrupole shift will be
calculated with a first-principles code and must therefore be
translated in spherical form as it is common in such codes

nzz = 2√
3

√
15

4π
lim
r→0

1

r2
n20(r). (34)

The spherical component of the density, n20(r), which enters
this expression, is the radial part of the (l = 2, m = 0)
component of the expansion of the density n(�r) in spherical
harmonics

n(�r) =
∑
lm

nlm(r)Ylm(�). (35)

The l = 2 components are closely related to Cartesian second
derivatives [21], which is the reason why they appear in the
electric field gradient and related quantities.

B. Computational details: The FPLO code

All calculations in this paper have been performed by the
density functional theory (DFT) solid-state code FPLO [22]
(version 8.00–31), which is a full-potential band structure
scheme and based on linear combinations of overlapping
nonorthogonal atom-centered orbitals. The core relaxation
is properly taken into account, which means FPLO is a
so-called all-electron method. We used the Perdew-Wang
parametrization of the local density approximation (LDA) for
the exchange-correlation functional [23]. FPLO can perform
nonrelativistic (NREL), scalar-relativistic (SREL) as well as
fully relativistic (FREL) calculations [24,25]. In the latter, the
Dirac Hamiltonian with a general potential is solved. Recently,
the treatment of a finite nucleus has been implemented in
FPLO, which is crucial for the present work (Sec. IV C).
The basis orbitals in FPLO are obtained by solving the radial
differential equations with the help of a solver using function
representations on a grid and a Taylor expansion at the nucleus.
The grid density (especially close to the nucleus) is chosen
so high that the solutions obtained are virtually the exact
solutions of the differential equation and hence the density
at the nucleus and the cusp of the wave function are exact
within the framework of the applied functional.

C. Relativity and the role of a finite nucleus

In order to obtain nzz, the limit of n20(r)/r2 for r → 0
has to be calculated, cf. Eq. (34). It is crucial whether this
is done within a nonrelativistic, a scalar-relativistic, or a fully
relativistic framework. In the NREL or FREL formulations (no
matter if a point or a finite nucleus is used in the calculation)
n2m(0) is exactly zero as it should be due to angular selection
rules (Fig. 2). In the SREL approximation, the (l = 2,m)
density, resulting from two divergent p1/2 functions, is wrongly
nonzero at r = 0. This makes SREL-based methods (with or
without a point nucleus) essentially useless for calculating
properties that depend on n20 (r → 0), and we will therefore
not consider SREL any further.

For a point nucleus, the ratio of n20(r) and r2 converges
for the limit r → 0 in a NREL formulation, but not in a
FREL formulation (Fig. 3). Since this ratio at r = 0 is an
observable quantity [see Eqs. (34) and (33)], the divergence
for the better method (FREL vs NREL) cannot be physical.
And indeed, the divergence disappears if the approximation of
a point nucleus is dropped and a finite nucleus is used in the
calculation (Fig. 3). Numerical values for n20(r)/r2 turn out to
be much larger for FREL compared to NREL, especially for
heavy elements.

The divergence of nzz in a fully relativistic point nucleus
calculation might surprise at first sight. It may seem that the
quadrupole shift in Eq. (33) is infinite. It is not, however,
because the operator corresponding to nzz [Eq. (31)] should not
be evaluated in the ground state for the point nucleus (which is
the case that diverges at r = 0), but in the ground state after the
consideration of the two perturbations of Eq. (20) that describe
the effect of a quadrupolarly deformed finite nucleus (where
the divergence is absent). The latter ground state can be con-
structed from the ground and excited states of the point nucleus
case, applying the common expression for the eigenfunctions
in first-order perturbation. This would, however, lead to rather
lengthy expressions and to the inconvenience of having to use
excited states. A pragmatic workaround is to use the ground
state as calculated in a first-principles code that takes a finite
nucleus into account. This is hardly an approximation, as it was
exactly the purpose of the perturbations in Eq. (20) to express
the presence of a finite nucleus. Therefore, we conclude that the
quadrupole shift can be obtained by evaluating the operator
for nzz in Eq. (31) for the ground state of the atom, molecule or
solid calculated fully relativistically and with a finite nucleus
taken into account. This quadrupole shift has to be added to
the contribution obtained by evaluating the operator for Vzz in
Eq. (30) in the ground state of the point nucleus case (and not
in the ground state of the finite nucleus case, as the regular QI
is really a perturbation to the point nucleus).

D. Comparison with the PCNQM method

In the previous sections, we have described a procedure
to obtain the influence of electron penetration in a finite
nucleus on the quadrupole interaction by two subsequent
applications of first-order perturbation theory combined with
finite nucleus calculations [Eq. (33) and Figs. 2 and 3].
An alternative to this procedure is the point charge nuclear
quadrupole moment method (PCNQM) [26–28]: the electric
field gradient is not obtained as the expectation value of
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FIG. 2. (Color online) The density component n20(r) for a point
nucleus (dashed lines) and a finite nucleus (full lines) plotted in
dependence of r . The different methods are labeled as nonrelativistic
(NREL), scalar-relativistic (SREL), and fully relativistic (FREL).
This calculation for the hcp metal Re was done by FPLO. All quantities
are given in atomic units. Inset: region near the nucleus.

an operator, but is determined from the way how the total
energy of the system changes upon inserting an artificial
array of point charges around the nucleus. In this method,
only total energies are required to obtain the electric field
gradient, which makes it particularly useful when the proper
operator for the field gradient is not explicitly known. The
latter is, for instance, the case as soon as a finite nucleus
is used (Eq. (22) is valid for a point nucleus only), or
for fully relativistic calculations at the two-component level
(a complicated and not yet performed so-called “picture
change transformation” would be needed to find the two-
component version of the EFG operator [27,29].) The differ-
ence in EFGs between a “finite nucleus calculation combined
with PCNQM” and a “point nucleus calculation (either with
the regular EFG operator or with PCNQM)” gives the effect
of electron penetration in the nucleus. One case where this
difference is explicitly calculated is for 127I in LiI (Ref. [10] and
Fig. 4). With PCNQM, the quadrupole shift can be obtained
only numerically: there is no analytical expression as Eq. (33).

