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Finite nuclear mass corrections to electric and magnetic interactions in diatomic molecules
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In order to interpret precise measurements of molecular properties, finite nuclear mass corrections to the Born-
Oppenheimer approximation have to be accounted for. It is demonstrated that they can be obtained systematically
using nonadiabatic perturbation theory. The formulas for the leading corrections to the relativistic contribution
to energy, the transition electric dipole moment, the electric polarizability, and the magnetic shielding constant
are derived. They can be conveniently calculated for a fixed position of nuclei, as in the Born-Oppenheimer
approximation, and then averaged over the rovibrational function.
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I. INTRODUCTION

In the calculation of some molecular properties, the
magnetic shielding, for example, one usually assumes the
nuclei have fixed positions, the so-called Born-Oppenheimer
(BO) approximation, and at the final stage averages over the
appropriate vibration-rotational wave function. The principal
question we address in this work is what are the finite
nuclear mass corrections to various physical properties of
the molecule, such as relativistic energies, polarizabilities,
or the previously mentioned magnetic shielding evaluated
in the BO approximation. Direct nonadiabatic calculations
are possible only for small molecules and only for simple
properties such as the electric dipole polarizability [1,2].
This approach, however, is not universal and has not yet
been applied to more complex molecules such as H2O or
to the evaluation of the nuclear spin-rotation and shielding
constants. In this work, we demonstrate the applicability of
nonadiabatic perturbation theory (NAPT) [3] to obtain in a
systematic way the formulas for various physical properties
of a diatomic molecule, with possible extensions to larger
molecules. We rederive the known result for the electric
static polarizability, the rotational magnetic moment, and the
spin-rotation constant, and we obtain the leading finite nuclear
mass corrections (which we will call in this work nonadiabatic
corrections) to relativistic rovibrational energies, the transition
electric dipole moment, the electric static polarizability, and
the magnetic shielding constant. These finite nuclear mass
corrections are important for comparison between accu-
rate measurement and precise calculations, for example in
the dissociation energy of H2 [4,5], the transition electric-
dipole moment of LiH [6], or in the shielding constant of H2

and isotopomers [7].
We demonstrate in this work that the leading finite nuclear

mass corrections can be conveniently calculated for a fixed
position of nuclei, as in the BO approximation, and averaged
out over the rovibrational wave function. We do not consider
here the second-order corrections in the nuclear Hamiltonian
Hn but for consistency regard them also as nonadiabatic
corrections, although of higher order.

In Sec. II, we define the reference frame and split the
nonrelativistic Hamiltonian into electronic and nuclear parts.
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In Sec. III, we briefly present NAPT on the basis of Ref. [3],
include nonadiabatic corrections to the BO wave function, and
derive general formulas for first- and the second-order matrix
elements. In Sec. IV, as a first example, we derive formulas
for relativistic recoil corrections to rovibrational energies in
diatomic molecules. Further examples are finite nuclear mass
corrections to electric properties of molecules, derived in
Sec. V, and to magnetic properties of molecules, derived in
Sec. VI. We briefly summarize our results in Sec. VII.

II. NONRELATIVISTIC HAMILTONIAN

We consider a neutral diatomic molecule with the
Hamiltonian

H =
∑

a

�p 2
a

2 m
+ �p 2

A

2 mA

+ �p 2
B

2 mB

+ V, (1)

where the summation index a goes over all electrons and
A and B refer to nuclei. In order to derive formulas for
nonadiabatic effects, one must fix the reference frame. We start
with the laboratory frame { �RA, �RB, �ra} and change variables
to { �R, �RG, �xa} according to

�RA = �RG + εB
�R, (2)

�RB = �RG − εA
�R, (3)

�ra = �RG + �xa, (4)

with the relative position of nuclei �R = �RA − �RB , and the
new frame origin, arbitrarily chosen on the molecular sym-
metry axis, �RG = εA

�RA + εB
�RB , where εA + εB = 1. The

conjugate momenta are related by

�pA = εA
�PG + �P − εA

∑
a

�qa, (5)

�pB = εB
�PG − �P − εB

∑
a

�qa, (6)

�pa = �qa, (7)

where �P = −i �∇R and �qa = −i �∇xa
. The nonrelativistic wave

function with vanishing total momentum does not depend
on �RG, so φ = φ(�xa, �R), and since �PG commutes with H

when expressed in the new variables, it can be set to 0. The
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Hamiltonian H in the new variables becomes

H =
∑

a

�q 2
a

2 m
+ V +

(
1

2 mA

+ 1

2 mB

)
�P 2

+
(

ε2
A

2 mA

+ ε2
B

2 mB

) (∑
a

�qa

)2

−
(

εA

mA

− εB

mB

)
�P ·

∑
a

�qa. (8)

The last term in the preceding equation is transformed by the
unitary transformation

H̃ = e−i ϕ H ei ϕ = H − i[ϕ, H ] + · · · , (9)

where

ϕ = m

(
εA

mA

− εB

mB

) ∑
a

�xa · �P (10)

and

e−i ϕ qi
a ei ϕ = qi

a + m

(
εA

mA

− εB

mB

)
P i, (11)

with higher order O(m/M)2 terms in the electron nuclear mass
ratio being neglected, with M equal to mA or mB . As a result
of this transformation, the Hamiltonian takes the form

H̃ = Hel + Hn, (12)

Hel =
∑

a

�q 2
a

2 m
+ V, (13)

Hn =
(

1

2 mA

+ 1

2 mB

)
�P 2 +

(
ε2
A

2 mA

+ ε2
B

2 mB

) (∑
a

�qa

)2

− m

(
εA

mA

− εB

mB

) ∑
a

�xa · �∇R(V ) (14)

= H ′
n + H ′′

n , (15)

where H ′
n includes the first term and H ′′

n the two remaining
terms. This form of the nuclear Hamiltonian is convenient for
the calculation of nonadiabatic effects. Moreover the freedom
in choosing εA,B will be used in order to simplify formulas for
nonadiabatic corrections to electric and magnetic properties.
Later, we will need the angular momentum operator �J , which
for states with vanishing total momentum is defined by

�J =
∑

a

(�ra − �RCM ) × �pa + ( �RA − �RCM ) × �pA

+ ( �RB − �RCM ) × �pB, (16)

where �RCM is the molecular center of mass. In the new
variables, the operator �J

�J =
∑

a

�xa × �qa + �R × �P ≡ �Jel + �Jn (17)

is split into electronic �Jel and nuclear �Jn parts, and this �J is
not modified by the unitary transformation of Eq. (9).

