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Final-state spectrum of 3He after β− decay of tritium anions T−
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The final-state spectrum of β decaying tritium anions T− was calculated. The wave functions describing the
initial T− ground state and the final 3He states were obtained by the full configuration-interaction method.
The transition probability was calculated within the sudden approximation. The transition probability into the
electronic continuum was extracted from the complex-scaled resolvent and shown to converge for very high
energies to an approximate analytical model probability distribution.
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I. INTRODUCTION

The neutrino rest mass is a very important parameter
for cosmology, astrophysics, and the standard model of
elementary particles. The existence of neutrinos, already
postulated by Pauli and put into a mathematical framework
of β decay by Fermi [1] a long time ago, was verified by
Reines and Cowan in 1956 [2]. However, despite the high
solar neutrino flux of about billions per m−2 s−1 on earth, the
answer to the question about their rest mass is one of the
big unknowns in physics. Because neutrino-flavor oscillations
were observed in the late 1990s at the Super-Kamiokande
experiment [3], a nonvanishing neutrino rest mass has to be
expected. Unfortunately, this type of experiment reveals only
mass differences between neutrino flavors.

The presently constructed KATRIN (Karlsruhe tritium
neutrino mass) experiment with an expected sensitivity of
about 0.2 eV (90% C.L.) should have the ability to determine
the absolute value for one of the flavors or at least a new
upper limit to it [4]. This so-called next-generation tritium
β-decay experiment is only based on kinematic relations
and energy and momentum conservation. Thus KATRIN
provides a model-independent direct measurement of the
antineutrino rest mass mν̄e

(more accurately the mass of the
antineutrino in a given mass-flavor mixture mostly attributed
to the electronic neutrino). In more detail, m2

ν̄e
will be

extracted in a fit procedure from the shape of the β spectrum.
Besides the precise measurement of the β-electron energy
spectrum, it is crucial for the mass extraction to know how the
β spectrum is modified by the final-state spectrum of the decay
product. As in the previous most recent tritium neutrino-mass
experiments in Mainz and Troitsk, the T2 molecule is chosen
as the tritium source. T2 comprises a compromise between
experimental accessibility and theoretical treatability. The
final-state spectrum of its decay product 3HeT+ was therefore
the subject of a number of very detailed calculations [5–14],
finally accumulating in the one covering the whole energy
regime [15]. Recently, the spectrum was further adapted to
specific needs (isotope distribution and temperature) of the
KATRIN experiment [16].

Although a high purity of the molecular tritium source is
expected for KATRIN, the produced β electrons can interact
with other gas molecules and thus produce tritium species
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different from T2. One of the expected processes is the
dissociative attachment,

e− + T2 → T− + T, (1)

where T− formation occurs. Despite the relative small cross
section compared to, e. g., the one for vibrational excitation of
the T2 molecule, this process is very important. The reason is
the higher end-point energy of the β spectrum for the decay of
T− compared to that of T2. Due to this fact, the occurrence of
T− ions leads to a systematical error and hence to a possible
limitation of the sensitivity of KATRIN, if it is not properly
accounted for [17].

To the best of our knowledge, there exist so far only two
theoretical predictions for the final-state spectrum following
β decay of T−. However, in [18] only transition probabilities
to four final states are reported. Furthermore, the results
in [18] disagree substantially from the ones given in an earlier
work [19], which was, however, also limited to 10 final states.
The aim of this work is thus to provide a complete final-state
spectrum for the decay process

T− → 3He + e− + νe , (2)

and to shed some light on the disagreeing earlier results.