We note here that a method that is quite analogous to
PCNQM has been recently developed for the first-order
monopole shift correction MS(1) (isotope shift, isomer shift)
[3,30,31] as well.

V. NUMBERS AND TRENDS

In the present section, we will perform actual calculations
with the formalism described in Secs. II and IV, and examine
trends in the relevant quantities: the nuclear quasi-quadrupole
moment Q̃, the electronic point property nzz, and their product:
the quadrupole shift νQS.
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FIG. 3. (Color online) The density component n20(r)/r2 for a
point nucleus (dashed lines) and a finite nucleus (full lines) plotted in
dependence of r . The different methods are labeled as nonrelativistic
(NREL), scalar-relativistic (SREL) and fully relativistic (FREL). This
calculation for the hcp metal Re was done by FPLO. All quantities are
given in atomic units.

A. Trends in Q̃

Consider a phenomenological model for a nucleus: a
deformed sphere, with a radius R (θ ) given by [32]

R (θ ) = a [1 + β2Y20 (θ ) + β4Y40 (θ ) + · · ·] , (36)
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FIG. 4. (Color online) The logarithm with base 10 of the ratio
of νQS and νQI as a function of the mass number A. Blue diamonds:
artificial crystal structures (see text and Ref. [14]), fitted by the red line
[Eq. (40). Orange triangles (down): experimental crystal structures
(see Table III). The yellow triangle (up) (Ref. [9]), green square
(Ref. [10]), and red circles (Ref. [5]) are values from the literature, see
text. Inset: the same data but now as a function of Z, fit by Eq. (41).
The nuclear (dashed orange line) and electronic (dot-dashed green
line) contributions of Eq. (42) are shown as well, shifted to match in
the end point.
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TABLE II. The nuclear monopole radius a, quadrupole moment
Q, deformation parameter β2, and quasi-quadrupole-moment Q̃ of a
few isotopes.

Isotope a (fm) Q (fm2) β2 Q̃ (fm4)

9Be 2.84 5.3 0.22 43
47Ti 4.61 30.2 0.09 644

111Cd 5.95 83.0 0.07 2934
138La 6.34 45.0 0.03 1808
179Hf 6.84 379.3 0.15 17760
187Re 6.93 207.0 0.07 9945
189Os 6.95 85.6 0.03 4138

where a is called the monopole radius and the βi are
deformation parameters. The monopole radius depends in the
first place on the atomic mass number A of the nucleus, and
the main trend through a lot of experimental values can be
summarized by [33,34]

a (A) = 1.489 A0.294 fm. (37)

Values for β2 fall rarely outside the range [−0.3,+0.3]
(Ref. [35] in combination with Eq. (38)). As β4 is even smaller
and enters only quadratically in the applied expressions, it
can be neglected for our purposes. Keeping only the linear
order for β2, we can express the quadrupole moment and the
quasi-quadrupole-moment in terms of a and β2

eQ  3

√
4π

5

eZ

2π
β2a

2, (38)

eQ̃  a2 · eQ. (39)

The term quadratic in β2 as well as the one quadratic in β4

give corrections to Eqs. (38) and (39) at the level of a few
percent only, while they make the expressions considerably
more involved—see Ref. [14].

From Eqs. (38) and (39), one can get a reasonable estimate
for Q̃ by inserting the monopole radius from Eq. (37)
and the experimental quadrupole moment Q (e.g., from
Refs. [35–37]). In this way, we obtain values for Q̃ in the order
of 104–105 fm4 for heavy elements (Table II). The Eqs. (38)

and (39) show that in order to get a large quasi-quadrupole-
moment Q̃, the nucleus should be large (a is large) and strongly
deformed (Q or β2 are large). The former implies heavy
elements, while the latter is most easily fulfilled for heavy
elements as well.

B. Trends in nzz

In order to estimate the order of magnitude of the electronic
parts of the O(2) interactions in Table I, we have calculated
both Vzz (the electronic part of the QI) and nzz (the electronic
part of the first-order QS) for some hexagonal close-packed
(hcp) metals throughout the periodic table. The results are
shown in Table III. Both quantities increase with the mass of
the element. But compared to Vzz, which increases over two
orders of magnitude, nzz is much more sensitive to the mass
of the element and increases over eight orders of magnitude.

In order to verify to which extent this conclusion obtained
from Table III is valid for other crystal structures than hcp, we
investigated two series of artificial body-centered tetragonal
(bct) crystals with different c/a ratios (0.8 and 1.2), and this for
several elements throughout the periodic table. The results are
reported in Ref. [14]. and show the same trend as Table III. We
conclude that the mass of the element has a larger influence on
the magnitude of nzz than the lattice parameters or the crystal
structure.

C. Trends in the quadrupole shift

The frequencies νQI [for the QI—Eq. (32)] and νQS [for the
QS—Eq. (33)] for a set of hcp and bct metals are reported
in Table III, together with their ratio |νQS/νQI|. Experimental
lattice parameters were used [38,39], and nzz and Vzz were
determined fully relativistically with a finite nucleus for nzz

and a point nucleus for Vzz (see Sec. IV B). Q was taken
from the literature [37] and Q̃ was determined as explained in
Sec. V A. The trends of nzz and Q̃ to be larger for heavy
elements, cooperate to produce a νQS of which the relative
importance with respect to νQI is rather smoothly increasing
with the atomic number A.

