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Electronic spin-flipping collisions of hydrogen atoms
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We present a unified multichannel approach to calculate electron spin-exchange and spin-flipping transition
cross sections for collisions of H with H, H with T, and T with T. We use the theory to calculate the hyperfine
quenching cross sections for collision energies that range from 1 mK to thermal temperatures. We show that
spin-flipping transitions are induced by the splitting of the b 3�u Born-Oppenheimer potential via the long-range
magnetic interactions among electrons. We find that the spin-flipping cross sections in the tritium dimer are about
a magnitude larger than that predicted by mass scaling the H-H cross sections. For the former, we show that
the spin-exchange cross sections are several magnitudes larger, at cold temperatures, than that of the hydrogen
system. We compare the results of the multichannel approach with those obtained using approximate methods
such as the degenerate internal-state, the elastic, and Born approximations and discuss their respective range of
validity.
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I. INTRODUCTION

The 21 cm line of atomic hydrogen, corresponding to the
ground state F = 1 → F = 0 hyperfine transition has played
an important role in radio astronomy [1]. Purcell [1] first
noted the significance of atomic collisions in determining
the spin temperature of hydrogen, a parameter used by
astronomers to characterize H I regions. The advent of “21 cm
cosmology” [2] focused renewed attention to understanding
the processes that determine the hyperfine level populations
of ground-state atomic hydrogen. Recent studies [3] demon-
strated that favorable conditions of hydrogen gas temperature
and density in the early universe, for 30 < z < 200, may
allow tomographic maps of this epoch. Spin-exchange [4–6]
collisions play a crucial role in enabling that scenario [7].
This process describes collisions in which the total azimuthal
spin angular momentum of the atom pair is conserved and
which, since the electron and nuclear spins are coupled by
the hyperfine interaction, induce hyperfine transitions. Spin
exchange is precipitated by interference of the dynamic phase
histories generated when the atoms approach in either their
electronic singlet or triplet configurations [4–6]. Because
the electronic energy splittings between the singlet and
triplet states are on the order of chemical energies, spin-
exchange cross sections are typically much larger than those
of transitions induced by magnetic interactions among the
atoms. In this article we denote the latter as spin-flipping
transitions since, in that case, the change of total azimuthal
spin angular momentum M is nonzero. Though spin-flipping
cross sections are small, they are important if the hydrogen gas
is polarized since selection rules for spin exchange do not allow
relaxation of two hydrogen atoms in the same F = 1,m �= 0
magnetic sublevel [7]. A major effort of this article is to
present collision data including �M �= 0 spin-flipping cross
sections for H-H collisions over a wide temperature range.
Such data are important in accurate kinetic modeling of
hydrogen gas in the early universe [8] and the hydrogen
maser [9].
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Substantial spin-exchange collision data exist, including
the results of calculations [2,6,7,10,11] and measurements
[12,13], however, there is a paucity of data for �M �= 0 spin-
flipping processes. Calculations for magnetic level-changing
transitions for hydrogen atoms in a magnetic field and at
cryogenic temperatures were reported [14], but here we present
data for collision energies within the mK to thermal energy
range. Because the tritium atom has a similar hyperfine
structure to hydrogen (tritium has a 1517 MHz hyperfine
splitting compared to 1420 MHz for hydrogen [15]) we explore
the substitution of H with T in our calculations. Advances
in cooling atoms using Stark decelerators [16,17] may allow
measurements for the cold collision properties of species, such
as hydrogen and its isotopes, that were not as accessible in
laboratory efforts that utilize laser and evaporative cooling
technologies. Here, we present new results for H-T and
T-T collision cross sections. Because magnetic interactions
are weak, Born approximation methods were successful in
predicting �M �= 0 cross sections at cold temperatures [18].
We compare our multichannel results with those predicted
by the Born approximation and affirm that, for the H-H and
H-T systems, the latter provides an excellent approximation
at kinetic temperatures �1 K. For the T-T system at cold
temperatures, the Born approximation underestimates, even at
temperatures ≈mK, the multichannel predictions by an order
of magnitude. In all cases we find that the Born approximation
fails at temperatures T >≈ 1 K.

Traditional close coupling methods typically include mag-
netic interactions as a perturbation to the standard Born-
Oppenheimer (BO) description, which includes only electro-
static interactions of the collision. It has long been realized
[4,6] that, in the alkali metals, spin exchange is driven by the
energy splittings of the asymptotically degenerate X 1�+

g and
b 3�+

u BO states in the molecular region. Here we introduce
a collision formalism in which the magnetic interaction is
included in our BO description. We diagonalize the total
electronic Hamiltonian within the adiabatic approximation
and find that the magnetic interactions split the b 3�+

u energy
into two components. We show how this splitting results
in nonvanishing �M �= 0 transition cross sections. In this
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way we make a connection to previous work involving fine-
structure changing transitions [19], where it was shown how
splittings of BO energies control the efficiency of the latter.
Similar considerations were also discussed [20] in m-changing
transitions induced by isotropic perturbers.

In Sec. II we present a theoretical overview of our close
coupling theory. To simplify the discussion we work in the de-
generate internal state (DIS) [9], or elastic [6], approximation.
In that approximation the hyperfine structure splittings among
the F = 0 and F = 1 hyperfine levels are ignored. Results
from these calculations show that this approximation is very
accurate for collision energies >1 K. It has the advantage
of greatly simplifying the set of multichannel equations and,
for didactic purposes, we limit our discussion in the main
section using this framework. However, at cold temperatures
the DIS approximation fails and we resort to a multichannel
description involving all 16 channel states that describe the
various hyperfine levels of the diatom system. That discussion
is left for the Appendix and parallels the treatment in the main
section. In addition, we include more traditional derivations in
the Appendix of the close coupling equations to that described
earlier. We show how the different formulations lead to the
same description.

In Sec. III we report the final results that of all spin-
changing cross sections for the H-H, H-T, and T-T systems
for collision energies (gas temperatures) 1 mK < E < 290 K.
We show that the T-T system has a spin-exchange cross
section that is more than 103 larger than the corresponding
H-H cross section at 1 mK. We provide a brief summary and
conclusion, unless otherwise stated atomic units will be used
throughout.