II. METHOD AND COMPUTATIONAL DETAILS

The calculation of the nonrelativistic eigenstates of atomic
systems is performed within the approximation of an infinitely
heavy mass of the nuclei, i. e., T ≈ ∞H and 3He ≈ ∞He .
This is justifiable because of the large mass difference of the
nucleus and the electrons. The calculation of the final-state
spectrum can be performed analytically for neutral T atoms
and reveals a negligible mass dependence. Hence a large mass
dependence is also not expected in the case of tritium anions.
The nonrelativistic Hamiltonian for the two-electron system
has the form (atomic units with me = 1, e = 1, h̄ = 1 are used
throughout, if not specified otherwise)

Ĥ = −1

2
(�1 + �2) − Z

(
1

r1
+ 1

r2

)
+ 1

|r1 − r2| , (3)

where Z is the charge of the nucleus and ri the position
vector of the ith electron. Because the only bound state of T−

is a singlet state with angular momentum L = M = 0 [20],
only symmetric spatial configuration state functions (CSFs)
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are important, that is,

|�(+)
k 〉 =

{
2−1/2 (|φi〉|φj 〉 + |φj 〉|φi〉) i �= j,

|φi〉|φj 〉 i = j.
(4)

To determine the eigenstates and corresponding energy eigen-
values, a simple expansion in Slater-type orbitals (STOs) is
used,

〈r|φi〉 =
√

(2ζi)2n+1

(2n)!
exp(−ζir)rn−1 Ym

l (ϑ, ϕ). (5)

The n, l,m are integer parameters with limitations analogous
to the ones for the hydrogen quantum numbers, and the Ym

l

represent the spherical harmonics. The ζi are positive real
parameters. An appropriate choice of these parameters allows
the achievement of an, in principle, complete coverage of the
Hilbert space of the one-particle part of Hamiltonian (3). In
the full configuration-interaction (CI) method, the eigen-
states are expressed as a linear superposition of all possible
symmetry-adapted CSFs

|	j (r1, r2)〉 =
∑

k

cjk|�(+)
k 〉 (6)

that can be formed with the aid of the chosen STO basis.
The expansion coefficients cjk are determined by solving the
generalized eigenvalue problem obtained from inserting the
wave-function ansatz of Eq. (6) into the eigenvalue equation
of the Hamiltonian (3).

The final-state spectrum of He is calculated within the
sudden approximation [21] that is based on the fact that
the escaping β electron has a much higher velocity than
the bound electrons. In the analysis of tritium neutrino-mass
experiments like KATRIN, only the β electrons with an
energy near the end point of the β spectrum at 18.6 keV are
used. Their velocity is clearly much larger than the average
speed of the bound electrons in T−. In fact, the validity
of the sudden approximation has been demonstrated for T2

in [10,12,22], where the first-order correction terms were
derived and explicitly calculated. From those results, it is
apparent that also for T− the sudden approximation is expected
to be valid within the accuracy required for the analysis of
an experiment like KATRIN. Nevertheless, a brief discussion
of possible effects beyond the sudden approximation on the
final-state spectrum is given at the end of this work.

A basis set of 555 STOs yielding 3481 CSFs in the full
CI calculation was used to obtain the final results shown in
this work. This STO basis set contains all possible kinds of
orbitals (with restrictions on l and m as mentioned above)
up to the angular quantum number l = 7, −7 � m � 7. For
the optimization of the parameters ζi , a genetic and several
other algorithms [23] were tested. However, none of those
algorithms led to completely convincing results. Therefore,
the parameters were finally optimized by hand. The difficulty
of the parameter optimization is caused by the requirement to
construct a basis set with high coverage of the Hilbert space
while avoiding inaccuracies due to numerically caused linear
dependencies. With the aim to achieve a uniform description
of the possible He final states, it is favorable to obtain a
homogeneous and a high density of states in the continuum
as well as a large number of bound states. If a large number

of CFSs is used, the optimization of the individual ζi values
becomes less important, since the full CI method leads to a
sufficient mixing of the Hilbert space covered by the various
STOs. Therefore, the parameters ζi were chosen to start in an
interval between 2 and 3 and to decrease in value for increasing
n (for a given l). This procedure avoids numerical problems
and allows the construction of a huge, but linearly independent,
basis set. This basis set is used for both the ground state of T−

and all final states of He . The chosen basis leads for T− to
the ground-state energy ET−

0 = −14.3602 eV, which is only
0.8 meV above the very accurate values in [24,25]. In the
case of He , the adopted basis set yields 16 states below the
ionization continuum. Of those 16 states, 15 are identified as
true physical states, while the 16th state is a pseudostate that
resembles the remaining infinite number of Rydberg states;
this is a consequence of the finiteness of the adopted basis set.