This can be seen more clearly in Fig. 4 (blue diamonds),
which summarizes results for a larger set of 28 elements in

TABLE III. For a few atoms and nuclei that experimentally condense in the hcp crystal structure (except for Pa: bct), this table lists the
nuclear properties Q and Q̃ (determined as in Table II), the electronic properties Vzz and nzz/ε0 (calculated by FPLO, see text), the quadrupole
frequency νQI and quadrupole shift frequency νQS they give rise to [Eqs. (32) and (33)] (note the different units: MHz and kHz), and the ratio
of the latter.

Isotope I Q (fm2) Q̃ (fm4) Vzz (1021 V/m2) nzz/ε0 (1042 V/m4) νQI (MHz) νQS (kHz) |νQS/νQI|
9Be 3/2 5 42 −0.08 −6.07 × 10−2 −0.1 10−8 5 × 10−9

47Ti 5/2 30 644 1.61 3.27 × 10+3 11.8 −0.04 3 × 10−6

49Ti 5/2 25 539 1.61 3.27 × 10+3 9.6 −0.04 3 × 10−6

111Cd 5/2 83 2934 7.48 2.94 × 10+5 150.0 −14.9 1 × 10−4

177Hf 7/2 337 15652 7.89 1.26 × 10+6 642.3 −341.4 5 × 10−4

179Hf 9/2 379 17760 7.89 1.26 × 10+6 723.9 −387.4 5 × 10−4

185Re 5/2 218 10386 −5.51 −1.81 × 10+6 −290.3 324.9 1 × 10−3

187Re 5/2 207 9945 −5.51 −1.81 × 10+6 −275.6 311.1 1 × 10−3

189Os 3/2 86 4138 −6.65 −2.91 × 10+6 −137.6 208.1 2 × 10−3

231Pa 3/2 −172 −9357 15.14 8.11 × 10+6 −629.8 1309.7 2 × 10−3
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different crystal structures: hcp with c/a = 1.633 and 0.8 and
bct with c/a = 1.2 and 0.8, always with the experimental
volume per atom (details are given in Ref. [14]). These data
can be fitted with the simple functions

|νQS| = 5.46 × 10−12A11/3|νQI|, (40)

|νQS| = 3.26 × 10−11Z4|νQI|, (41)

which are shown in Fig. 4 (full red lines). The orange triangles
(down) in Fig. 4 correspond to the experimental crystal
structures from Table III—they accurately follow the same
trend.

By taking the ratio of Eqs. (33) and (32) and by inserting the
lowest order expressions for Q and Q̃ [Eq. (38)], the following
simple analytic analog for Eqs. (40) or (41) is obtained:

νQS =
(

− 1

14
a2 nzz

ε0

1

Vzz

)
νQI. (42)

Since a = 1.26 Z1/3 fm (obtained from the data of Ref. [33]
plotted as a function of Z), the nuclear part a2 scales with Z2/3.
In order to fulfill the observed Z4 dependence in Eq. (41), the
electronic part should scale with Z10/3: nzz/ (ε0Vzz) = 2.87 ×
10−10Z10/3 fm−2. These two contributions are shown as the
orange dashed (nuclear) and green dot-dashed (electronic)
lines in the inset of Fig. 4. From this picture, it is clear that
the electronic term contributes most to the increase in the
quadrupole shift with A or Z. From Table III, we see that this
is due to the strong increase in nzz.

Equation (41) provides a quick way to estimate the order
of magnitude of the quadrupole shift for any element in any
crystal structure, and without the need for a finite nucleus
calculation. The only quantity that is required is νQI, which can
be provided by several first-principles codes. As the scatter of
the data points for heavier elements shows, such an estimate
can be one order of magnitude above or below the actual value.
For isotopes with A >∼ 175 (Z >∼ 60), the quadrupole shift can
reach 0.1–1.0% of the regular quadrupole interaction.

There are a few cases reported in the literature from which
QS information can be deduced. These are shown in Fig. 4
as well. The yellow triangle (up) was calculated by Thyssen
et al. with a method very similar to ours for the single case
of the LiI molecule. They found the ratio |νQS/νQI| for 127I to
be 5 × 10−5. The green square corresponds to 127I in the same
LiI molecule, obtained by the PCNQM method by Van Stralen
and Visscher [10]. A few estimates for the quadrupole shift
obtained by second-order perturbation theory were published
in 1970 by Pyykkö [5]. Those estimates were given relative to a
pseudoquadrupole interaction only (Appendix and Ref. [40]).
After converting these numbers, it turns out that for the LiBr
molecule, the ratio of νQS and νQI is about 10−10 for 6Li and
10−6 for 81Br (red circles in Fig. 4). These numbers follow the
same trend as the quadrupole shift in first-order perturbation,
but are 1 and 2 orders of magnitude smaller—this might be
due to the fact that these were nonrelativistic calculations.

D. Other small perturbations to the quadrupole interaction

When dealing with a quadrupole-like interaction that is
as small as the quadrupole shift, it becomes relevant to take
into account similarly small quadrupole-like interactions and
perturbations of the quadrupole interaction that have a different

origin. Some of these interactions have been proposed decades
ago, when it was impossible to compute accurate values for
them. Given the enormous advances in the possibilities of
first-principles calculations since that time, it is worthwhile to
list these effects here, to discuss them shortly, to put them into
a general picture and to refer to the original literature. This is
done in the Appendix, where we will deal with second-order
effects of magnetic origin, the isotopologue anomaly and the
influence of temperature.