II. THEORETICAL FRAMEWORK

Consider the ket |Fa Ma〉, where Fa Ma are, respectively, the
total and azimuthal hyperfine quantum numbers for hydrogen
atom a in its ground state. In the asymptotic region, where
atoms a and b are well separated, the direct product ket
|Fa Ma Fb Mb〉 describes the quantum state of both atoms. If
we neglect the small 1420 MHz ground-state hyperfine-energy
defect between the F = 1 and 0 levels, the so-called DIS,
or elastic approximation, we can describe the system in the
|S MS I MI 〉 representation, where S = Sa + Sb is the total
electronic spin angular momentum quantum number of the two
atoms, I = Ia + Ib is the total nuclear spin angular momentum
number, and MS and MI are the quantum numbers for
the corresponding azimuthal components. The relationships
between the various representations in the scattering formalism
are described in detail in Ref. [9].

The effective Hamiltonian for a pair of ground-state
hydrogen atoms is given by

H = HKE + Had + Hdip + Hhf, (1)

where HKE is the kinetic energy of relative motion and the
adiabatic term

HAD = [3�(R) − 1�(R)]Sa · Sb + 33�(R) + 1�(R)

4
, (2)

where 3�(R) ≡ b 3�+
u (R) and 1�(R) ≡ X 1�+

g (R) are, re-
spectively, the ground-state triplet and singlet BO po-

tential curves for the H-H system expressed as a func-
tion of the radial separation distance R = |R|. Sa and
Sb are the electronic spin operators for atoms a and b,
respectively.

Hdip is the long-range dipole magnetic electron spin-spin
interaction (Breit interaction) between the pair of atoms
[21]

HDIP = α2

R3

[
Sa · Sb − 3

(Sa · R)(Sb · R)

R2

]
, (3)

where α is the fine-structure constant. We ignore interactions
involving the nuclear spin angular momenta, which is justified
by noting that the magnetic moment of the nuclei are on the
order of 10−3 to that of the electrons. Hhf is the hyperfine
interaction.

Significant simplification of the coupled scattering equa-
tions is achieved using the DIS approximation (i.e., we
neglect Hhf) and since we also ignore the nuclear-electron
spin couplings, we can use molecular basis channel states that
correlate in the asymptotic region to |S MS I MI 〉. Following
the method outlined in Ref. [22], we arrive at a set of coupled
equations for the scattering amplitude FSMS

(R)

∇2FSMS
(R) − 2µ

∑
S ′M ′

S

V
S ′M ′

S

SMS
(R, θ, φ)FS ′M ′

S
(R) + k2FSMS

(R)

= 0, (4)

where µ is the nuclear-reduced mass of the collision sys-
tem, k = √

2µE is the wave number for collision en-
ergy E, and the multichannel potential matrix is given by
the expression (see the Appendix for derivations of the
following)

V
S ′M ′

S

SMS
(R)

= δS,S ′
∑
�

DS
MS�(φ, θ,−φ)DS

�MS′ (φ,−θ,−φ) εS �(R),

(5)

where εS �(R) are the BO energy eigenvalues for the Hamil-
tonian V ≡ Had + Hdip. For the sake of economy in notation,
we ignored the channel indices corresponding to the nuclear
angular momenta, but take for granted that the potential matrix
is multiplied by the factor δI,I ′δMI ,MI ′ .

The BO eigenvalues for V are given by the expressions (see
Appendix)

εS=1,MS
= 3�(R) − α2

2R3
|MS | = 1,

εS=1,MS
= 3�(R) + α2

R3
MS = 0, (6)

εS=0,MS
= 1�(R).

Inserting the BO eigen-energies into Eq. (5) and using the
unitarity property

∑
�

DS
MS�(φ, θ,−φ)DS

�MS′ (φ,−θ,−φ) = δMS,MS′ . (7)
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We obtain

V (R) =

⎛
⎜⎜⎜⎜⎜⎝

3�(R) − α2[3 cos(2θ)+1]
8R3 − 3e−iφα2 sin(2θ)

4
√

2R3 − 3e−2iφα2 sin2(θ)
4R3 0

− 3eiφα2 sin(2θ)
4
√

2R3
3�(R) + [3 cos(2θ)+1]α2

4R3
3e−iφα2 sin(2θ)

4
√

2R3 0

− 3e2iφα2 sin2(θ)
4R3

3eiφα2 sin(2θ)
4
√

2R3
3�(R) − α2[3 cos(2θ)+1]

8R3 0

0 0 0 1�(R)

⎞
⎟⎟⎟⎟⎟⎠ . (8)

Here, we expressed V
S ′MS′
SMS

in matrix form and channel (column
or row index) 1 refers to the |S = 1 MS = 1〉 state, channel 2 to
the |S = 1MS = 0〉 state, channel 3 to the |S = 1 MS = −1〉
state, and channel 4 to the |S = 0 MS = 0〉 state. Typically, one
expands the multichannel scattering amplitude FSMS

(R) as a
sum of partial waves. However, as a result of the anisotropy
in V (R), the resulting scattering equations involve couplings
between waves with different orbital angular momenta. At
higher collision energies, where many partial waves contribute,
the increased complexity requires significant CPU resources
in propagating the numerical solution. Instead, we follow a
procedure outlined in Ref. [22] where the amplitudes are
expressed in the form

FSMS
(R) =

∑
lm

∑
JM

Ylm(θφ)
√

2J + 1

(
S l J

MS m −M

)
GJM

Sl (R)

R
,

(9)

and which lead to the following coupled radial
equations

d2GJM (R)

dR2
−L(L+1)

R2
GJM (R)−2µW GJM (R)+k2GJM (R)

= 0. (10)

GJM (R) is the multichannel radial scattering function, L

is a diagonal matrix the entries of which are the channel
orbital angular momenta, and W (R) is the multichannel
radial potential matrix. The channel assignments for the
radial equations are given in Table I, and in this rep-
resentation the explicit form for the radial potential is
given by

W (R) =

⎛
⎜⎜⎜⎜⎜⎝

3�(R) + (J−1)α2

2(2J+1)R3 − 3
2

√
J (J+1)α2

(2J+1)R3 0 0

− 3
2

√
J (J+1)α2

2(J+1)R3
3�(R) + (J+2)α2

2(2J+1)R3 0 0

0 0 3�(R) − α2

2R3 0

0 0 0 1�(R)

⎞
⎟⎟⎟⎟⎟⎠ . (11)

The solution of Eq. (10) for each partial wave J M allows
the determination of the scattering matrix and the desired
scattering cross sections. One advantage of solving the system
of equations in Eq. (10) is that they are block diagonal
in the partial wave quantum numbers J M . This contrasts
with alternate formulations in which an infinite array of
radial partial wave functions are coupled and which requires
demanding CPU and memory resources in their solution. In
block diagonal form, embarrassingly parrallel methods can be
exploited in their solution.