Within the sudden approximation, the transition probability
for T− decays into bound states of He is simply given by the
squared overlap

Pn = ∣∣∣∣〈	He
n

∣∣	T−
i

〉∣∣∣∣2
(7)

of the initial state |	T−
i 〉, i. e., the T− ground state, and the

final state |	He
n 〉, i. e., the nth bound state of He .

To calculate the transition-probability density into contin-
uum states, the complex scaling method is used. It is based
on the mathematical development by Aguilar, Balslev, and
Combes [26,27] as well as Simon [28]. The application of this
method leads in practice to a simple but powerful modification
of the Hamiltonian Ĥ in Eq. (3),

Ĥ (θ ) = exp(−2iθ )T̂ + exp(−iθ )V̂ . (8)

In Eq. (8), T̂ and V̂ are the usual kinetic and potential energy
operators of He, respectively. The complex-scaling angle θ

can in principle be chosen arbitrarily within 0◦ � θ � 45◦. In
the limit of an infinite basis, all observables calculated with
the aid of complex scaling should become independent of θ .
Since only finite basis sets can be applied in practice, only
approximate eigenstates can be obtained that may depend
on θ . The angle θ can thus be understood as a variational
parameter that modifies the adopted basis as can be seen
from the inverse relation between basis-set exponents and the
scaling angle discussed, e.g., in [29]. A diagonalization of the
Hamiltonian (8) in the basis described by Eqs. (4) and (5)
yields the complex-scaled energies Ej (θ ) and wave functions
	j (θ ), where the latter are still defined by Eq. (6), but with
complex coefficients cjk(θ ).

With the aid of the complex-scaled energies and wave
functions, the transition-probability density into the electronic
continuum can be extracted from the complex-scaled resolvent
according to [9]

P (E, θ )

= 1

π
Im

{∑
k

〈
	T−

i (θ∗)
∣∣	He

k (θ )
〉〈
	He

k (θ∗)
∣∣	T−

i (θ )
〉

EHe
k (θ ) − E

}
. (9)

The 〈	(θ∗)| is the biorthonormal eigenstate to |	(θ )〉. It
is obtained from the latter by a transposition and complex
conjugation of the angular part, while the radial part is
only transposed but not complex conjugated. The sum over
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k includes all complex-scaled eigenstates and eigenvalues
calculated by solving the generalized complex symmetric but
non-Hermitian eigenvalue problem. As discussed above, in
the limit of exact eigenstates, the density P (E, θ ) becomes
independent of the complex-scaling parameter θ . A variation
of θ for approximate eigenstates provides the possibility of
determining an optimal θopt with highest stability. The best
approximation of P (E, θ ) is then obtained according to

∂P (E, θ )

∂θ

∣∣∣∣
θopt

= min. → P (E) := P (E, θopt). (10)

Furthermore, the θ dependence of the spectra gives an
indication of the convergence of the results.

III. RESULTS

In Table I, the calculated transition probabilities for 15 1S

bound states of He are listed. The results reveal that almost
every second T− decay will end in the first excited state of
He . The next probable final state is the He ground state
with nearly 23%. With a summed probability of 0.45%, the
higher excited He states are rarely populated after β decay
of T−. Starting from the state n = 4, the population decreases
monotonically with n, the decrease becoming smaller with
increasing n. The very small value found for the population
of the second excited state (n = 3) appears to be the result
of an almost perfect cancellation of positive and negative
contributions to the overlap integral due to the nodal structure
of the final state. It is very sensitive to the proper description
of the T− ground state and is not reproduced within the
Hartree-Fock approximation. In fact, Hartree-Fock predicts
a continuously decreasing population starting from n = 1 and

TABLE I. Population probabilities Pn of the 1S bound states
of helium after the β decay of a T− anion. Also given are the
corresponding energies En (in atomic units) obtained in the present
work.