VI. EXPERIMENTAL IMPLICATIONS OF THE
QUADRUPOLE SHIFT

A. Accuracy of quadrupole interaction experiments
and calculations

In order to see whether or not the presence of the quadrupole
shift can be experimentally detected, we should assess the
accuracy that can be achieved in quadrupole interaction
experiments. In order to find out which kind of information
can be extracted if such experiments are combined with
first-principles calculations, the best achievable accuracy in
such calculations will be discussed as well.

Experimental methods can be either nonradioactive ones
as nuclear magnetic resonance spectroscopy (NMR), nuclear
quadrupole resonance spectroscopy (NQR), laser spectro-
scopy (LS), molecular beam electric resonance spec-
troscopy (MBER), and Fourier transform microwave spec-
troscopy (FTMW), or radioactive ones as Mössbauer
spectroscopy (MS) and perturbed angular correlation spec-
troscopy (PAC). These methods can be applied to atoms and
molecules (LS, MBER, FTMW, NMR, NQR) or to solids
(NMR, NQR, MS, PAC). A typical NQCC νQ is on the order of
magnitude of 100 MHz. The lowest achievable experimental
error bars on νQ for each method are: 5 kHz for NMR or NQR
on single crystals with an axially symmetric EFG [41,42],
100 kHz for NMR or NQR on powder samples with a
nonaxially symmetric EFG [41,42], 5 MHz for LS on atomic
beams [43], 10 kHz [44] for FTMW [45–49], 5–20 Hz (!) for
MBER [50,51], and 500 kHz for PAC [52–54] and Mössbauer
spectroscopy [55–59]. When compared to the quadrupole shift
values in Table III (typically 100 kHz for A >∼ 150), it is clear
that only NMR for solids and FTMW and MBER for molecules
are sensitive to the quadrupole shift—provided the isotope
under consideration is sufficiently heavy.

First-principles calculations in solids are commonly done
at the level of density functional theory (DFT), or with DFT as
a starting point. DFT has been used with considerable success
to calculate electric field gradients in solids, see e.g., Refs. [38,
60–72]. As a rule of thumb, the DFT prediction is within 10%
of the experimental value.

First-principles calculations for (small) molecules can
resort to post-Hartree-Fock calculations. These are compu-
tationally much more demanding, but can in principle provide
an arbitrary high precision. The recent literature [29,73–77]
shows that coupled cluster theory with single, double, and
(perturbatively) triple excitations [CCSD(T)], combined with
sufficiently large basis sets and—where needed—with a
(semi)relativistic Hamiltonian, provides highly accurate EFGs
for small molecules. It has been claimed [78] that in this way an
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absolute accuracy with four significant digits can be reached.
This is considerably better than the accuracy that DFT can
provide for the EFG in solids. For molecules that are too
demanding for a CCSD(T) treatment, DFT with the recently
proposed CAMB3LYP∗ functional can be an alternative [79].
DFT for EFGs in small molecules can be very unreliable [79].

At nonzero temperatures, vibrational states will be pop-
ulated in solids and molecules, and in molecules rotational
states as well. This will influence the electric field gradient. In
solid-state calculations, this has so far only rarely been taken
into account [80]. In molecules, the effect of temperature is
routinely taken into account in calculations [76,81] as well as
in the analysis of experiments [82–85]. This allows an even
more detailed comparison between experiment and theory for
molecules.

B. Determination of Q and Q̃: Method

With the experimental accuracies listed in the previous
section, it is clear that experimental nuclear quadrupole
coupling constants νQ for NMR on single crystals and for
MBER or FTMW on molecules are affected by the quadrupole
shift. This means that the experimentally determined value for
νQ would have a different value (outside the error bar) if the
quadrupole shift could be “switched off.” It does not mean,
however, that by such an experiment the quadrupole shift itself
can be determined: the QS manifests itself as an addition to the
regular quadrupole interaction, and is indistinguishable from
it [Eqs. (32) and (33)]

νQ ≈ νQI + νQS = Q
eVzz

h
− Q̃

enzz

14ε0h
. (43)

The second term of this equation is even in the most favorable
cases 2 to 3 orders of magnitude smaller than the first term
(Fig. 4). If νQ is measured and Vzz is calculated from first
principles and if νQS is neglected, then the quadrupole moment
Q can be determined from Eq. (43). This has become the
preferred procedure to determine nuclear quadrupole moments
(e.g., [37,63,79,86–89]).

If Vzz could be calculated with an arbitrary high precision,
the precision of the resulting Q is limited by neglecting νQS.
One could choose not to neglect νQS, and apply Eq. (43) to at
least two νQ measurements in order to determine simultane-
ously a more precise value of Q and Q̃ (or Q and a2). This
would be meaningful in cases where the absolute deviations on
the computed �vzz and nzz values are small enough to make the
uncertainty in νQI smaller than the value of νQS. Considering
Table III and Fig. 4, this situation can be expected to arise in
the first place for sufficiently heavy elements.

C. Quadrupole moment ratios: The quadrupole anomaly

When it is not possible to know experimentally the value
of a quadrupole moment with sufficient accuracy, the next
best thing to know are ratios of quadrupole moments for
two different isotopes, or for two different isomeric states
of the same isotope. As soon as a later experiment succeeds
to determine one of the quadrupole moments in the ratio, the
other one is known as well.