III. NONADIABATIC PERTURBATION THEORY

The total nonrelativistic wave function φ of an arbitrary
molecule is the solution of the stationary Schrödinger equation

[H − E] |φ〉 = 0, (18)

with the Hamiltonian H being a sum of the electronic Hel

and nuclear Hn parts, Eq. (12). In the adiabatic approximation
φ = φa, where

φa(�x, �R) = φel(�x) χ ( �R) (19)

is represented as a product of the electronic wave function
φel and the nuclear wave function χ . We note that φel

depends implicitly on the nuclear relative coordinate �R. The
electronic wave function obeys the clamped nuclei electronic
Schrödinger equation

[Hel − Eel(R)] |φel〉 = 0, (20)

while the nuclear wave function is a solution to the Schrödinger
equation in the effective potential generated by electrons

[Hn + Ea(R) + Eel(R) − Ea] |χ〉 = 0, (21)

where

Ea(R) = 〈φel|Hn|φel〉el. (22)

In NAPT, the total wave function

φ = φa + δφna = φel χ + δφna (23)

is the sum of the adiabatic solution and a nonadiabatic
correction. The nonadiabatic correction δφna is decomposed
into two parts,

δφna = φel δχ + δ′φna, (24)

obeying the following orthogonality conditions:

〈δ′φna|φel〉el = 0, (25)

〈δχ |χ〉 = 0, (26)

which imply the normalization condition 〈φa|φ〉 = 1.
In the first order in Hn of NAPT, one has

|δ′φna〉(1) = 1

(Eel − Hel)′
Hn |φel χ〉, (27)

and in the second order

|δ′φna〉(2) = 1

(Eel − Hel)′
(Hn + Eel − Ea)

× 1

(Eel − Hel)′
Hn |φel χ〉, (28)

where 1/(Eel − Hel)′ denotes the resolvent with the reference
state φel subtracted out. The total nuclear function χ + δχ

satisfies the effective Schrödinger equation which includes
adiabatic and nonadiabatic corrections [3]. Thus, the nonadi-
abatic wave function can be recovered order by order in the
perturbative approach. Equations (27), (28) involve Hn and,
thus, derivatives with respect to �R. These derivatives can be
calculated with the help of the following formulas:

�∇R|φel〉 = 1

(Eel − Hel)′
�∇R(V )|φel〉, (29)
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�∇R

[
1

(Eel − Hel)′

]
= 1

(Eel − Hel)′
�∇R(V − Eel)

1

(Eel − Hel)′

− 1

(Eel − Hel)′2
�∇R(V )|φel〉〈φel|

− |φel〉〈φel| �∇R(V )
1

(Eel − Hel)′2
. (30)

It has been shown recently in [3] that the application of
these formulas allows for a significant improvement in the
numerical accuracy of adiabatic and nonadiabatic corrections
in the H2 molecule, and this probably will hold for any diatomic
molecule. Alternatively, one may use the formula

�∇R = �n (�n · �∇R) − �n × (�n × �∇R), (31)

where �n = �R/R, with only the first radial part replaced in
terms of the derivative ∂(V − Eel)/∂R, namely

�∇R|φel〉 = �n 1

(Eel − Hel)′
∂V

∂R
|φel〉 − i

R
�n × �Jn|φel〉. (32)

For example, the adiabatic correction to energy becomes

Ea(R) = 〈φel|Hn|φel〉

= 〈φel|H ′′
n +

�J 2
n

2 mn R2
|φel〉

+ 〈φel|∂V

∂R

1

(Eel − Hel)′2
∂V

∂R
|φel〉, (33)

where mn is the nuclear reduced mass and for � electronic state
�Jn|φel〉 can be replaced by − �Jel|φel〉. In this way one avoids

summation over intermediate states with the � symmetry.

A. First-order matrix elements

We will use here NAPT to derive the finite nuclear mass
corrections to various matrix elements in a general form.

Later we will analyze specific examples. Consider at first the
Hermitian electronic operator Q (no derivatives with respect
to nuclear variables, for example, the relativistic correction to
kinetic energy of electrons) and its matrix element between
(different) rovibrational states. In the BO approximation, this
matrix element can be represented in terms of the electronic
matrix element nested in the nuclear matrix element, namely

〈Q〉(0) ≡ 〈φel χf|Q|φel χi〉 = 〈χf|〈Q〉(0)
el |χi〉, (34)

〈Q〉(0)
el ≡ 〈Q〉el = 〈φel|Q|φel〉. (35)

We will show that the same holds for nonadiabatic corrections
to this matrix element, which are

〈Q〉(1) = 〈φel χf|Hn
1

(Eel − Hel)′
Q|φel χi〉

+ 〈φel χf|Q 1

(Eel − Hel)′
Hn|φel χi〉. (36)

Although in this work we consider only the first-order
O(m/M) corrections, let us present here the second-order
corrections to the diagonal matrix element to demonstrate the
application of NAPT

〈Q〉(2) =〈φel χ |Hn
1

(Eel − Hel)′
(Hn + Eel − Ea)

1

(Eel − Hel)′
×Q|φel χ〉 + 〈φel χ |Q 1

(Eel − Hel)′
(Hn + Eel − Ea)

× 1

(Eel − Hel)′
Hn|φel χ〉 + 〈φel χ |Hn

1

(Eel − Hel)′

× (Q − 〈Q〉(0))
1

(Eel − Hel)′
Hn|φel χ〉. (37)

Additional corrections due to δχ in Eq. (24) can easily be
included in the 〈Q〉(0) and 〈Q〉(1) by replacing χ by χ + δχ

and will not be considered any further. Let us return now to
the leading order correction to the matrix element in Eq. (36):

〈Q〉(1) =
∫

d3R

{
(χ∗

f χi)

[
〈Hn φel| 1

(Eel − Hel)′
Q |φel〉 + 〈φel|Q 1

(Eel − Hel)′
|Hn φel〉

]

−
�∇(χ∗

f χi)

2 mn

[
〈 �∇Rφel| 1

(Eel − Hel)′
Q |φel〉 + 〈φel|Q 1

(Eel − Hel)′
| �∇Rφel〉

]

− (χi �∇χ∗
f − χ∗

f
�∇χi)