En Pn (%) Pn (%) Pn (%)
n (This work)a (This work) (Ref. [18]) (Ref. [19])

1 −2.9034572 22.98998 22.993764 19.147
2 −2.1459527 46.86960 46.867404 21.149
3 −2.0612659 0.01320 0.013503b 0.27
4 −2.0335841 0.18363 0.210424 0.143
5 −2.0211749 0.09220 – 0.07
6 −2.0145604 0.05262 – 0.039
7 −2.0106235 0.03275 – 0.024
8 −2.0080909 0.02175 – 0.016
9 −2.0063679 0.01522 – 0.011

10 −2.0051407 0.01111 – 0.008
11 −2.0042355 0.00848 – –
12 −2.0035507 0.00666 – –
13 −2.0030205 0.00513 – –
14 −2.0025951 0.00469 – –
15 −2.0022570 0.00273 – –∑

Pn 70.30975 70.085095b 40.877

aThe bold digits agree with the results in Ref. [30].
bNote, Ref. [18] reports (0.0116204)2 ≈ 0.00135 instead of
(0.0116204)2 ≈ 0.000135. The latter value is used in this table.

thus a probability distribution more similar to the one of neutral
tritium atoms.

The sum over all calculated bound states yields 70.3%. The
summation over all calculated states (discrete and discretized
continuum states) yields the expected value of 100.00%, since
the same basis is used for initial and all final states, but indicates
the proper numerical implementation. The excellent agreement
of the energy eigenvalues at the order of µhartree with the
very accurate data in [30] ensures, on the other hand, the
high quality of the basis set adopted in the present work and
its ability to describe many states simultaneously with high
precision. A closer view of the energies shows that the degree
of accuracy of the present results follows the expected trends.
First, the accuracy increases with n, since the importance of
the correlation decreases if the state becomes more asymmetric
and the two electrons have smaller spatial overlap. For even
higher values of n, the states become increasingly diffuse
and thus it is very difficult to describe them properly without
running into numerically caused linear dependencies.

A comparison with the final-state probabilities reported
by [18] and [19] is also given in Table I. Especially for the
highly populated ground and first excited states, the results of
this work confirm the expectedly very accurate results of [18],
which were obtained with explicitly correlated basis functions.
For the second excited state, the agreement is still within a
relative accuracy of 2.5% if an apparent typographical error
in [18] is corrected. The agreement for the third excited state
(n = 4) is, however, less good (relative deviation of about
12%), but is of the same order of magnitude. In view of the
very good agreement of the energy of the third excited state
with the very accurate calculation in [30], the present result
is expected to be reliable, but without the knowledge of the
corresponding energy obtained by Frolov [18], it is impossible
to finally decide whether the present transition probability or
the one in [18] is more accurate.

The comparison with the results in [19], which were
obtained with a relativistic multiconfiguration Dirac-Fock
(MCDF) method shows, on the other hand, pronounced
differences. The deviation is most remarkable for the first
excited state, which according to the present work and [18]
should be populated with about 47% probability and thus
should clearly dominate the final-state distribution. However,
in the MCDF results in [19], its probability is found to be about
21%. For the other states, except n = 3, the results in [19] are
always smaller than the present ones. The deviation increases
rather uniformly from about 17 to 28% for n varying between
1 and 10. Since relativistic effects are expected to be small
for light nuclei like T− and 3He , it appears very likely that
the main reason for the difference of the results in [19] to
the present ones (as well as the ones in [18]) is due to the
small number of configurations used in the MCDF method
compared with the present full CI method. Unfortunately, no
details (such as energies) of the MCDF calculation in [19] are
available to further clarify this issue, but any realistic estimate
of the size of relativistic effects excludes their responsibility
for the large discrepancy between the results in [19] compared
to the non-relativistic calculations of this work or the one
in [18].