TABLE I. Channel quantum
numbers for block J .

Channel l S

1 J − 1 1
2 J + 1 1
3 J 1
4 J 0

III. SCATTERING AMPLITUDE

In solving Eq. (10) we can construct the scattering ampli-
tude as discussed in the following. We define the radial
amplitude

GJM (R) ≡ GS ′l′
Sl (JM,R), (12)

where the subscripts and superscripts on the right-hand side
refer to incoming and outgoing channel indices as described
in Table I. We enforce the boundary condition

GS ′l′
Sl (JM,R) → δS ′ l′

S l

k1/2
exp(−ikR)il

− exp(ikR)

k1/2
(−i)lSS ′ l′

S l (JM), (13)

in the asymptotic limit, R → ∞. Here SS ′ l′
S l (JM) is the radial

S matrix for partial wave J M . Defining the amplitude

G
m′

a m′
b

mamb
(R) ≡

∑
JM

∑
S,S ′

∑
MS,M ′

S

∑
lm

∑
l′m′

(
S l J

MS m −M

)

×
(

S ′ l′ J

M ′
S m′ −M

)
[J ][S, S ′]1/2
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× Ylm(θφ)Y ∗
l′m′ (θiφi)

(
1
2

1
2 S

ma mb −MS

)

×
(

1
2

1
2 S ′

m′
a m′

b −M ′
S

)
2πil+1

k1/2R
GS ′l′

Sl (JM,R),

(14)

we find, as R → ∞

G
m′

a m′
b

mamb
(R) → exp(ikR)δ

m′
a m′

b
ma mb

+ f
m′

a m′
b

ma mb
(θφ; θiφi)

exp(ikR)

R
,

(15)

where

f
m′

a m′
b

ma mb
(θφ; θiφi) =

∑
JM

∑
lm

∑
l′m′

2πi

k
Ylm(θφ)Y ∗

l′m′(θiφi)

× T S ′l′
Sl (JM)[J ]

∑
S,S ′

∑
MS,M ′

S

[S, S ′]

×
(

1
2

1
2 S

ma mb −MS

)(
1
2

1
2 S ′

m′
a m′

b −M ′
S

)

×
(

S l J

MS m −M

)(
S ′ l′ J

M ′
S m′ −M

)

T S ′l′
Sl (JM) ≡ δS ′ l′

S l − SS ′ l′
S l (JM), (16)

is the scattering amplitude for a pair of atoms, in internal state
|mamb〉, approaching in the solid angle centered at θiφi to
scatter into state |m′

a m′
b〉 and the solid angle centered at θφ.

We re-express

f
m′

a m′
b

ma mb
(θφ; θiφi)

=
∑
lm

∑
l′m′

Ylm(θφ)Y ∗
l′m′(θiφi)

2πi

k
W

m′
am

′
b

mamb
(lm, l′m′)

W
m′

am
′
b

mamb
(lm, l′m′)

≡
∑
JM

∑
S,S ′

∑
MS,M ′

S

(
1
2

1
2 S

ma mb −MS

)(
1
2

1
2 S ′

m′
a m′

b −M ′
S

)

×
(

S l J

MS m −M

)(
S ′ l′ J

M ′
S m′ −M

)
× [S, S ′]1/2[J ]T S ′l′

Sl . (17)

We define the cross section

σ (mamb → m′
am

′
b) ≡ 1

4π

∫
d�̂i

∫
d�̂

∣∣f m′
a m′

b
ma mb

(θφ; θiφi)
∣∣2

= π

k2

∑
lm

∑
l′m′

|Wm′
am

′
b

mamb
(lm, l′m′)|2. (18)

If we ignore the dipolar interaction (i.e., α = 0), Eq. (11)
predicts that

T S ′ l′
S l (JM) = δS,S ′δl,l′T (S, l)

(19)
T (S, l) ≡ T S l

S l (JM).

We make use of the fact that T is not an explicit function
of JM [it depends on J through the implicit relationship
between l, l′, i.e., l = l(J ), l′ = l′(J )]. For a fixed value of l

we can then contract∑
JM

[J ]

(
S l J

MS m −M

)(
S l J

M ′
S m′ −M

)
= δm,m′δMS,M ′

S
,

(20)

to obtain

σ (mamb → m′
am

′
b) = π

k2

∑
l

(2l + 1)
∣∣Wm′

am
′
b

mamb
(l)

∣∣2

W
m′

am
′
b

mamb
(l) =

∑
SMS

[S]

(
1
2

1
2 S

ma mb −MS

)

×
(

1
2

1
2 S

m′
a m′

b −MS

)
T (S, l). (21)

This expression presents the familiar spin-exchange selection
rule ma + mb = m′

a + m′
b.

Using Eq. (21), we obtain

σ

(
1

2

−1

2
⇔ 1

2

−1

2

)
= π

2k2

∑
l

(2l + 1)

{3 − 2 cos(2δsl) − 2 cos(2δtl)

+ cos[2(δsl − δtl)]}
σ

(
1

2

−1

2
⇔ −1

2

1

2

)
= π

k2

∑
l

(2l + 1) sin2(δsl − δtl)

σ

(
±1

2
± 1

2
→ ±1

2
± 1

2

)
= 4π

k2

∑
l

(2l + 1) sin2(δtl),

(22)

where T (S, l) = 1 − exp[2iδS(l)] and δS(l) is the lth partial
wave phase shift for elastic scattering in the singlet (S = 0)
and (S = 1) triplet BO potentials, respectively.