2 mn

[
〈 �∇Rφel| 1

(Eel − Hel)′
Q |φel〉 − 〈φel|Q 1

(Eel − Hel)′
| �∇Rφel〉

]}
(38)

and consider two special cases. If Q is a real operator, then the
third term vanishes and with the help of integration by parts,
we obtain

〈Q〉(1) = 〈χf|〈Q〉(1)
el |χi〉, (39)

〈Q〉(1)
el = 〈φel|

↔
Hn

1

(Eel − Hel)′
Q |φel〉

+ 〈φel| Q 1

(Eel − Hel)′
↔
Hn |φel〉, (40)

where for arbitrary ψel and ψ ′
el:

〈ψ ′
el|

↔
Hn|ψel〉 = 〈 �∇R ψ ′

el| �∇R ψel〉/(2 mn) + 〈ψ ′
el|H ′′

n |ψel〉. (41)

This case of the real Hermitian Q finds applications in studying
relativistic corrections to rovibrational energies and to all
electric properties. If Q = �Q is an imaginary vector operator
composed of electronic operators and �R, such that �R · �Q = 0,
then the first two terms in Eq. (38) vanish and

〈Qi〉(1) = 1

2 mn

∫
d3R

R2

[(
J i

n χf
)∗

χi + χ∗
f

(
J i

n χi
)]

×
[
〈φel|Qj 1

(Eel − Hel)′
|J j

n φel〉

+ 〈
J j

n φel

∣∣ 1

(Eel − Hel)′
Qj |φel〉

]
, (42)
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where �Jn is defined in Eq. (17). Let us assume that φel is a �

state, so that �Jn |φel〉 = − �Jel |φel〉 and

〈Qi〉(1) = −〈χf| J i
n

mn R2
〈φel|J j

el

1

(Eel − Hel)′
Qj |φel〉 |χi〉.

(43)

This case of imaginary Hermitian Q finds application in
studying the magnetic properties of molecules.

B. Second-order matrix elements

Consider the second-order matrix element with two ar-
bitrary electronic operators Q1 and Q2. Let us assume that
〈φel|Qi |φel〉 = 0 and introduce the notation

〈Q1 Q2〉 ≡ 〈φ|Q1
1

(E − H )′
Q2|φ〉 + c.c. (44)

In the leading order of NAPT, this matrix element is

〈Q1 Q2〉(0) = 〈χ |〈Q1 Q2〉(0)
el |χ〉, (45)

〈Q1 Q2〉(0)
el = 〈φel|Q1

1

(Eel − Hel)′
Q2|φel〉 + c.c., (46)

and the nonadiabatic correction is

〈Q1 Q2〉(1)

= 〈χ φel|Q1
1

(Eel − Hel)′
(Hn + Eel − Ea)

1

(Eel − Hel)′

×Q2|φel χ〉 + 〈χ φel|Hn
1

(Eel − Hel)′
Q1

1

(Eel − Hel)′

×Q2|φel χ〉 + 〈χ φel|Q1
1

(Eel − Hel)′
Q2

1

(Eel − Hel)′

×Hn|φel χ〉 + c.c. . (47)

This correction can also be rewritten in terms of the nested
electronic matrix element, namely

〈Q1 Q2〉(1) = 〈χ |〈Q1 Q2〉(1)
el |χ〉, (48)

〈Q1 Q2〉(1)
el

= 〈φel|Q1
1

(Eel − Hel)′
(

↔
Hn −Ea)

1

(Eel − Hel)′
Q2|φel〉

+ 〈φel|
↔
Hn

1

(Eel − Hel)′
Q1

1

(Eel − Hel)′
Q2|φel〉

+ 〈φel|Q1
1

(Eel − Hel)′
Q2

1

(Eel − Hel)′
↔
Hn |φel〉 + c.c.

(49)

These formulas will be used in the calculations of the
nonadiabatic corrections to the shielding constant. The more
general case with 〈φel|Qi |φel〉 
= 0 for Hermitian real operators
Qi is considered in the following section using a slightly
different approach.

C. Diagonal matrix elements with real Hermitian operators

The finite nuclear mass corrections to the diagonal matrix
element of a Hermitian and real operator Q can obtained

by taking a derivative δQ with respect to Q of the nuclear
Schrödinger equation, which includes the diagonal adiabatic
correction Ea in Eq. (21)

δQ[Hn + Ea(R) + Eel(R) − Ea] |χ〉 = 0, (50)

that is

[Hn + Ea(R) + Eel(R) − Ea] |δQχ〉
+ [δQEa(R) + δQEel(R) − δQEa] |χ〉 = 0. (51)

Taking the product with 〈χ | on the left-hand side, one obtains
the matrix element with the leading finite nuclear mass
corrections

〈φ|Q|φ〉 = δQE ≈ δQEa = 〈χ |δQEel(R) + δQEa(R)|χ〉.
(52)

The perturbation of electronic energies Eel(R) and Ea(R)
due to some operator Q can be obtained using stan-
dard Rayleigh-Schrödinger perturbation theory and the
result

〈φ|Q|φ〉 = 〈χ |〈Q〉(0)
el |χ〉 + 〈χ |〈Q〉(1)

el |χ〉 + · · · (53)

coincides with the former derivation. The fact that leading
finite nuclear mass corrections to the matrix elements can be
obtained from the adiabatic nuclear equation simplifies their
derivation.

For the corrections to the second-order matrix element, we
will need δQ|χ〉, which is

δQ|χ〉 = 1

[Ea − Hn − Ea(R) − Eel(R)]′

×
[
〈φel|Q|φel〉 + 〈φel|Hn

1

(Eel − Hel)′
Q|φel〉

+ 〈φel|Q 1

(Eel − Hel)′
Hn|φel〉

]
|χ〉. (54)

Consider now the second-order matrix element 〈Q1 Q2〉
in Eq. (44) with two electronic operators Q1 and Q2.
In order to find the Born-Oppenheimer form and the fi-
nite nuclear mass corrections, we take the second-order
derivative δQ1Q2 of Eq. (21), and multiply from the left
by 〈χ |

〈χ |δQ1Q2Ea(R) + δQ1Q2Eel(R) − δQ1Q2Ea |χ〉
+ 〈χ |δQ1Ea(R) + δQ1Eel(R) |δQ2χ〉 + 〈χ |δQ2Ea(R)