The calculated transition-probability density into the elec-
tronic continuum of 3He is presented for three different
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FIG. 1. (Color online) Final-state continuum probability density
of He after β decay of T− for θ = 24◦(red), 30◦(blue), and
36◦(black). (The energy scale is given relative to the He ground
state.)

complex-scaling angles (θ = 24◦, 30◦, and 36◦) in Fig. 1.
The overall spectrum is practically independent of θ . This
indicates the high quality of the adopted basis set also for
describing the electronic continuum. As is usually the case,
(higher lying) resonances are most sensitive to the choice of
θ . This is because it is difficult to find a single value of θ that

is equally appropriate for describing a certain resonance and
the underlying background continuum.

The continuum probability density is dominated by a peak
corresponding to the first doubly excited singlet state 2s2.
About 19% of the T− decay ends up in the energy interval
between 54.5 and 60 eV. Above the 65.4 eV threshold, the
higher-lying doubly excited states 2sns and in the regime
up to 79 eV (with diminishing importance) the 3sns peaks
can be identified. The complex-scaling method provides the
probability density P (E) at any value of E and thus as a
continuous function. In view of the sharp resonant structures
and in accordance with the experimental needs, the final-state
distribution is given in a discretized form as in [15]. For this
purpose, the probability distribution P (E) has been divided
into small bins covering an energy range of 1.0 eV (up to a
transition energy of 78.59 eV), 5.0 eV (from 78.59 to 214 eV),
and 40.0 eV (from 214 to 904 eV). For each bin, the average
excitation energy Ei and the integrated transition probability
P (Ei) were calculated and are given in Table II.

For the high-energy continuum states (above 904 eV),
an approximate model tail is introduced, similar to the case
of T2 [12,15]. However, the situation is more complicated
for T−. In T2 β decay, the high-energy tail was derived
based on the idea that for sufficiently large energies of the
escaping (formerly bound) electron, the effective potential
of the remaining 3HeT2+ ion can be well approximated by
a point charge Z = 2. In fact, the remaining electron and
tritium nucleus may be viewed as pure spectators, and thus

TABLE II. Discretized final-state probability distribution P (Ei) for He following the β decay of a T− anion. The mean excitation energies
Ei are given relative to the ground state of 3He .

Ei (eV) P (Ei) (%) Ei (eV) P (Ei) (%) Ei (eV) P (Ei) (%) Ei (eV) P (Ei) (%)

25.084 0.36869 50.096 0.07054 75.086 0.09926 186.05 0.00960
26.081 0.32908 51.097 0.07403 76.085 0.09172 191.06 0.00873
27.081 0.28924 52.100 0.08005 77.085 0.08480 196.06 0.00796
28.081 0.25425 53.104 0.09041 78.086 0.07863 201.06 0.00727
29.082 0.22462 54.112 0.10943 80.950 0.31969 206.07 0.00666
30.082 0.19976 55.125 0.14982 85.967 0.23208 211.08 0.00612
31.083 0.17887 56.158 0.26863 90.980 0.17471 232.06 0.03471
32.084 0.16126 57.305 1.44117 95.991 0.13529 272.24 0.01998
33.084 0.14632 57.863 16.80345 101.00 0.10714 313.03 0.01250
34.085 0.13358 58.911 0.15914 106.01 0.08644 352.94 0.00832
35.085 0.12267 59.972 0.02281 111.01 0.07084 392.90 0.00581
36.085 0.11328 61.109 0.00924 116.02 0.05883 433.04 0.00421
37.086 0.10517 62.095 3.16161 121.02 0.04942 472.98 0.00314
38.086 0.09816 63.026 0.13662 126.03 0.04194 513.67 0.00239
39.087 0.09209 64.113 0.13095 131.03 0.03590 553.22 0.00186
40.087 0.08684 65.091 0.09512 136.03 0.03098 591.30 0.00148
41.088 0.08233 66.100 0.11217 141.03 0.02692 630.58 0.00119
42.088 0.07847 67.099 0.12245 146.04 0.02355 654.79 0.00101
43.089 0.07523 68.105 0.13639 151.04 0.02071 664.12 0.00089
44.089 0.07256 69.171 0.26130 156.04 0.01832 663.99 0.00081
45.089 0.07046 70.210 0.20446 161.04 0.01629 666.03 0.00073
46.085 0.06892 71.109 0.10126 166.05 0.01454 688.91 0.00063
47.084 0.06803 72.101 0.12307 171.05 0.01303 776.21 0.00048
48.090 0.06792 73.077 0.12211 176.05 0.01173 1550.1a 0.00358a