The ratio Q1/Q2 of two quadrupole moments is commonly
measured as the ratio νQ,1/νQ,2 of two nuclear quadrupole

coupling constants. Indeed, in the absence of a quadrupole
shift, both ratios are identical if the two isotopes or isomers are
in the same environment and are therefore exposed to the same
Vzz [Eq. (43)]. The presence of the quadrupole shift, however,
spoils the equality of both ratios. It is straightforward to show
that the ratio of quadrupole coupling constants is equal to

νQ,1

νQ,2
= Q1

Q2
(1 + δ)

with δ = nzz

14ε0Vzz

(
a2

2 − a2
1

) + O
(
a4

i

)
. (44)

This formulation is strongly reminiscent to the Bohr-
Weisskopf effect [90] for magnetic hyperfine interactions,
where the ratio between two magnetic hyperfine interaction
frequencies for two isotopes/isomers at identical sites is
given by

ν1

ν2
= µ1

µ2
(1 + �) . (45)

Here, µ1 and µ2 are the nuclear magnetic moments of the
two isotopes/isomers, and � is the hyperfine anomaly. The
ratio µ1/µ2 can be determined from hyperfine experiments on
the two free isotopes/isomers in a known externally applied
magnetic field. Comparison with the ratio as determined from
experiments with the isotopes/isomers incorporated in solids
or molecules provides the value for �, which can be as large
as 2% for heavy elements like 185,187Re [91]. � is nonzero
because electrons that penetrate the nucleus do not interact
with a point nucleus magnetic moment but with the spatial
distribution of the magnetic moment over the nuclear volume.
This slightly affects the effective hyperfine field. Therefore,
the hyperfine anomaly is sensitive to the details of nuclear
structure, and can be used to test theoretical nuclear models.

In the same way the δ from Eq. (44)—which can be called
in analogy the quadrupole anomaly—probes details of the
nuclear charge distribution by electrons that penetrate into
the nuclear volume. From Eq. (44), it can be seen that δ is
sensitive to the electronic quantities, nzz and Vzz, and the
difference between the squared monopole radii of the two
isotopes/isomers that are involved.

In order to find a general trend and an order of magnitude
estimate for δ, we combine the analytical function of Eq. (42)
with the fitted function of Eq. (40) and the square of the nuclear
radius [Eq. (37)] to obtain a numerical approximation for the
electronic part nzz/ (14ε0Vzz) in Eq. (44). By inserting this and
the square of the nuclear radius [Eq. (37)] for two different
isotopes in the definition of δ, the following dependence of |δ|
on the isotope mass number emerges:

|δ(A)| = 5.46 × 10−12A3.079(A0.588 − (A − n)0.588). (46)

This expression estimates the order of magnitude of δ for
two isotopes with mass numbers A and A − n. Curves for
log10 |δ (A)| for n = 2, 5, and 10 are shown in Fig. 5. We
observe that the quadrupole anomaly strongly increases with
A (or Z), due to the increase in nzz. Mass number differences
of 10 yield a value for δ that is an order of magnitude larger
than mass number differences of 2. For the 3 elements in
Table III for which information for two isotopes is provided,
Eq. (46) can be compared with values obtained by inserting
the quantities of Table III directly into Eq. (44). The values are
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FIG. 5. (Color online) The logarithm with base 10 of the
quadrupole anomaly δ as a function of the mass number A, as given
by Eq. (46). The value of n indicates the mass number difference
between the heaviest (A) and lightest (A − n) isotope. The curves for
n = 2 (full red line), n = 5 (blue dashed line) and n = 10 (yellow
dot-dashed line) are shown. For 47Ti,179 Hf, and 187Re (all n = 2)
log10|δ| can be calculated explicitly from Table III (orange triangles).

shown by the orange triangles in Fig. 5 and correspond to the
red fit (n = 2). This comparison shows that Eq. (46) is within
one order of magnitude indeed a good estimate for δ. The
experimentally achievable accuracy of quadrupole moment
ratios is of the order of 10−6 (see Table IV). This means that
for many isotopes, the presence of δ affects the experimental
values.

Unfortunately, whereas in Bohr-Weisskopf experiments the
unperturbed ratio µ1/µ2 can be determined from experiments
on free nuclei in an externally applied magnetic field, this
is not possible for quadrupole interaction measurements:
electric field gradients that can be generated in the laboratory
are too small to allow meaningful quadrupole interaction
measurements [101]. Therefore, a slightly different method
has to be used. One could perform four quadrupole interaction

experiments on two isotopes (“m” and “n”) of the same
element X, each of them being part of two different molecules.
For instance, mX in mXA and mXB molecules, and nX in nXA

and nXB molecules. This yields four experimental frequencies
νA

m, νA
n , νB

m , and νB
n . By applying Eq. (44) twice, it can be

seen that the NQCC ratios are not necessarily identical to each
other for the two different molecules, with the difference being
determined by nzz/Vzz:

νA
m

νA
n

= Qm

Qn

(
1 + nA

zz

14ε0V A
zz

(
a2

n − a2
m

))
(47)

νB
m

νB
n

= Qm

Qn

(
1 + nB

zz

14ε0V B
zz

(
a2

n − a2
m

))
. (48)

As long as the quadrupole shift (∝ nzz) does not play a sig-
nificant role, the two experimental frequency ratios at the left-
hand side are within their error bars identical to each other. If,
however, the quadrupole shift would be large enough, these two
experimental frequency ratios would differ from each other.
This is a completely experimental procedure to detect the pres-
ence of the quadrupole shift effect. Table IV lists a collection
of experimental NQCC ratios in molecules determined for five
such sets of four experiments, which gives an impression of
the experimental accuracy that can be achieved. The estimated
order of magnitude for |δ| [Eq. (46)] is given too. For none
of these cases, δ is expected to be large enough to affect the
experimental ratios. Table IV combined with Fig. 5 suggests
that if the best experimental accuracies of 10−6 can be achieved
for isotopes with A � 150, then the influence of δ could be
observed. The heavier the element and the larger the size differ-
ences between the two isotopes, the more likely large δ values
are. For the two heaviest elements in Table IV—Hf and Re—a
difference in the sixth digit is expected. That falls only one digit
short of the accuracy that has been reached experimentally.
Experiments on these or similar molecules, dedicated to obtain
a high accuracy for the quadrupole interaction, would be
worthwhile.