+ δQ2Eel(R) |δQ1χ〉 = 0. (55)

This second-order matrix element 〈Q1 Q2〉 is identified with
δQ1Q2Ea, and thus,

〈Q1 Q2〉
= 〈φ|Q1

1

(E − H )′
Q2|φ〉 + 〈φ|Q2

1

(E − H )′
Q1|φ〉

= 〈χ |δQ1Q2Eel(R) |χ〉 + 〈χ |δQ1Eel(R) |δQ2χ〉
+ 〈χ |δQ2Eel(R) |δQ1χ〉 + 〈χ |δQ1Q2Ea(R)|χ〉
+ 〈χ |δQ1Ea(R)|δQ2χ〉 + 〈χ |δQ2Ea(R)|δQ1χ〉 + · · ·

= 〈Q1 Q2〉(0) + 〈Q1 Q2〉(1) + · · · , (56)
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where δQ1Q2Eel and δQ1Q2Ea are corrections to corresponding
energies due to electronic operators Q1 and Q2, and

〈Q1 Q2〉(0)

= 〈χ |〈φel|Q1
1

(Eel − Hel)′
Q2|φel〉|χ〉 + 〈χ | 〈Q1〉(0)

el

× 1

[Ea − Hn − Ea(R) − Eel(R)]′
〈Q2〉(0)

el |χ〉 + c.c. (57)

and

〈Q1 Q2〉(1)

= 〈χ | 〈φel|Q1
1

(Eel − Hel)′
(

↔
Hn −Ea)

1

(Eel − Hel)′

×Q2|φel〉 |χ〉+〈χ | 〈φel|
↔
Hn

1

(Eel − Hel)′
(
Q1 − 〈Q1〉(0)

el

)
× 1

(Eel − Hel)′
Q2|φel〉 |χ〉+〈χ | 〈φel|Q1

1

(Eel − Hel)′

× (
Q2 − 〈Q2〉(0)

el

) 1

(Eel − Hel)′
↔
Hn |φel〉 |χ〉+〈χ | 〈Q1〉(1)

el

× 1

[Ea − Hn − Ea(R) − Eel(R)]′
〈Q2〉(0)

el |χ〉+〈χ | 〈Q1〉(0)
el

× 1

[Ea − Hn − Ea(R) − Eel(R)]′
〈Q2〉(1)

el |χ〉 + c.c. (58)

In the case 〈Q1〉(0)
el = 〈Q2〉(0)

el = 0, these formulas coincide
with those derived in the previous subsection.

D. Matrix elements of Hermitian operators with R derivatives

Consider an operator of the form Q = �Q · �P , where
�P = −i �∇R and �Q is a Hermitian, electronic operator, such

that [P i , Qi] = 0, for example, the electron-nucleus Breit
interaction Eq. (65). Its matrix element between different
rovibrational states is of the form

〈φel χf|Q|φel χi〉
= i

2
〈χf|[〈 �∇R φel| �Q|φel〉 − 〈φel| �Q| �∇Rφel〉]|χi〉

+ i

2
[〈 �∇χf|〈 �Q〉el|χi〉 − 〈χf|〈 �Q〉el| �∇χi〉]. (59)

If �Q is an imaginary operator, then the second term vanishes
and

〈φel χf|Q|φel χi〉 = 〈χf|〈Q〉el|χi〉, (60)

〈Q〉el = −i 〈φel| �Q| �∇R φel〉 = i 〈 �∇R φel| �Q|φel〉. (61)

If �Q is a real operator, then the first term in Eq. (59) vanishes
and

〈φel χf|Q|φel χi〉 = 〈χf|〈 �Q〉el · �P |χi〉 = 〈χf|
←
P ·〈 �Q〉el|χi〉.

(62)

IV. RELATIVISTIC RECOIL CORRECTION TO
ROVIBRATIONAL ENERGIES

This is the first and the simplest application of NAPT, the
finite nuclear mass correction to the relativistic energy. The

total relativistic correction to the binding energy of a � state,
neglecting interactions with nuclear spins and the higher order
O(m/M)2 terms, is given by [8,9]

δH = δHel + δHn, (63)

δHel =α2

[
−

∑
a

p4
a

8 m3
+

∑
a,X

ZX π

2 m2
δ3(raX) +

∑
a>b

π

m2
δ3(rab)

−
∑
a>b

1

2 m2
pi

a

(
δij

rab

+ ri
ab r

j

ab

r3
ab

)
p

j

b

]
, (64)

δHn = α2
∑
a,X

ZX

2 m mX

pi
a

(
δij

raX

+ ri
aX r

j

aX

r3
aX

)
p

j

X. (65)

The relativistic correction Erel to the energy, taking into
account the transformation in Eq. (9), is

Erel = 〈φ|δH |φ〉 (66)

= 〈χ |〈δH 〉(0)
el |χ〉 + 〈χ |〈δH 〉(1)

el |χ〉 + O(m/M)3/2, (67)

where

〈δH 〉(0)
el = 〈φel|δHel|φel〉 ≡ 〈δHel〉el, (68)

〈δH 〉(1)
el =〈φel|δHn|φel〉−m

(
εA

mA

− εB

mB

)
〈φel|

[∑
a

�xa · �∇R,

δHel

]
|φel〉 + 2 〈φel|δHel

1

(Eel − Hel)′
↔
Hn |φel〉.

(69)

As has already been noted in [5], relativistic recoil effects are
of order O(m/M) and can be expressed as a correction 〈δH 〉(1)

el
to the BO energy Eel(R).