49.098 0.06870 74.083 0.10784 181.05 0.01059
∑

P (Ei) 29.65399

aFor energies above 904 eV, the model tail in Eq. (13) was used.
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the transition probability should approach for high energies
the one obtained for a β-decaying tritium atom for which
an analytical result is known. Due to the existence of two
equivalent electrons, the atomic result is simply multiplied by
a factor of 2 [12].

While for T2, a hydrogenic wave function is a reasonable
first-order approximation for the initial state, this is not the
case for T−. In fact, within independent-particle models, T−
is unstable. As a consequence, the fast electron in the final
state may be well represented by a Coulomb wave function
for a point charge Z = 1 (formed by the remaining He+ ion),
but the modeling of the initial state is less obvious within
an independent particle model. This is also evident from the
alternative point of view that a description of the remaining
T nucleus and bound electron as a spectator would correspond
for the active electron to an initial state with Z = 0 and thus
no bound state. In order to obtain an atomic-like high-energy
tail, the initial state is thus modeled as a hydrogen-like state
with variable exponent. This exponent is then obtained by
fitting the model spectrum to the ab initio spectrum of the full
two-electron calculation in the energy range between 500 and
10 000 eV.

The initial T− ground-state wave function (omitting the
spin part for better readability) is then approximated as∣∣	̃T−

i

〉 = |1sZe 1sZe 〉, (11)

where 〈r|1sZe〉 is an STO with (n, l,m) = (1, 0, 0), i. e., an
atomic hydrogen 1s orbital with effective charge Ze. In the
spirit of the sudden approximation, the spectator electron
remains in its orbital, and the final state of the He + ion is
modeled as

|	̃He(E)〉 = 2− 1
2 [|1sZeφc(E)〉 + |φc(E)1sZe〉], (12)

where |φc(E)〉 is the Coulombic continuum wave function
for energy E and charge Z = +1. Using these model wave
functions, the analytic expression

P̃ (Ze,E) = 2

(
8(1 − Ze)Z3/2

e e−2 arctan(κ/Ze )
κ√

1 − e− 2π
κ

(
κ2 + Z2

e

)2

)2
dE

Ry
, (13)

with κ = √
(E + 2)/Ry and 1Ry = 13.60585972 eV, is ob-

tained for the probability density, i. e. for the model tail for the
high-energy continuum states. A fit to the ab initio spectrum
yielded Ze = 1.3074. As is evident from (13), the probability
density decays exponentially for high energies, which is the
most essential property. (In fact, it has been verified that all
subsequent conclusions are unchanged if a different model tail
is used in which the initial-state charge is fixed to that of the
tritium nucleus (Z = 1) and the effective charge of the final
Coulomb wave is used as the fit parameter.)

Figure 2 compares the calculated final-state probability
density with the analytical model tail and confirms the
applicability of the latter for high energies, in fact already
starting from about 200 to 250 eV, similarly as for T2. The
range of good agreement with a relative error of less than 5%
extends to energies of 20 keV and thus far beyond the validity
of the sudden approximation itself. Note, this energy is also
much larger than the 10 keV used as an upper limit in the fit.
The integrated probability density (including the model tail for
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FIG. 2. Final-state continuum probability density of He after
β decay of T− (solid) and a model tail with Ze = 1.3074 (dashed).
The inset shows the probability density on a linear scale.

energies above 904 eV) yields a total probability of 29.65%
for ionization of He following β decay of T−.