Interestingly enough, the quadrupole coupling constant
ratios for the two K isotopes in the KF and KI molecules
differ from each other in the fourth digit, and this difference

TABLE IV. Ratios of experimental quadrupole coupling constants for two different isotopes in two different molecules, collected from the
literature. For the three lightest isotopes, the error bar on this ratio has been determined directly from the fit to the experimental data—this error
bar can be slightly different from what one would obtain using the error bars on the individual frequencies (see the discussion in Ref. [51]).
The experimental value of the EFG (in 1021 V/m2) and the estimated value of δ [Eq. (46)] are given as well.

Molecules Isotopes νna/νma V exp
zz |δ| Ref.

6Li19F,7 Li19F 6Li/7Li 0.020161 ± 0.000013 −0.44 5.9 × 10−10 [92]
6Li127I,7 Li127I 6Li/7Li 0.02028 ± 0.00014 −0.18 [82]
41K19F,39 K19F 41K/39K 1.217699 ± 0.000055 −5.6 1.3 × 10−7 [93]
41K127I,39 K127I 41K/39K 1.2174935 ± 0.0000099 −3.0 [94]
87Rb19F,85 Rb19F 87Rb/85Rb 0.4838301 ± 0.0000018 −10.7 9.6 × 10−7 [51]
87Rb35Cl,85 Rb35Cl 87Rb/85Rb 0.483837 ± 0.000022 −8.2 [95]
179Hf16O,177 Hf16O 179Hf/177Hf 1.13004 ± 0.00001 −73.3 6.6 × 10−6 [96]
179Hf32S,177 Hf32S 179Hf/177Hf 1.13004 ± 0.00001 −63.5 [97]

H187Re(CO)5, H185Re(CO)5
187Re/185Re 0.94636 ± 0.00005 −18.0 7.4 × 10−6 [98,99]

CH187
3 ReO3, CH185

3 ReO3
187Re/185Re 0.94632 ± 0.00006 14.4 [99,100]

032507-11



KOCH, KOEPERNIK, VAN NECK, ROSNER, AND COTTENIER PHYSICAL REVIEW A 81, 032507 (2010)

is an order of magnitude larger than the experimental error
bars. Given the estimate for δ, the quadrupole shift is
expected to give an effect in the seventh digit at best. It is,
therefore, unlikely that this set of K experiments represents an
experimental observation of the quadrupole shift (it could be
due to one of the other effects discussed in the Appendix, or
due to an experimental problem).

One step further is to solve the system of the two Eqs. (47)
and (48) for the unknown quantities Qm/Qn and

(
a2

n − a2
m

)

Qm

Qn

=
νmb

νnb

na
zz

14ε0V a
zz

− νma

νna

nb
zz

14ε0V b
zz

na
zz

14ε0V a
zz

− nb
zz

14ε0V b
zz

, (49)

a2
n − a2

m =
νma

νna
− νmb

νnb

νmb

νnb

na
zz

14ε0V a
zz

− νma

νna

nb
zz

14ε0V b
zz

. (50)

All quantities at the right-hand side of these equations can
either be measured or calculated, such that the quantities at
the left-hand side are effectively determined by a combination
of experiment and theory. Clearly, very small numbers are
involved here. The difference between the two frequency ratios
in the numerator of Eq. (50) is on the same order of magnitude
as the δ in Eq. (44): 10−5 for heavy elements. The same
considerations as in Sec.VI B apply here: an extreme accuracy
in experiments as well as in calculations is needed in order
to get to a reliable conclusion. Furthermore, the procedure as
described here can be disturbed by the presence of a few other
small quadrupole-like effects that are discussed in Sec. V D
and the Appendix.

VII. CONCLUSIONS AND OUTLOOK

In this work, we described how electron penetration in the
nuclear volume leads to the quadrupole shift: a small pertur-
bation of the regular quadrupole interaction, which depends
on the second derivative of the electron charge density at the
nucleus (nzz), as well as on the size and shape of the nucleus(
Q̃

)
. An explicit expression for the quadrupole shift that can

be implemented in a band structure code was derived, and DFT
calculations were performed for a set of crystalline materials.
It was shown that reliable numerical values for the quadrupole
shift can be obtained only for fully relativistic calculations that
take a finite nucleus into account. Therefore, the quadrupole
shift is one of the few cases where the commonly used
scalar-relativistic approximation is definitely insufficient.

The quadrupole shift is a small effect. Its order of
magnitude appears to be related mainly to the atomic number
A of the element under consideration, and to a lesser extent to
the crystal structure (Fig. 4). This is predominantly due to the
way how nzz depends on Z. The quadrupole shift is orders of
magnitude smaller than the regular quadrupole interaction for
most elements, but can reach up to 1% near the actinide region.

We have pointed out how the quadrupole shift can play a
role in a more accurate determination of quadrupole moments
and their ratios. The comparison of two accurately measured
quadrupole coupling constant ratios provides a purely exper-
imental way to observe the presence of the quadrupole shift.
For suitable cases, the required experimental accuracy can
be reached by molecular spectroscopy methods as MBER or

FTMW. With further advances in the absolute accuracy of ab
initio calculations for nzz and Vzz, awareness of the existence
of the quadrupole shift will help to extract more precise nuclear
information from quadrupole coupling experiments.