Since the wave function φ does not depend on �RG, the
momentum �PG implicitly present in δHn can be set to 0.
Moreover, we chose �RG in dependence on the particular
operator in δHel, in such a way that the result of the
transformation φ in Eq. (9), namely the second term in Eq. (69),
vanishes. For example, for the first, third, and fourth term
in δHel, �RG is the nuclear mass center [εA = mA/(mA +
mB), εB = mB/(mA + mB)], for δ3(raX), �RG is placed at the
nucleus X (εX = 1), and for δHn in the geometrical center
(εA = εB = 1/2). In this particular choice of �RG, the derivative
∂δHel/∂R that comes from H ′

n in Eq. (69) also vanishes and the
relativistic finite nuclear mass correction can be rewritten in
the form

〈δH 〉(1)
el = 〈φel|δHn|φel〉 + 2 〈φel|δHel

1

(Eel − Hel)′

×
(

H ′′
n +

�J 2
el

2 mn R2

)
|φel〉 + 1

mn
〈φel|∂V

∂R

× 1

(Eel − Hel)′
(δHel − 〈δHel〉el)

1

(Eel − Hel)′2
∂V

∂R

× |φel〉 + 1

mn
〈φel|δHel

1

(Eel − Hel)′
∂(V − Eel)

∂R

× 1

(Eel − Hel)′2
∂V

∂R
|φel〉. (70)
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The expectation value of δHn is calculated according to
Eq. (32), namely if

δHn = �Q1 · �∇R + Q2, (71)

with Qi electronic operators and �∇R
�Q1 = 0, then

〈φel|δHn|φel〉 = 〈φel|Q2|φel〉 + 〈φel|�n · �Q1
1

(Eel − Hel)′
∂V

∂R

× |φel〉 + i

R
〈φel|�n × �Q1 · �Jn|φel〉. (72)

One may expect significant cancellations in the leading
finite nuclear mass correction 〈δH 〉(1)

el between the first
and second terms in Eq. (69). For example, for separate
hydrogen atoms in the ground state, this correction vanishes.
Therefore, the next order correction, which is O(m/M)3/2,
may become relatively significant. This is due to, for
example, the second order in Hn nonadiabatic correction
given by Eq. (37), or by the orbit-orbit interaction between
nuclei.

V. ELECTRIC PROPERTIES

We will study here the nonadiabatic corrections to the
transition dipole moment and the electric dipole static po-
larizability. The direct nonadiabatic calculations have only
been performed for simple molecules like H+

2 in [10–13],
H2 in [1], and LiH in [2]. There is a considerable literature
on electric properties of molecules in what we are calling
here the adiabatic approximation. Let us mention the ex-
tensive review of Bishop [14] and earlier works of Brieger
in [15,16]. We recover here their results for the electric dipole
polarizability and present closed formulas for the nonadiabatic
corrections.

The interaction of a neutral molecular system with a
homogenous electric field �E is given by

δH = − �D · �E, (73)

where the electric dipole operator �D is

�D = e
∑

a

�xa + eA �xA + eB �xB, (74)

and where �xA = εB
�R and �xB = −εA

�R. We note that for
charged molecular systems, the electric dipole moment has
to be defined with respect to the center of mass of the total
molecule.

Let us fix the reference frame to the center of the
nuclear charge εA = eA/(eA + eB), εB = eB/(eA + eB), then
�D = e

∑
a �xa , and this �D is not affected by the unitary

transformation in Eq. (9). We will show that the interac-
tion of the molecule with the homogenous electric field,
despite including leading finite nuclear mass effects, can be
effectively described by the Hamiltonian Heff in the nuclear
space

Heff = − �Del( �R) · �E − α
ij

el ( �R)

2
Ei Ej , (75)

where �Del( �R) is given in Eq. (78) and α
ij

el ( �R) in Eq. (82). From
the previous equation, the transition dipole moment is

�Dfi = 〈χf| �Del|χi〉, (76)

and one notes that the matrix elements �Dfi between the same
nuclear states always vanish. Similarly, the total electric dipole
static polarizability is

αij = 〈χ |αij

el |χ〉 − 2 〈χ |Di
el

1

Ea − Hn − Ea − Eel
D

j

el|χ〉,
(77)

where the first term is due to the electron excitations and
the second one is due to the rovibrational excitations. For
molecules with the so-called permanent electric dipole mo-
ment, the second term dominates, with particularly significant
contributions coming from intermediate nuclear states with the
same vibrational number but with different J .

The electronic matrix elements �Del and αel are obtained
as follows. According to Eqs. (35), (40) and Eqs. (29), (30),
the electric dipole moment including the leading nonadiabatic
effects is

�Del = �D(0)
el + �D(1)

el , (78)

where

�D(0)
el = 〈φel| �D|φel〉, (79)

�D(1)
el = 2 〈φel| �D 1

(Eel − Hel)′
↔
Hn |φel〉. (80)

For � electronic states, the nonadiabatic correction can be
rewritten in the form

�D(1)
el = 2 〈φel| �D 1

(Eel − Hel)′

(
H ′′

n +
�J 2
el

2 mn R2

)
|φel〉 + i

mn R2

×〈φel| �D × 1

(Eel − Hel)′
�Jel|φel〉 + 1

mn
〈φel| �D

× 1

(Eel − Hel)′
∂(V − Eel)

∂R

1

(Eel − Hel)′2
∂V

∂R
|φel〉

+ 1

mn
〈φel|∂V

∂R

1

(Eel − Hel)′
( �D − �D(0)

el

) 1

(Eel − Hel)′2

× ∂V

∂R
|φel〉. (81)

This result is in agreement with the previously obtained much
simpler formula for the HD molecule [17], where only the
last term in Hn contributes in the previous equation due
to the inversion symmetry of the ground electronic state.
We observe that despite including first-order nonadiabatic
corrections, the transition dipole moment �Dfi can be repre-
sented in terms of the matrix element of the electronic dipole
moment �Del evaluated with nuclear functions χ∗

f and χi; see
Eq. (39). A similar result holds for the electric dipole static
polarizability

α
ij

el = α
(0) ij

el + α
(1) ij

el , (82)

which in the BO approximation is

α
(0) ij

el = −2 〈φel|Di 1

(Eel − Hel)′
Dj |φel〉, (83)
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and the nonadiabatic correction, using Eq. (58), is

α
(1) ij

el = −2

[
〈φel|Di 1

(Eel − Hel)′
(

↔
Hn −Ea)

1

(Eel − Hel)′
Dj |φel〉 + 〈φel|

↔
Hn

1

(Eel − Hel)′
(
Di − D

(0) i
el

) 1

(Eel − Hel)′
Dj |φel〉

+ 〈φel|Di 1

(Eel − Hel)′
(
Dj − D

(0) j

el

) 1

(Eel − Hel)′
↔
Hn |φel〉

]
. (84)

The explicit formula after taking the derivative with respect to
R is too lengthy to be written here but can easily be obtained
with the help of Eqs. (29)–(31). We note that Eq. (77) in the
adiabatic approximation, namely αel → α

(0)
el , �Del → �D(0)

el , was
already obtained in the literature [14–16].