The mean excitation energy E relative to the electronic
ground-state energy of T− can be obtained from

E =
∑

n

EnPn +
∫ 904eV

24.59eV
EP (E) dE +

∫ ∞

904eV
EP̃ (E) dE.

(14)

Insertion of the final-state probability distribution calculated in
this work in (14) yields E = 27.487 eV for the mean excitation
energy of the decay product. This result may be compared to
the one obtained by the alternative relation

E = 〈
	T−

i

∣∣Ĥ (He )
∣∣	T−

i

〉
= E0(T−) − 2

〈
	T−

i

∣∣1

r

∣∣	T−
i

〉
. (15)

With the expectation value of 〈r−1〉 and the ground-state
energy E0(T−) reported by Frolov in [18], the mean excitation
energy calculated with (15) is E = 27.469 eV. Frolov also
reported the expectation values for the case of a finite mass
of the tritium anion nuclei. Again using (15) for this case,
one obtains E′ = 27.479 eV. This comparison confirms the
quality of the final-state distribution obtained in this work
and validates furthermore the use of the approximation of an
infinitely heavy nucleus approximation.

Frolov noted in [18] that his calculated bound-state proba-
bility appears to imply a continuum contribution of about 30%.
Since this value is about 10 times larger than the continuum
probability known for neutral T atoms, he speculated that in
fact a large number of decays (about 15–20%) may end up
in triplet states of helium, leaving a much smaller fraction
in the singlet continuum. The reasoning given in [18] is
that the more diffuse ground state of T− is not sufficient to
explain such a large continuum contribution, as follows from a
comparison with results obtained for Rydberg states of neutral
T atoms. On the other hand, triplet states may be populated
by the (virtual) interaction with the β electron omitted in the
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sudden approximation. This argument is, however, erroneous.
As has been discussed in detail in [22], the sum rule for the
sudden approximation gives always unity, independently of
higher-order corrections to it. This is also (as discussed above)
fulfilled by the present calculation, which indeed confirms the
about 30% continuum probability indirectly found but rejected
in [18].

Finally, the exchange interaction is expected to be much
smaller than the direct one (in [31] it was found for atomic
tritium to be smaller by a factor of η2), but already the direct
term (first term beyond the sudden approximation) is by a
factor of η2 smaller than the sudden approximation. Close to
the end point of tritium β decay one finds for the Sommerfeld
parameter η ≈ −0.0271 and for T2 it was explicitly shown
that the first-order correction to the sudden approximation is
itself of the order of η2 and thus of the order of 0.01% [12], in
accordance with corresponding system-independent sum rules
given in [22].

IV. CONCLUSION

In this work, the complete final-state probability distribu-
tion of He following the nuclear β− decay of tritium anions
has been calculated. For the small number of bound states
considered previously in [18] the agreement is very good for
the dominant ground and first excited states. The agreement
with an earlier relativistic multiconfiguration Dirac-Fock
calculation [19] is, on the other hand, very poor. Since such
a large size of relativistic effects is not expected, especially

not for the light nuclei involved, this deviation is attributed to
a possibly too small basis set used in [19]. Nevertheless, the
present study may stimulate further theoretical work to clarify
the remaining discrepancies to [18] and of both works to the
relativistic ones in [19].

In order to further test the accuracy of the present cal-
culation, the bound-state energies were compared with very
accurate literature data and were found to agree very accurately
with them. Furthermore, the mean excitation energy obtained
from the complete final-state spectrum was compared with
the value predicted on the basis of closure. Again, very
good agreement was found. Therefore, the results of this
work should be reliable and of direct importance for the
tritium neutrino-mass experiment KATRIN, which is presently
under construction. To allow the use in the experimental
analysis and for predicting how much a possible T− admixture
to the T2 source spoils the extracted neutrino mass, the
continuum transition probability is given in binned form, but
it is also available numerically on request. Finally, it may
be noted that a controlled admixture of T− to the tritium
source may in fact be used for the analysis of the exper-
imental sensitivity to the atomic and molecular final-state
spectrum.
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