We also define the amplitude

G
F ′

aM
′
aF

′
bM

′
b

FaMaFbMb
(R) ≡

∑
JM

∑
lm

∑
l′m′

∑
IMI

∑
S,S ′

∑
MS,M ′

S

× [J ][S, S ′]〈FaMaFbMb|IMISMS〉

×
(

S l J

MS m −M

)(
S ′ l′ J

M ′
S m′ −M

)
× 〈S ′M ′

SIMI |F ′
aM

′
aF

′
bM

′
b〉

Ylm(θφ)Y ∗
l′m′(θiφi)

2πil+1

k1/2R
GS ′l′

Sl (JM,R),

(23)

which has the asymptotic limit

G
F ′

aM
′
aF

′
bM

′
b

FaMaFbMb
(R) → exp(ikR)δ

F ′
aM

′
aF

′
bM

′
b

FaMaFbMb

+ f
F ′

aM
′
aF

′
bM

′
b

FaMaFbMb
(θφ; θiφi)

exp(ikR)

R
, (24)

where

f
F ′

aM
′
aF

′
bM

′
b

FaMaFbMb
(θφ; θiφi)

=
∑
lm

∑
l′m′

Ylm(θφ)Y ∗
l′m′ (θiφi)

2πi

k
W

F ′
aM

′
aF

′
bM

′
b

FaMaFbMb
(lm; l′m′),

(25)
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W
F ′

aM
′
aF

′
bM

′
b

FaMaFbMb
(lm; l′m′)

=
∑
JM

∑
IMI

∑
S,S ′

∑
MS,M ′

S

[J ][S, S ′]T S ′l′
Sl 〈FaMaFbMb|IMISMS〉

×
(

S l J

MS m −M

)(
S ′ l′ J

M ′
S m′ −M

)
× 〈S ′M ′

SIMI |F ′
aM

′
aF

′
bM

′
b〉, (26)

and

〈SMSIMI |FaMaFbMb〉
=

∑
FMF

(−1)Fb−Fa+F [F ][Fa, Fb, S, I ]1/2

×
(

Fa Fb F

Ma Mb −M

)(
S F I

MS −MF −MI

)

×

⎧⎪⎨
⎪⎩

1/2 1/2 Fa

1/2 1/2 Fb

S I F

⎫⎪⎬
⎪⎭ . (27)

Thus,

σ (F ′
aM

′
aF

′
bM

′
b → FaMaFbMb)

= 1

4π

∫
d�̂i

∫
d�̂

∣∣f FaMaFbMb

F ′
aM

′
aF

′
bM

′
b

(θφ; θiφi))
∣∣2

= π

k2

∑
lm

∑
l′m′

∣∣WF ′
aM

′
aF

′
bM

′
b

FaMaFbMb
(lm, l′m′)

∣∣2
. (28)

Significant simplification is achieved if we ignore the
anisotropic interaction so that Eq. (19) is true. Then we obtain

σ (FaMaFbMb → F ′
aM

′
aF

′
bM

′
b)

= π

k2

∑
l

(2l + 1)
∣∣WF ′

aM
′
aF

′
bM

′
b

FaMaFbMb
(l)

∣∣2

W
F ′

aM
′
aF

′
bM

′
b

FaMaFbMb
(l) =

∑
IMI

∑
SMS

T (S, l)〈FaMaFbMb|IMISMS〉

×〈SMSIMI |F ′
aM

′
aF

′
bM

′
b〉. (29)

Evaluating the recoupling unitary matrix Eq. (27) we obtain,
for the nonvanishing off diagonal cross sections,

σ (FaMaFbMb → F ′
aM

′
aF

′
bM

′
b)

= π

4k2

∑
l

(2l + 1) sin2(δsl − δtl), (30)

provided that the selection rule Ma + Mb = M ′
a + M ′

b is
met. We also find that the Fa = 0 Fb = 0 ⇔ Fa = 1Ma =
±1 Fb = 1Mb = ∓1 cross sections vanish identically. Expres-
sion (30) was first derived by Dalgarno [6] within the elastic,
or DIS, approximation.

A. Symmetry considerations

Because the electrons and protons in the collision of two
hydrogen atoms are identical particles, we must impose the
correct symmetries in the scattering wave functions, which is
expressed as a sum of a product of multichannel amplitudes

with channel states

� =
∑

γ

Fγ (R)|γ 〉, (31)

where the channel index γ refers either to the |SMSIMI 〉 =
|SMS〉 ⊗ |IMI 〉 or |FaMaFbMb〉 representations. Let Pe rep-
resent the electron permutation operator, then

Pe|SMS〉 = −|SMS〉, (32)

since |SMS〉 is a product of the spatial ungerade and gerade
electronic functions with the triplet and singlet spin states
for S = 1 and S = 0, respectively. Also, the |FaMaFbMb〉
basis vectors are linear combinations of |SMs〉 so they are
also odd eigenstates of the total electron exchange operator.
In the multichannel expansion electronic (spatial and spin),
coordinates enter only through the basis functions. To properly
account for nuclear permutation we need to understand the
effect of the nuclear permutation operator Pn on both the
channel basis and the scattering function. Now, since we are
working in the atomic gauge [22]

Pn|SMS〉 = (−1)S |SMS〉
Pn|IMI 〉 = (−1)I+1|IMI 〉 (33)

Pn|SMSIMI 〉 = (−1)S+I+1|SMSIMI 〉.
Thus,

Pn|FaMaFbMb〉
=

∑
IMI

∑
SMS

∑
FMF

(−1)Fb−Fa+F [F ][Fa, Fb, S, I ]1/2

×
(

Fa Fb F

Ma Mb −M

)(
S F I

MS −MF −MI

)

×
⎧⎨
⎩

1/2 1/2 Fa

1/2 1/2 Fb

S I F

⎫⎬
⎭ (−1)S+I+1|SMSIMI 〉, (34)

where we used Eqs. (33) and (27).
Because⎧⎪⎨
⎪⎩

1/2 1/2 Fa

1/2 1/2 Fb

S I F

⎫⎪⎬
⎪⎭ = (−1)Fa+Fb+I+S+F

⎧⎪⎨
⎪⎩

1/2 1/2 Fb

1/2 1/2 Fa

S I F

⎫⎪⎬
⎪⎭ ,

(35)(
Fa Fb F

Ma Mb −M

)
= (−1)Fa+Fb+F

(
Fb Fa F

Mb Ma −M

)
,

(36)

and the fact that Fa , Fb, S, and I are integers, we obtain

Pn|FaMaFbMb〉 = −|FbMbFaMa〉. (37)