VI. MAGNETIC PROPERTIES

We consider here nonadiabatic corrections to magnetic
properties of a diatomic molecule. These properties within
the BO approximation have been reviewed in detail by Flygare
in [18]. Here, we demonstrate that the nonadiabatic corrections
can be implemented in the effective nuclear Hamiltonian,
similarly to that in the BO approximation, namely

Heff = −η(R) �I · �J − γI
�I [1 − σ̂el( �R)]B

− γJ (R) �J · �B − 1
2

�Bχ̂ ( �R) �B, (85)

where it is understood that the electronic part of the angular
momentum operator �Jel in Eq. (17) vanishes on χ , η is
the spin-rotation constant, µI = I γI is the nuclear magnetic
moment, µJ = J γj is the orbital magnetic moment, σel

is the R-dependent shielding constant, χ̂ is the magnetic
susceptibility, and �B is the magnetic field. The Hamiltonian
in Eq. (85) should in principle involve also quadrupolar
interaction (I i I j )(2) (J i J j )(2) or (I i I j )(2) J i Bj . The first
term comes from the quadrupole moment of nucleus or tensor
interactions between nuclear magnetic moments, while the
second term has not been investigated in the literature so far.
Neither term will be considered in this work. If two different
nuclei are involved, each one has its own spin and magnetic
moment, and the interaction between them should be included,
but we do not consider it either. In the following we rederive in
a simple way known results for the rotational magnetic moment
µJ and the spin rotation constant η, and obtain nonadiabatic
corrections to the shielding constant. These corrections, to our
knowledge, have not yet been investigated in the literature
[19].

A. Nonrelativistic Hamiltonian in the external magnetic field

In order to obtain finite nuclear mass corrections, we start
with the Hamiltonian of a molecular system in a homogenous
magnetic field

H0 =
∑

β

�π2
β

2 mβ

+ V, (86)

where β sums over both electrons and nuclei. We assume the
coordinate system as defined in Eqs. (2)–(4): �xβ = �rβ − �RG

and perform the following unitary transformation:

H̃0 = e−i ϕ H0 ei ϕ + ∂tϕ, (87)

ϕ =
∑

β

eβ

∫ 1

0
du �xβ · �A( �RG + u �xβ )

=
∑

β

eβ

[
xi

β Ai + xi
β x

j

β Ai
,j /2

]
, (88)

π
j

β = p
j

β − eβ Aj (�rβ)

= p
j

β − eβ

[
Aj + xi

β A
j

,i

]
, (89)

where �A ≡ �A( �RG). The result of this transformation on the
canonical momentum is

e−i ϕ πi
a ei ϕ = pi

a + ea

2
(�xa × �B)j , (90)

e−i ϕ πi
A ei ϕ = pi

A + eA

2
(�xA × �B)j + εA

2
( �D × �B)j , (91)

e−i ϕ πi
B ei ϕ = pi

B + eB

2
(�xB × �B)j + εB

2
( �D × �B)j , (92)

where �D is the total electric dipole moment �D = ∑
β eβ �xβ

and we have assumed that
∑

β eβ = 0, so the molecule is
neutral. In consequence, the transformed Hamiltonian does not
depend on �RG, so we are allowed to set �PG = 0. In order to
further simplify, we perform the next transformation as defined
in Eq. (9), neglect O(m/M)2 terms, and the transformed
Hamiltonian then takes the form

H0 = Hel + Hn + Hµ + Hχ, (93)

Hµ = −
∑

a

e

2 m
�xa × �qa · �B + δHµ, (94)

δHµ = −
(

εA

mA

− εB

mB

)
�D × �P · �B − 1

2

(
1

mA

+ 1

mB

)
(
eA ε2

B + eB ε2
A

) �R × �P · �B + 1

2

(
ε2
A

mA

+ ε2
B

mB

)
�D

×
∑

a

�qa · �B+ εA εB

2

(
eA

mA

− eB

mB

)
�R ×

∑
a

�qa · �B,

(95)

Hχ =
∑

a

e2

8 m
(�xa × �B)2 + δHχ, (96)

δHχ = 1

8 mA

(eA �xA × �B + εA
�D × �B)2

+ 1

8 mB

(eB �xB × �B + εB
�D × �B)2. (97)

The center of the reference frame �RG is placed arbitrarily
on the symmetry axis. This freedom will be used to simplify
formulas for nonadiabatic corrections.
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B. Rotational magnetic moment

The rotational magnetic moment was first investigated by
Wick in [20] for H2, and later by Ramsey, who extended
Wick’s result to arbitrary masses of nuclei, and performed first
measurements in Ref. [21], later presenting improved mea-
surements with Harrick in Ref. [22]. The rotational magnetic
moments results from coupling of the molecular rotation to
the magnetic field. The expectation value on the � state of
the first term in Eq. (94) e/(2 m) �Jel · �B vanishes, so that the
leading coupling comes from nonadiabatic corrections to the
matrix element as given by Eq. (43) and from δHµ, namely

γJ =
(

εA

mA

− εB

mB

) �Del · �R
R2

+
(
eA ε2

B + eB ε2
A

)
2 mn

− e

2 m

1

mn R2
〈φel| �Jel

1

(Eel − Hel)′
�Jel|φel〉. (98)

In the center of nuclear mass frame εA = mA/(mA + mB),
εB = mB/(mA + mB), the rotational magnetic moment in
units of the nuclear magneton µI becomes

γJ

µI

= µJ

J µI

= mn mp

(
ZA

m2
A

+ ZB

m2
B

)

+ mp

mn m R2
〈φel|J i

el
1

(Eel − Hel)′
J i

el|φel〉, (99)

where mp is the proton mass, in agreement with the result
from Ref. [21] [Eq. (4) with assuming ZA = ZB = 1]. One
observes that rotational magnetic moment in Eq. (98) does
not depend on the choice of reference frame but does depend
on the distance R between nuclei. For large R, it vanishes
at least as fast as R−6. The dependence of γJ on R leads
to the appearance of the magnetic dipole transition in H2,
between states of the same angular momentum but of different
vibrational number. These transitions, to our knowledge, have
not yet been investigated in the literature, and may play a
role in the astrophysical environment: Their importance should
be verified by explicit calculations.