Suggestions for further work are at the conceptual, com-
putational, as well as on the experimental level. From the
conceptual point of view, it remains to be understood which
features of the electron density are responsible for the observed
Z-dependence of nzz and for the dependence of nzz for a
given element on the crystal structure. Understanding those
mechanisms would help to single out situations where the
quadrupole shift is maximized. In the present work, only
DFT calculations for solids were performed, whereas the most
accurate experiments are available for molecules. DFT for
molecules is not likely to provide very accurate results, but
quantum chemical calculations can do much better in this
respect. An interesting computational task would therefore
be to examine the value of the quadrupole shift for (heavy)
elements in a set of molecules in this way. Additionally,
implementing and calculating (some of) the other small
quadrupole-like interactions discussed in the Appendix, would
help to assess to which extent these effects could increase
or reduce the experimentally observed total quadrupole shift.
On the experimental side, sets of four quadrupole coupling
experiments as in Table IV, determined for heavy elements
and with high accuracy, provide a way to observe the presence
of the quadrupole shift/quadrupole anomaly experimentally.
Such experiments could be compared with the quantum
chemical calculations mentioned before.

It is our hope that the present work provides a suitable
basis to tackle the experimental and theoretical challenges that
need to be overcome to prove the existence of the quadrupole
shift/anomaly, and to extract useful information from
them.
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APPENDIX: OTHER SMALL PERTURBATIONS TO THE
QUADRUPOLE INTERACTION

As announced in Sec. V D, this appendix discusses several
other small quadrupole-like effects that might be of similar
magnitude of the quadrupole shift.

1. Second-order effects of magnetic origin

Kellogg et al. [102–104] discussed half a century ago a
pseudoquadrupole interaction in molecules that has a mag-
netic origin. This has been later elaborated upon by Pyykkö,
especially for the case of metals [40,105]. Mathematically, this
pseudoquadrupole interaction arises in the same way as the
quadrupole shift when the latter is derived by second-order
perturbation theory (see the end of Sec. II C). The small
perturbing Hamiltonians are now the ones that give rise to
the magnetic hyperfine field: the nuclear spin/electron orbit
Hamiltonian

(
Ĥ1

)
, the nuclear spin/electron spin dipole-

dipole Hamiltonian
(
Ĥ2

)
, and the Fermi contact Hamiltonian(

Ĥ3
)
. In second-order perturbation, the square of Ĥ1, the

square of Ĥ2 and the cross-term of Ĥ2 and Ĥ3 contain an
Î 2
z operator that gives rise to a quadrupole-like interaction

(compare to Eq. (22), provided axial symmetry (η = 0) is
present). Such a term is included even in first order in Ĥ1.
These pseudoquadrupole interactions were shown to be at the
level of 10−4 − 10−6 of the regular quadrupole interaction in
molecules [40,103,104], and reach in favorable cases up to 1%
in metals [40]. The values in molecules are, therefore, on the
same order of magnitude as the quadrupole shift (Fig. 4 and
Table III).

Strictly spoken, these quadrupole-like contributions have
a different status than the quadrupole shift in Sec. II. The
quadrupole shift Hamiltonian [Eq. (25)] has exactly the same
structure as the quadrupole interaction Hamiltonian [Eq. (22)],
and they are therefore completely indistinguishable from each
other. The quadrupole-like interactions discussed in the present
section have in the first place a Î 2

z dependence which splits
the nuclear levels in a quadrupole-like manner as long as the
environment has axial symmetry (η = 0). The important case
of linear molecules has this symmetry. In less symmetrical
environments, one could, in principle, distinguish between
these quadrupole-like interactions and the quadrupole shift. As
this symmetry breaking is itself a small effect, however, such
considerations are not expected to be of much practical value.

For completeness, we mention two other sources of
quadrupole-like interactions, which are believed [105] to
be even smaller than the previously described ones: the
influence of an external magnetic field [106,107] and nuclear
polarization [108].

2. Isotopologue anomaly

Through high-precision molecular beam experiments,
Cederberg et al. have drawn attention to the fact that the
quadrupole interaction at nucleus B in an AB diatomic
molecule slightly depends on which isotope is taken for
element A. For the isotopologues [109] 7Li127I and 6Li127I,
this isotopologue anomaly [82] or secondary isotope effect
[110] is 0.007% of the regular quadrupole interaction at 127I