According to Eq. (37) we require FFaMaFbMb
(R) =

FFbMbFaMa
(−R) and proceeding as in Ref. [22], we generalize

Eq. (23) to obtain

σ (FaMaFbMb → F ′
aM

′
aF

′
bM

′
b)

= 1

4π

∫
d�̂i

∫
d�̂

1

2

∣∣f FaMaFbMb

F ′
aM

′
aF

′
bM

′
b

(θφ; θiφi)

+ f
FbMbFbMb

F ′
aM

′
aF

′
bM

′
b

(π − θ, φ + π ; θiφi)
∣∣2
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= π

2k2

∑
lm

∑
l′m′

∣∣WF ′
aM

′
aF

′
bM

′
b

FaMaFbMb
(lm, l′m′)

+ (−1)lW
F ′

aM
′
aF

′
bM

′
b

FbMbFaMa
(lm, l′m′)

∣∣2
. (38)

For the special case when the anisotropic interaction is
ignored, expression (38) reduces to

σ (FaMaFbMb → F ′
aM

′
aF

′
bM

′
b)

= σ± = π

2k2

∑
l±

(2l + 1) sin2(δsl − δtl), (39)

where l± refers to even and odd values for l, respect-
ively. For |Fa + Fb − F ′

a − F ′
b| = 0, 2, σ (FaMaFbMb →

F ′
aM

′
aF

′
bM

′
b) = σ+ and for |Fa + Fb − F ′

a − F ′
b| = 1,

σ (FaMaFbMb → F ′
aM

′
aF

′
bM

′
b) = σ−. The cross sections

for the Fa = 0 Fb = 0 ⇔ Fa = 1Ma = ±1 Fb = 1Mb = ∓1
transitions vanish identically.

IV. RESULTS AND DISCUSSION

In Fig. 1 we present the �M = ±1,±2 transition cross
sections as functions of collision energies 1 mK < E < 290 K,
expressed in units of Kelvin. The cross sections are itemized,

FIG. 1. (Color online) (a) Solid lines represent results for the
multichannel calculation of hyperfine level quenching cross sections
for the H-H system corresponding to �M = ±1 transitions. The
dashed lines represent results obtained using the Born approximation.
(b) Solid lines represent results for the multichannel calculation
of hyperfine level quenching cross sections for the H-H system
corresponding to �M = ±2 transitions. The dashed lines represent
results obtained using the Born approximation.

in addition to the change in azimuthal spin angular momentum
M , by the change in the diatom total hyperfine quantum
number. We define �F ≡ Fa + Fb − F ′

a − F ′
b, where Fa is the

initial hyperfine quantum number of atom a and F ′
a its final

hyperfine quantum number. In that figure the lines labeled
�F = 2 correspond to transitions where Fa = Fb = 1 and
F ′

a = F ′
b = 0 and �F = 1 to transitions where Fa = Fb = 1

and one of the other atoms is in the ground hyperfine
level. �M �= 0 quenching cross sections, corresponding to
transitions in which only one of the atoms is initially in its
F = 1 state are null.

The dashed lines in the figure correspond to the results
of calculations performed within the Born approximation.
We find that the latter provide an excellent description at
lower collision energies ≈< 1 K. The success of the Born
approximation is a consequence of two properties of this
system. The magnetic interactions are very small, proportional
to α2, and due to its long-range nature, transitions are driven by
it in the asymptotic region [18]. At higher collision energies
we find that the results of the multichannel cross sections
exhibit a monotonic decrease, whereas the Born approximation
predicts cross sections that tend to a constant value [see
Eq. (D6)]. This is a consequence of the 1/R3 behavior of
the magnetic interactions and leads to an overestimation by
the Born approximation of contributions from the region
R → 0 [23]. The inner repulsive wall of the b 3�u potential
restricts close atom encounters and, as a consequence, leads to
monotonically decreasing cross sections at higher energies as
shown in Fig. 1. For �M = ±1, there exist two components for
the �F = 1 cross sections that are due to exchange symmetry
requirements for the H-H system.

In Fig. 2 we present the results for the H-T collision system.
Because this is a heteronuclear system exchange effects are
not present here. The energy defect for the hyperfine transition
energy is about 1% larger for tritium than for hydrogen and
therefore the cross sections shown in Fig. 2 have several
components at colder temperatures, however, those differences
are too small to be resolved in that figure.

In Fig. 3 we present the results for the T-T collision
system. There are qualitative similarities with the cross
sections of the H-H and H-T systems. However, at lower
energies the Born approximation fails to accurately predict
the spin-flipping cross sections. According to Eq. (D6), the
T-T cross sections should be a factor (µTT/µHH)2 ≈ 9 larger
than the corresponding H-H cross sections. Figure 3 illustrates
that the cross sections are an order of magnitude larger than
implied by this scaling. To understand this behavior we need to
discuss the molecular parameters assumed in our calculations.

In our calculations we use the BO energies for the
b 3�+

u , X 1�+
g states of the H-H system, described in Ref. [24]

and references therein. The ab-initio data are modified to
include mass-dependent adiabatic corrections, relativistic cor-
rections, and are fitted smoothly to the long-range dispersion
energies [24]. In the present study we added more ab-initio po-
tential data points, reported in Ref. [25], in our fitting program.
With these potentials we find, for the H-H system, a scat-
tering length as = 0.45a0 (we exclusively used the nuclear-
reduced masses in the present calculations) for the sing-
let potential and at = 1.31a0 for the triplet potential. The
latter value is a significant change from a previous calculated
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FIG. 2. (Color online) (a) Solid lines represent results for the
multichannel calculation of hyperfine level quenching cross sections
for the H-T system corresponding to �M = ±1 transitions. The
dashed lines represent results obtained using the Born approximation.
(b) Solid lines represent results for the multichannel calculation
of hyperfine level quenching cross sections for the H-T system
corresponding to �M = ±2 transitions. The dashed lines represent
results obtained using the Born approximation.

value at = 1.21a0 [24]. For the H-T and T-T systems we
mass scale the adiabatic corrections, but do not include mass
dependent nonadiabatic corrections [26] for the heteronuclear
H-T system. The latter were calculated for the H-D system
and were shown to give a small correction to the scattering
length of the singlet potential [26] in that system. For the
tritium dimer we find as = 33.4a0 and at = −87.9a0. The
large negative value for the triplet scattering length implies
the existence of a nascent bound level for the b 3�+

u state of
the tritium dimer [27]. Because perturbative methods fail to
accurately account for resonance or threshold phenomena, the
presence of this virtual state contributes to the breakdown of
the Born approximation at lower collision energies.