As was first noted in Ref. [22], the rotational magnetic
moment is related to the paramagnetic part of magnetic
susceptibility χ . In the BO approximation, χel is given by

χ
ij

el = − e2

4 m

∑
a

〈φel|�x2
aδ

ij − xi
a xj

a |φel〉

− e2

2 m2
〈φel|J i

el
1

(Eel − Hel)′
J

j

el|φel〉. (100)

For � states, it can be simplified to the form

χ
ij

el = − e2

8 m

∑
a

[
2 〈φel|�x2

a − (�n · �xa)2|φel〉 ni nj

+〈φel|�x2
a + (�n · �xa)2|φel〉 (δij − ni nj ) − e2

4 m2

×〈φel| �Jel
1

(Eel − Hel)′
�Jel|φel〉 (δij − ni nj ), (101)

The last terms in both Eqs. (98) and (101), which are the
second-order matrix elements, are similar, while the first
terms in both equations are simple to evaluate. This allows
one to express the difficult-to-measure magnetic susceptibility

in terms of the rotational magnetic moment. This relation,
however, works only in the BO approximation, as nonadiabatic
corrections will be different. As noticed by Herman and
Asgharian in [23], this second-order matrix element with �Jel

operator is present also in the nonadiabatic equation for the
nuclear function χ as the W⊥ function (in the notation from
our previous work [3]).

C. Spin-rotation Hamiltonian

The general spin-orbit Hamiltonian for arbitrary nuclei,
including the external magnetic field, is (h̄ = c = 1) [8,9,24]

δH =
∑
α,β

eα eβ

4 π

1

2 r3
αβ

[
gα

mα mβ

�sα · �rαβ × �πβ

− (gα − 1)

m2
α

�sα · �rαβ × �πα

]
, (102)

where the summation over α, β goes over electrons and nuclei.
In particular, the coupling of the nuclear spin �I = �sA to the
rotation and to the magnetic field using Eq. (102) is

δH =
∑

b

eA e

4 π

�I
2 r3

Ab

[
gA

mA m
�rAb × �πb− (gA − 1)

m2
A

�rAb × �πA

]

+ eA eB

4 π

�I
2 r3

AB

[
gA

mA mB

�rAB × �πB

− (gA − 1)

m2
A

�rAB �πA

]
. (103)

For convenience, we chose the reference frame centered at
the considered nucleus �RG = �RA, so εA = 1,εB = 0, perform
unitary transformations in Eqs. (88), (9), and obtain

δH = −
∑

b

eA e

4 π

�I
2 mA

× �xb

x3
b

·
[
gA

m

(
�qb+ m

mA

�P + e

2
�xb× �B

)

− (gA − 1)

mA

(
�P − �qel +

�D
2

× �B
)]

− eA eB

4 π

�I
2 mA

×
�R

R3
·
[

gA

mB

(
�P + eB

2
�R × �B

)

+ (gA − 1)

mA

(
�P − �qel +

�D
2

× �B
)]

, (104)

where �qel = ∑
a �qa , �xel = ∑

a �xa , and the electric dipole
operator is �D = e �xel − eB

�R. This Hamiltonian will be used
in next sections to rederive the known formulas for the
spin-rotation and the shielding constants, and to obtain a closed
expression for the nonadiabatic corrections to the magnetic
shielding, which contribute at the level of me/mn, which for
H2 is about 10−3.

D. Spin-rotation constant

The theory of the spin-rotation interaction was introduced
by Wick [20], Ramsey [21], and Foley [25], and further
developed by Ramsey [26,27], by Frosch and Foley [28], and
again by Ramsey [29]. These theoretical results were not in
agreement for a long time, until Reid and Chu in [30] found
a complete set of corrections. Here we rederive their result on
the basis of Eq. (104).
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The spin-rotation interactions results from δH above with
�B = 0. For considered � states, terms with �qel vanish and δH

takes the form

δH = �Q1 · �I + �Q2 × �P · �I , (105)

�Q1 = −
∑

b

eA e

4 π

gA

2 m mA

�xb × �qb

x3
b

, (106)

�Q2 = −
∑

b

eA e

4 π

1

2 m2
A

�xb

x3
b

− eA eB

4 π

1

2 mA

×
[

gA

mB

+ (gA − 1)

mA

] �R
R3

. (107)

The expectation value of 〈φel| �Q1|φel〉 vanishes and the �Q1 op-
erator contributes only through nonadiabatic matrix elements
Eq. (43), so the total spin-rotation constant is given by

−η �I · �J = −
�I · �J

mn R2
〈φel| �Jel

1

(Eel − Hel)′
�Q1|φel〉

+ 〈φel| �Q2|φel〉 × �P · �I . (108)

The expectation value of the first term in �Q2 can be expressed
in terms of derivative of BO energy, namely

〈φel|
∑

b

eA e

4 π

�xb

x3
b

|φel〉 = �n
(

∂Eel

∂R
+ eA eB

4 π

1

R2

)
, (109)

and thus, η in atomic units becomes [eX = −ZX e, α =
e2/(4 π )]

η = α2

[
1

R2

ZA gA

2 mn mA

〈φel|
∑

a

�xa × �qa

1

(Eel − Hel)′∑
b

�xb × �qb

x3
b

|φel〉 + 1

R

1

2 m2
A

∂Eel

∂R
+ 1

R3

ZA ZB gA

2 mA mn

]
,

(110)

in agreement with Ref. [30], their C is related to our η by
C = 2 π η. Since there is cancellation between the first and
the third term, η vanishes at least as fast as R−6 for large
values of R.

E. Magnetic shielding constant

The shielding of the external magnetic field due to atomic
electrons was first considered by Ramsey in [26] with the help
of the Breit-Pauli Hamiltonian including the external magnetic
field. Here we rederive his result and obtain nonadiabatic
corrections to it. A similar calculation for atoms has recently
been performed in [9,31].

The Hamiltonian of a molecule in the magnetic field
including the nuclear spin, but neglecting that of electrons,
is a sum of H0 in Eq. (93) and δH in Eq. (103). In the BO
approximation, σ̂ (0)

el is a sum of diamagnetic and paramagnetic
parts. In atomic units, they are correspondingly

�I σ̂
(0)
el

�B =α2

[
−1

2
〈φel|

∑
b

(
�I × �xb

x3
b

)
· (�xb × �B)|φel〉 + 〈φel|

∑
a

�xa× �qa · �B 1

(E − Hel)′
∑

b

�xb × �qb

x3
b

· �I |φel〉
]
.