(an absolute shift of 14 kHz) [82]. For 41K127I and 39K127I,
the relative effect at 127I was 10 times smaller (0.0007%,
absolute shift of 0.6 kHz) [94], while for 39K81Br and 39K79Br
there was no effect found at all on 39K [94]. The origin of
the isotopologue anomaly is not understood [82,94], but from
the literature review we present in Table V, some systematics
become obvious. A clear trend is a correlation between the
relative value of the isotopologue anomaly and the relative
mass number change for the A isotope. The 50% relative
mass change between hydrogen and deuterium results in
isotopologue anomalies of 0.2%–3.0%. It tends to be lower
for the 33% mass change between deuterium and tritium
(0.1–0.6%), although the error bars prevent unambiguous
conclusions. Much smaller but definitely nonzero frequency
differences are observed for LiI and KI (0.007% and 0.001%),
where the relative mass differences are 14.3% and 4.8%.
Table V suggests that these isotopologue anomalies tend to
become undetectably small for relative mass number changes
below 5%. There is no systematic trend when going down
a group (Cl-Br-I). And the only transition metal isotope in
this series (Re) provides much larger isotopologue anomalies
than the late p isotopes. The isotopologue anomalies as
presented in Table V were obtained as the difference between
(ν = 0, J = 0) terms in the vibrational/rotational expansion of
the quadrupole coupling (see e.g., Eq. (19) in Ref. [50]). This
lowest order term is not exactly equal to the static quadrupole
coupling constant at the equilibrium internuclear separation,
due to the presence of an additional constant (the αB2 term
in Eq. (18) of Ref. [50]), which is mass-dependent and
therefore isotope-dependent. This αB2 term could, therefore,
be an obvious candidate to explain the observed frequency
difference. However, Cederberg et al. have shown for CsF
that αB2 is negligible [117], because it is an order of
magnitude smaller than the (ν = 2, J = 0) term, which itself
is experimentally known to be small. We verified that the
same argument holds true for LiI (�mrel = 14%) [50] and HI
(�mrel = 50%) [112,118], but could not verify it for the Re
molecules for which no vibrationally resolved information is
given. Nevertheless, it is safe to conclude that at least some
of the larger as well as the smaller frequency differences in
Table V are not significantly influenced by the αB2 term and
represent a real difference between two static quadrupole cou-
pling constants, a difference of which the origin remains to be
understood. Note here that an alternative way to look at the αB2

term is to consider isotope-dependent internuclear distances,
which can be accurately determined experimentally [119].

Isotopologue anomalies in the kHz region can be of the
same order of magnitude as the quadrupole shift νQS. Their
existence puts further limitations on the numerical information
that can be extracted from a comparison of experimental
quadrupole coupling constants and first-principles calcula-
tions. Indeed, the first-principles values for Vzz and nzz that
appear, for instance, in Eqs. (49) and (50) can only be
calculated for specified elements in the molecule, not for the
isotopes (this can be partially circumvented by making the
calculations for experimentally obtained isotope-dependent
internuclear distances, as measured, e.g., in Ref. [119]). On
the other hand, the purely experimental determination of the
presence of a quadrupole shift by four NQCC measurements
as in Eqs. (47) and (48) is not disturbed by the isotopologue
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TABLE V. The isotopologue anomaly for a set of diatomic molecules. First two columns: the molecules with their isotopes—the isotope for
which the NQCC is measured is put in bold. Second two columns: the NQCC in MHz. �ν: the difference between the preceding two columns
(kHz)—cases where the error bar allows to conclude the difference is not zero, are labeled by a “∗”. �νrel: relative frequency difference (%).
�mrel: relative change in atomic mass number for the neighboring isotope (%).

Molecule A Molecule B νQ,A (MHz) νQ,B (MHz) �ν (kHz) �νrel (%) �mrel (%) Ref.

1H187Re(CO)5
2H187Re(CO)5 −900.13(3) −924.54(2) 24410(50)∗ 2.712 50.0 [98]

C1H3
185ReO3 C2H3

185ReO3 757.19(3) 767.83(4) 10640(70)∗ 1.405 50.0 [100,110]
1H81Br 2H81Br 447.9(14) 443.363(105) 4537(1500)∗ 1.023 50.0 [111]
1H79Br 2H79Br 535.4(14) 530.648(74) 4752(1500)∗ 0.896 50.0 [111]
1H37Cl 2H37Cl −53.436(95) −53.037(113) −399(200)∗ 0.752 50.0 [111]
1H35Cl 2H35Cl −67.800(95) −67.417(98) −383(200)∗ 0.568 50.0 [111]
1H127I 2H127I −1828.059(51) −1823.226(54) −4833(100)∗ 0.265 50.0 [112,113]

2H35Cl 3H35Cl −67.417(98) −67.0(6) −417(700) 0.622 33.3 [111]
2H79Br 3H79Br 530.648(74) 530(2) 648(2100) 0.122 33.3 [111]
2H81Br 3H81Br 443.363(105) 443(2) 363(2100) 0.082 33.3 [111]
2H37Cl 3H37Cl −53.037(113) −53.0(6) −37(700) 0.070 33.3 [111]

6Li127I 7Li127I −194.33834(20) 194.35241(20) 14.07(40)∗ 0.007 14.3 [82]
35Cl45Sc 37Cl45Sc 68.2067(29) 68.2062(29) 0.5(6.0) 0.000 5.4 [114]
39K127I 41K127I −85.471138(7) −85.471721(12) 0.583(20)∗ 0.001 4.8 [94]
63CuOC127I 65CuOC127I −593.465(9) −593.485(10) 20(20) 0.003 3.1 [115]
79Br39K 81Br39K −5.032957(9) −5.032957(9) 0.000(20) 0.000 2.5 [94]
79Br45Sc 81Br45Sc 65.2558(32) 65.2597(38) −3.9(7.0) 0.000 2.5 [116]

anomaly, as long as one makes sure that the isotopes for A and
B in the (m,n)XA and (m,n)XB molecules remain identical in
all four cases.

3. Temperature and vibrations

The entire discussion so far implicitly assumed static
molecules or crystals (0 K and no zero point vibrations). At
nonzero temperatures, vibrational states will be populated, and
in molecules rotational states as well. These will influence the

electric field gradient and therefore the quadrupole interaction.
The effect is in the range of 1–10%, and should therefore
certainly be taken into account in high-precision studies. In
molecules, this effect can be described with high accuracy
using a Schlier-Dunham treatment [50,82–85], and quadrupole
coupling experiments are routinely analyzed according to
this formalism [50,82,85,112,114,116,118]. Similar studies
in solids are rare—see, e.g., Ref. [80] for hcp-Cd, where
a contribution of 1.6% due to zero-point vibrations was
found.
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