Evidence for a threshold resonance effect is also evident by
inspection of the �M = 0, or spin exchange, cross sections
shown in Fig. 4. In the top panel of that figure we present
data for the �F = 2 transitions. The solid lines represent data
obtained by the multichannel calculations, whereas the dashed
lines represent data obtained in the elastic approximation
and for homonuclear systems is given by [10] [see also
Eq. (39)]

σ+ = π

2k2

∑
l even

(2l + 1) sin2(δsl − δtl). (40)

FIG. 3. (Color online) (a) Solid lines represent results for the
multichannel calculation of hyperfine level quenching cross sections
for the T-T system corresponding to �M = ±1 transitions. The
dashed lines represent results obtained using the Born approximation.
(b) Solid lines represent results for the multichannel calculation
of hyperfine level quenching cross sections for the T-T system
corresponding to �M = ±2 transitions. The dashed lines represent
results obtained using the Born approximation.

In the limit k → 0, expression (40) predicts that the cross
sections tend to a constant

σ+ → π

2
|at − as |2, (41)

where at and as are, respectively, the triplet and singlet
scattering lengths. This behavior is exhibited in Fig. 4 by
the H-H and H-T cross sections obtained with the elastic
approximation. For the T-T system, this limiting behavior
becomes apparent at energies ≈1 mK. Using the values for the
T-T scattering lengths given earlier, the elastic approximation
predicts σ+ ≈ 2.3 × 104a2

0 close to the value obtained in the
multichannel calculation at 1 mK. The large cross section is
a consequence of the large, negative, scattering length due to
the nascent bound level. Of course, the elastic approximation
does not predict the correct Wigner threshold behavior in
the ultracold limit. For inelastic transitions the latter requires
that cross sections increase in proportion to 1/k as k → 0.
The correct Wigner threshold behavior is evident in the
multichannel cross sections show in Fig. 4(a). In panel (b)
we illustrate �F = 1 spin-exchange cross sections and in
the elastic approximation they are given, for H-H and T-T,
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FIG. 4. (Color online) (a) Solid lines represent results for the
multichannel calculation of �F = 2 spin-exchange cross sections,
the dashed lines represent results obtained using Eq. (40). (b) Solid
lines represent results for the multichannel calculation of �F = 1
spin-exchange cross sections, the dashed lines represent results
obtained using Eq. (41).

by [10]

σ− = π

2k2

∑
l odd

(2l + 1) sin2(δsl − δtl). (42)

The restriction that only odd partial waves contribute to σ−
leads to the monotonic decrease in the cross sections as k → 0.
Because of close coupling effects and the dipolar interaction,
this behavior is not necessarily exhibited by the cross section
data obtained within the multichannel theory. For the H-T
system, the elastic approximation cross sections are given by
Eq. (30) and as k → 0 the �F = 2 and 1 cross sections have
the same limit in this approximation. In Figs. 4(a) and (b)
the two H-T multichannel cross sections both exhibit Wigner
threshold behavior.

In summary, we introduce a multichannel molecular scat-
tering theory in which electrostatic and magnetic interactions
are treated on equal footing in the BO separation of the
electronic and scattering coordinates. The latter interactions
split the b 3�u energies and it is shown here how that
leads to spin-flipping (�M �= 0) transitions in collisions
of hydrogen atoms. We apply the theory to calculate all
spin-changing processes in collisions of H with H, H with
T, and T with T, and compared the results of the mul-

tichannel calculations with those predicted by the Born
approximation and the elastic approximation. We show how
the presence of a virtual, nascent, bound level supported
by the b 3�u BO molecular potential leads to enhanced
spin-exchange and spin-flip cross sections for the tritium
dimer.
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APPENDIX A: METHOD A

A general expression for the effective anisotropic mul-
tichannel potential for two atoms with electronic angular
momenta ja and jb is given in Ref. [22]. Because we are
here considering only S-state atoms, we can generalize that
theory to include hyperfine structure. Proceedings along the
lines leading to Eq. (58) in Ref. [22], we obtain the following
expression for the anisotropic potential,

V (Rθφ) =
∑
IMI

∑
SMS

∑
�

[F,F ′, Fa, F
′
a, Fb, F

′
b]1/2[S, I ]

×DF ′
M ′

F �(φ, θ,−φ)DF
�MF

(φ,−θ,−φ)

×
(

I S F

MI MS −�

)(
I S F ′

MI MS −�

)

×

⎧⎪⎨
⎪⎩

1/2 Ia Fa

1/2 Ib Fb

S I F

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

1/2 Ia F ′
a

1/2 Ib F ′
b

S I F ′

⎫⎪⎬
⎪⎭ εS MS

(R),

(A1)

where F is the total atom-atom spin angular momentum, Fa

and Fb are the hyperfine quantum numbers for atoms a and
b respectively, and Ia and Ib are the quantum numbers for
nuclear spin.

Dj

�,�′(φ, θ,−φ)

≡ 〈j�| exp(−iφ j z) exp(−iθ jy) exp(iφ j z)|j�′〉, (A2)

is a Wigner rotation matrix and εS�(R) are the BO eigenvalues
for Hamiltonian Had + Hdip. The anisotropy of Hdip leads
to a dependence of the BO eigenvalues on the azimuthal
quantum number �. We apply a partial wave expansion for
the multichannel amplitudes that are described in detail in
Ref. [22]. With channel indices now specified by quantum
numbers F , l, Fa , and Fb, we obtain the multichannel radial
equation Eq. (10), for a given partial wave J M , with the
potential matrix given by

V
FlFaFb

F ′l′Fa′F ′
b
(R)

=
∑
IMI

∑
SMS

∑
�

[F,F ′, Fa, F
′
a, Fb, F

′
b, l, l

′]1/2[S, I ]

×
(

I S F

MI MS −�

)(
I S F ′

MI MS −�

)
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×
(

F l J

� 0 −�

)(
F ′ l′ J

� 0 −�

)