(111)

Nonadiabatic corrections σ̂
(1)
el , namely all corrections which

are linear in the electron-nuclear mass ratio, come from several
sources, and we split them into four parts

σ̂
(1)
el = σ̂ (1)

n + σ̂
(1)
d + σ̂ (1)

s + σ̂
(1)
l . (112)

σ̂ (1)
n is the correction due to Hn to the matrix elements in

Eq. (111), namely using Eq. (49) one obtains

�I σ̂ (1)
n

�B = α2

[
−〈φel|

∑
b

(
�I × �xb

x3
b

)
· (�xb × �B) 1

(E − Hel)′
↔
Hn |φel〉 + 〈φel|

∑
a

�xa × �qa · �B 1

(E − Hel)′
(

↔
Hn −Ea)

1

(E − Hel)′∑
b

�xb × �qb

x3
b

· �I |φel〉 + 〈φel|
↔
Hn

1

(E − Hel)′
∑

a

�xa × �qa · �B 1

(E − Hel)′
∑

b

�xb × �qb

x3
b

· �I |φel〉

+ 〈φel|
∑

a

�xa × �qa · �B 1

(E − Hel)′
∑

b

�xb × �qb

x3
b

· �I 1

(E − Hel)′
↔
Hn |φel〉

]
. (113)

σ̂
(1)
d is a correction to the diamagnetic part due to the direct

coupling of the nuclear spin to the magnetic field in δH ,
Eq. (104):

�I σ̂
(1)
d

�B = α2

2 gA

〈φel| (gA − 1)

mA

∑
b

(
�I × �xb

x3
b

)

· (�xel + ZB
�R) × �B −

(
�I ×

�R
R3

)

·
[

Z2
B

mB

�R − ZB (gA − 1)

mA

(�xel + ZB
�R)

]
× �B|φel〉.

(114)

σ̂ (1)
s is a correction to paramagnetic part due to spin-rotation

interaction in δH Eq. (104):

�I σ̂ (1)
s

�B = α2

gA

〈φel|
∑

a

�xa × �qa · �B 1

(E − Hel)′

{
1

mA

∑
b

�I

· �xb

x3
b

× [ �P + (gA − 1) �qel] − ZB
�I ·

�R
R3

×
[

gA

mB

�P + (gA − 1)

mA

( �P − �qel)

]}
|φel〉. (115)

The derivative over nuclear coordinates �P in the equations
shown here can act on the right or on the left, since these matrix
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elements do not depend on this. Finally, σ̂
(1)
l is a correction to

the paramagnetic part due to δHµ in Eq. (95),

�I σ̂
(1)
l

�B = α2 〈φel|
∑

b

�xb × �qb

x3
b

· �I 1

(E − Hel)′{
1

mA

(�xel + ZB
�R) × (2 �P − �qel) − ZB

mn

�R × �P
}

· �B|φel〉.
(116)

The total magnetic shielding σ̂ is obtained by averaging with
the nuclear wave function

σ ij = 〈χ |σ (0)ij
el + σ

(1)ij
el |χ〉, (117)

and one notes that the orbital magnetic moment with the spin-
rotation coupling gives additional contribution to the shielding
constant

δσ ij = 2

γI

〈χ |η J i 1

[Ea − Hn − Ea − Eel]′
γL J j |χ〉, (118)

which however is negligible.
Let us present in more detail the averaged shielding σ =

σ ii/3 in the case of H2 and isotopomers ZA = ZB = 1,

σ = 〈χ |σ (0)
el + σ

(1)
el |χ〉 (119)

and

σ
(0)
el = α2

3

[
〈φel|

∑
b

1

xb

|φel〉 + 〈φel|
∑

a

�xa × �qa

1

(E − Hel)′
∑

b

�xb × �qb

x3
b

|φel〉
]
, (120)

σ (1)
n = α2

3

[
2 〈φel|

∑
b

1

xb

1

(E − Hel)′
↔
Hn |φel〉

+ 〈φel|
∑

a

�xa × �qa

1

(E − Hel)′
(

↔
Hn −Ea)

1

(E − Hel)′
∑

b

�xb × �qb

x3
b

|φel〉

+ 〈φel|
↔
Hn

1

(E − Hel)′
∑

a

�xa × �qa

1

(E − Hel)′
∑

b

�xb × �qb

x3
b

|φel〉

+ 〈φel|
∑

a

�xa × �qa

1

(E − Hel)′
∑

b

�xb × �qb

x3
b

1

(E − Hel)′
↔
Hn |φel〉

]
, (121)

σ
(1)
d = − α2

3 gA

〈φel| (gA − 1)

mA

∑
b

�xb

x3
b

· (�xel + �R) − 1

mB R
|φel〉, (122)

σ (1)
s = α2

3 gA

〈φel|
∑

a

�xa × �qa

1

(E − Hel)′

{
1

mA

∑
b

�xb

x3
b

× [ �P + (gA − 1) �qel]

−
�R

R3
×

[
gA

mB

�P + (gA − 1)

mA

( �P − �qel)

]}
|φel〉, (123)

σ
(1)
l = α2

3
〈φel|

∑
b

�xb × �qb

x3
b

1

(E − Hel)′

[
1

mA

(�xel + �R)(2 �P − �qel) − 1

mn

�R × �P
]
|φel〉. (124)

These formulas can be further simplified by shifting the
reference frame to the geometrical center and by using gerade
symmetry of the ground electronic state of H2 and isotopomers.

VII. SUMMARY

We have presented a general approach to finite nuclear mass
corrections in molecular properties which is based on NAPT
[3]. These corrections were represented in terms of electronic
matrix elements averaged with the nuclear wave function,
similarly to that in the adiabatic approximation. We obtained
formulas for nonadiabatic relativistic corrections which can
be used to perform accurate calculations of dissociation and
rovibrational energies. Currently the accuracy of theoretical
predictions in H2 [5] is limited by these not well-known
effects. Similarly, we obtained formulas for the nonadiabatic

corrections to the transition electric dipole moment and
the electric dipole polarizability. They can be used for the
comparison with precise measurements of polarizabilities, for
example, in such a complicated system as excited vibrational
states of the water molecule [32,33]. Finally, we presented
nonadiabatic corrections to the magnetic shielding, which are
important for molecules involving hydrogen or deuterium,
where the finite nuclear mass significantly ∼10−3 affects the
magnetic shielding.
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