×

⎧⎪⎨
⎪⎩

1/2 Ia Fa

1/2 Ib Fb

S I F

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

1/2 Ia F ′
a

1/2 Ib F ′
b

S I F ′

⎫⎪⎬
⎪⎭ εS MS

(R). (A3)

Suppose Ia = 0 and Ib = 0 (i.e., F → S) then⎧⎪⎨
⎪⎩

1/2 0 Fa

1/2 0 Fb

S 0 F

⎫⎪⎬
⎪⎭ → δFa,1/2δFb,1/2δS,F

[Fa, Fb, F ]1/2
, (A4)

I = 0, (
0 S F

0 MS −�

)
= (−1)S−� δ�,MS

δS,F

[S]1/2
, (A5)

and expression (A3) reduces to

V (R) = δS,S ′
∑
�

[l, l′]1/2

(
S l J

� 0 −�

)

×
(

S ′ l′ J

� 0 −�

)
εS �(R). (A6)

Equation (A6) is consistent with the expression obtained
in the direct product |SMSIMI 〉 representation. Using the
quantum number entries in Table I and the BO eigenvalues
in Eq. (6), we obtain the radial potential matrix given by
Eq. (11).

APPENDIX B: METHOD B

In this section we provide an alternative derivation of
Eqs. (4) and (5). Recognizing that the H-H collision system
comprises a two-qubit logic gate, we formulate this description
in the language of quantum information theory [28].

We define the so-called computational basis [28] as the
direct product |ma〉|mb〉, where ma and mb are the azimuthal
components of electronic spin for atoms a and b, respectively,
defined with respect to the inertial laboratory frame z axis.
Following convention [28] the basis kets are labeled as two-
qubit states

|1〉 = ∣∣−1
2

−1
2

〉 ≡ |00〉,
|2〉 = ∣∣−1

2
1
2

〉 ≡ |01〉,
(B1)

|3〉 = ∣∣ 1
2

−1
2

〉 ≡ |10〉,
|4〉 = ∣∣ 1

2
1
2

〉 ≡ |11〉.
In this basis we find that

V ≡ Had + Hdip = UZ†HBOZU †, (B2)

where U is a two-qubit gate (unitary transformation) defined
as the direct product

Ua ⊗ Ub =
(

cos
(

θ
2

) −eiφ sin
(

θ
2

)
e−iφ sin

(
θ
2

)
cos

(
θ
2

)
)

a

⊗
(

cos
(

θ
2

) −eiφ sin
(

θ
2

)
e−iφ sin

(
θ
2

)
cos

(
θ
2

)
)

b

, (B3)

Z is the two-qubit gate

Z =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1

0 −1√
2

−1√
2

0

1 0 0 0

0 − 1√
2

1√
2

0

⎞
⎟⎟⎟⎟⎟⎠ , (B4)

and

HBO =

⎛
⎜⎜⎜⎜⎝

3�(R) − α2

2R3 0 0 0

0 3�(R) + α2

R3 0 0

0 0 3�(R) − α2

2R3 0

0 0 0 1�(R)

⎞
⎟⎟⎟⎟⎠ . (B5)

We consider the new Hamiltonian

V ′ ≡ ZV Z† =

⎛
⎜⎜⎜⎜⎜⎝

3�(R) − α2[3 cos(2θ)+1]
8R3

−3e−iφα2 sin(2θ)
4
√

2R3 − 3e−2iφα2 sin2(θ)
4R3 0

−3eiφα2 sin(2θ)
4
√

2R3
3�(R) + [3 cos(2θ)+1]α2

4R3
3e−iφα2 sin(2θ)

4
√

2R3 0
−3e2iφα2 sin2(θ)

4R3
3eiφα2 sin(2θ)

4
√

2R3
3�(R) − α2[3 cos(2θ)+1]

8R3 0

0 0 0 1�(R)

⎞
⎟⎟⎟⎟⎟⎠ . (B6)

V ′, expressed in the computational basis, has the same form
as V in Eq. (8) expressed in the |SMS〉 representation.
The latter representation includes the Bell (entangled) states
|S = 1MS = 0〉 and |S = 0MS = 0〉. The two representations

are related via the Z gate defined earlier. We note that HBO

in Eq. (B5) is the Hamiltonian Had + Hdip for the special
case where the nuclear orientation is along the z axis of
the laboratory frame (θ = 0, φ = 0) expressed in the |SM〉
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basis. According to Eq. (B2) V is related to HBO via a unitary
transformation and so we can simply read off the eigenvalues
(BO eigenvalues) of V from Eq. (B5)

ε(S = 1,MS) = 3�(R) − α2

2R3
|MS | = 1

ε(S = 1,MS) = 3�(R) + α2

R3
MS = 0 (B7)

ε(S = 0,MS) = 1�(R).

APPENDIX C: METHOD C

In this section we utilize the Racah-algebra description
used in previous studies [29,30] of collisions involving
anisotropic, angular momentum-changing transitions. For the
purpose of this discussion, we ignore the isotropic molecular
interaction Had. Typically, the scattering function in the DIS
approximation can be expressed in the form

F (R) =
∑
SMS

∑
lm

F lm
SMS

(R)

R
Ylm(θφ)|SMS〉

≡
∑
SMS

∑
lm

F lm
SMS

(R)

R
|SMS lm〉, (C1)

here |SMS〉 is the channel basis vector for the pair of atoms
described by the total spin S quantum number and its azimuthal
projection MS . Ylm(θφ) are the spherical harmonics and
F lm

SMS
(R) is the multichannel radial partial wave function for

angular momenta l, m. When constructing the radial coupling
equations this description leads to a coupling matrix given by

W = 〈SMS lm|Hdip|S ′M ′
S l′m′〉. (C2)

It is convenient to express Hdip as an irreducible tensor operator
[29,30]

Hdip = v(R)
∑

q

(−1)qY (2)
q S

(2)
−q = v(R) Y (2) · S(2),

(C3)

v(R) = −
√

24π

5

α2

R3
.

Here Y (2) is the rank-2 tensor in configuration space θφ and
S(2) is a rank-2 tensor in the product space of electronic spin. In
the form given above, Hdip is therefore a rank-0 operator in the
space that is spanned by the product of spin and configuration
basis vectors. Therefore,

〈SMS l m|Hdip|S ′M ′
S l′m′〉

= v(R)
∑

q

〈SMS |S(2)
−q |S ′MS ′ 〉〈lm|Y (2)

q |l′m′〉

= v(R)
∑

q

(−1)S+l+q−MS−m

(
S 2 S ′

−MS −q M ′
S

)

×
(

l 2 l′
−m q m′

)
〈S||S(2)||S ′〉〈l||Y (2)||l′〉, (C4)

and

〈l||Y (2)||l′〉 = (−1)l[l, l′, 2]

√
3

4π

(
l 2 l′
0 0 0

)
(C5)

〈S||S(2)||S ′〉 = δS,S ′δS,1

√
5

4
,

so

〈SMS l m|Hdip|S ′M ′
S l′m′〉

= δS,S ′δS,1
3 α2

2R3

∑
q

(−1)q−MS−m

(
1 2 1

−MS −q M ′
S

)

×
(

l 2 l′
−m q m′

)(
l 2 l′
0 0 0

)
. (C6)

The 3j symbol selection rules require l = l′; l = l′ ± 2 and so
use of this representation leads to an infinite coupled set of
partial waves [29]. We can re-express the scattering amplitude

F (R) =
∑
Sl

∑
JM

GJM
Sl (R)

R
|JMSl〉

|JMSl〉 =
∑
m

∑
MS

Ylm(θφ)
√

2J + 1

(
S l J

MS m −M

)
,

(C7)

and the matrix coupling elements in the resulting coupled
radial equations are given by 〈J ′M ′l′S ′|Hdip|JMSl〉. Since
Hdip is a rank-0 tensor we have

〈J ′M ′l′S ′|Hdip|JMSl〉
= δJ,J ′δM,M ′ (−1)J−M

(
J 0 J

M 0 −M

)
× v(R)〈J ′M ′l′S ′||Y (2) · S(2)||JMSl〉. (C8)

Using standard Racah-algebra identities [31],

〈J ′M ′l′S ′||Y (2) · S(2)||JMSl〉
= (−1)l+S ′+J [J ]1/2

{
l S J

S ′ l′ 2

}
〈S||S2||S ′〉〈l||Y 2||l′〉.

(C9)

Combining Eq. (C9) with Eq. (C8) we obtain

〈J ′M ′l′S ′|Hdip|JMSl〉
= δS,S ′δS,1δJ,J ′δM,M ′

α2

R3
(−1)l+l′+J

×
√

15

2
[l, l′]1/2

{
l S J

S ′ l′ 2

}(
l 2 l′

0 0 0

)
. (C10)

Using the channel quantum numbers given in Table I we find
that Eq. (C10) reproduces the entries proportional to α2 in
Eq. (11).

APPENDIX D: BORN APPROXIMATION

In the Born approximation, the amplitude for a transition
from internal state |FaMaFbMb〉 and relative atom motion
wave number ki into internal state |F ′

aM
′
aF

′
bM

′
b〉 and wave

number kf is given by the expression

f
F ′

aM
′
aF

′
bM

′
b

FaMaFbMb
(ki ; kf )

= − 1

4π

2µ

h̄2

∫
d3 R exp[i R(ki − kf )]

{
−α2

R3

√
24π

5

×
∑
m

(−1)mY2m(θφ)〈FaMaFbMb|S(2)
m |F ′

aM
′
aF

′
bM

′
b〉
}

,

(D1)
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where we used Eq. (C3). Expressing the momentum transfer
exponential as a partial wave expansion and performing the
integrals we obtain

f
F ′

aM
′
aF

′
bM

′
b

FaMaFbMb
(ki ; kf ) = (−1)q+1 2µα2

h̄2

√
24π

45
Y ∗

2q(û)

×〈FaMaFbMb|S(2)
q |F ′

aM
′
aF

′
bM

′
b〉,

q ≡ Ma + Mb − M ′
a − M ′

b, (D2)

û ≡ ki − kf

|ki − kf | .

For heteronuclear systems the total spin-changing cross sec-
tions are

σ (FaMaFbMb → F ′
aM

′
aF

′
bM

′
b)

= kf

ki

1

4π

∫
d�̂i

∫
d�̂f

∣∣f F ′
aM

′
aF

′
bM

′
b

FaMaFbMb
(ki ; kf )

∣∣2

= kf

ki

(
2α2µ

h̄2

)2
8π

15

∣∣〈FaMaFbMb|S(2)
q |F ′

aM
′
aF

′
bM

′
b〉
∣∣2

,

(D3)

where we used
1

4π

∫
d�̂f

∫
d�̂i Y ∗

2q(û)Y2q(û) = 1. (D4)

The homonuclear H-H and T-T pairs must satisfy bosonic
exchange symmetry requirements and therefore

σ (FaMaFbMb → F ′
aM

′
aF

′
bM

′
b) = kf

ki

1

2

1

4π∫
d�̂i

∫
d�̂f

∣∣f F ′
aM

′
aF

′
bM

′
b

FaMaFbMb
(ki ; kf ) + f

F ′
bM

′
bF

′
aM

′
a

FaMaFbMb
(ki ; −kf )

∣∣2
,

(D5)

where we included the additional factor 1/2 to avoid double
counting during integration over all final angles of the
differential cross section. Evaluating expression (D5) we
obtain

σ (FaMaFbMb → F ′
aM

′
aF

′
bM

′
b)

= kf

ki

(
2α2µ

h̄2

)2
4π

15
[|D|2 + |E |2 + 2h(ξ )DE], (D6)

where

ξ ≡ kf

ki

,

and

D ≡ 〈FaMaFbMb|S(2)
Q |F ′

aM
′
aF

′
bM

′
b〉, (D7)

E ≡ 〈FaMaFbMb|S(2)
Q |F ′

bM
′
bF

′
aM

′
a〉.

In deriving expression (D6) we used Eq. (D4) and

1

4π

∫
d�̂f

∫
d�̂i Y ∗

2q(û)Y2q(v̂) = h(ξ )/4

v̂ ≡ ki + kf

|ki + kf |

h(ξ ) =
3(ξ 2 − 1)2 log

[ (ξ+1)2

(ξ−1)2

]
8ξ (ξ 2 + 1)

− 1

2
, (D8)

for ξ > 1.
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