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Concatenated cranking representation of the Schrödinger equation and resolution
to pulsed quantum operations with spin exchange
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We propose a concatenated cranking approach to resolve the dynamics for a class of time-dependent quantum
systems with specific algebraic structure. By invoking a series of canonical transformations successively,
concatenated representation of the Schrödinger equation is established and evolution of the system is solved
in the cranking representation via discarding high-order nonadiabatic terms. The introduced method is then
applied to investigate nonadiabatic dynamics and imperfection effects in pulsed gate operations of quantum dot
systems regarding the existence of spin-orbit effects. The fidelity loss of the SWAP gate owing to anisotropic
exchange and the fidelity retrieval of the Loss-DiVincenzo pulse sequence under nonadiabatic evolution are
elaborated by virtue of the proposed method.
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I. INTRODUCTION

The study of time-dependent quantum systems is a fun-
damental subject of quantum mechanics and it has received
increasing interests in various fields, including quantum
transport [1], quantum optics [2], and quantum information
processing [3]. In particular, to implement desired quantum
manipulation for information processing, physical systems
should undergo an evolution generated by a sequence of
pulsed interactions with well-designed strength and time
duration that involves coupling either in between qubits or
of the qubit system with external fields. In these fabrications,
accurate control of the coherence evolution requires reliable
resolution to the Schrödinger equation with time-dependent
Hamiltonians.

It is well known that a time-dependent quantum system can
be solved rigorously if the system possesses a complete set
of dynamical invariants or so-called Lewis-Riesenfeld (LR)
invariants [4,5]. Such invariants could be found, e.g., by virtue
of an algebraic dynamical method [5,6]. Practically, however,
it happens that exact analytical expression of the LR invariants
was found only for some systems of particular classes. In
the case that the pulsed interaction is weakly time dependent,
the evolution could be dealt with by perturbation expansion or
other decomposition methods to approximate the time-ordered
exponential operator [7]. Recently, a perturbation series to
construct the dynamical invariant has also been proposed [8]
and the method was shown able to yield an exact LR invariant
for a linearly driven harmonic oscillator while resumming all
order of the expansion series.

In this article we will propose a concatenated cranking
approach to resolve the Schrödinger equation for a class
of time-dependent quantum systems with certain algebraic
structure. The main proposal of the method, which will be
elucidated in detail through a typical SU(2) model, is to
invoke a series of canonical transformations to the system
and incorporate the nonadiabatic term successively into the
resulted cranking representation. The scheme of the con-
catenated procedure allows a unified calculation of the time
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evolution operator with desired high precision to include the
nonadiabatic effect for time-dependent quantum systems with
a specific algebraic structure. Moreover, we apply this method
to investigate nonadiabatic dynamics and imperfection effects
of pulsed gate operations in quantum dot systems regarding the
existence of anisotropic exchange interactions. In particular,
we show that the Loss-DiVincenzo pulse sequence [9] is
able to produce a faithful controlled-NOT (CNOT) operation
in nonadiabatic evolution, provided that the interaction pulses
have a time-reversal symmetry.

The rest of the article is organized as follows. Section II
is contributed to a detailed introduction for the concatenated
cranking representation of the solution of Schrödinger equa-
tion. We will employ an SU(2) model and present a schematic
description of the cranking approach and relevant truncation
approximation (Sec. II A). The dynamical invariants associ-
ated the series of cranking representation under truncation will
be elucidated in Sec. II B. The efficiency of the method is then
testified by an illustrative spin- 1

2 model in a rotating magnetic
field (Sec. II C). In Sec. III we shall employ the proposed
method to study pulsed quantum operations on electron spins
in the presence of anisotropic exchange interactions. We will
calculate the fidelity loss of the SWAP gate owing to the
spin-orbit effects (Sec. III A) and demonstrate that the noise
resilience property of the Loss-DiVincenzo proposal against
anisotropic exchange could be rigorously guaranteed in the
nonadiabatic process (Sec. III B). Finally, we summarize the
results in Sec. IV.

II. GENERAL DESCRIPTION OF THE METHOD

A. Concatenated cranking representation of the
Schrödinger equation

Let us start from a standard SU(2) model with a linear
expression of its Hamiltonian:

H (t) = ��(t) · �J , (1)

where �J denotes the angular-momentum operator with
its components satisfying [Ji, Jj ] = iεijkJk . The external
field ��(t) = (�x(t),�y(t),�z(t)) here assumes an analytical
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form with general time dependency. To explore the evolu-
tion of the system generated by the Schrödinger equation
i∂t |ψ(t)〉 = H (t)|ψ(t)〉, we introduce a rotation via |ψ(t)〉 =
G0(t)|ψ [0]

g (t)〉, where G0(t) = e−iϕ(t)Jze−iθ(t)Jy with θ (t) =
arccos(�z/�) and ϕ(t) = arctan(�y/�x) accounts for a
canonical transformation converting the instantaneous Hamil-
tonian H (t) as: G

†
0H (t)G0 = �(t)Jz. The state |ψ [0]

g (t)〉 in the
cranking representation defined by the transformation G0(t)
satisfies a new Schrödinger equation in which the effective
Hamiltonian is obtained as

H [1]
g (t) = G

†
0H (t)G0 − iG

†
0∂tG0 = �(t)Jz + �[0](t), (2)

where the extra term

�[0](t) ≡ −iG
†
0∂tG0 = ϕ̇ sin θJx − θ̇Jy − ϕ̇ cos θJz (3)

accounts for a gauge potential since H (t) depends on time
explicitly. As the field varies slowly and satisfies θ̇ (t) �
�(t) and ϕ̇(t) � �(t), one derives simply the conventional
adiabatic solution by discarding the term �[0](t). The time
evolution operator is then expressed as

U [0](t) = G0(t)U [0]
g (t)G†

0(t0), (4)

where U [0]
g (t) = exp{−i

∫ t

t0
�(t ′)dt ′Jz}.

To gain nonadiabatic corrections to the evolution, note that
the term �[0](t) contained in H [1]

g (t) has a linear expression
in terms of Ji , hence we can record H [1]

g (t) ≡ ��[1](t) · �J .
Subsequently, we introduce further a canonical transformation
G1(t) = e−iϕ1(t)Jze−iθ1(t)Jy , in which θ1(t) = arccos(�[1]

z /�[1])
and ϕ1(t) = arctan(�[1]

y /�[1]
x ), to convert the instantaneous

Hamiltonian H [1]
g (t) with its �J along the z direction again. This

leads to a renewed cranking representation of the Schrödinger
equation in which the associated Hamiltonian takes the form
of

H [2]
g (t) ≡ ��[2](t) · �J = �[1](t)Jz + �[1](t). (5)

At this stage, the first-order correction to the adiabatic solution
is achieved by discarding the term �[1](t) ≡ −iG

†
1∂tG1 and

the time evolution operator herein reads

U [1](t) = G0(t)G1(t)U [1]
g (t)G†

1(t0)G†
0(t0), (6)

where U [1]
g (t) = exp{−i

∫ t

t0
�[1](t ′)dt ′Jz}. The described

cranking procedure can be performed repetitively and a
concatenated representation of the time evolution operator
of the Schrödinger equation hence is established. Specifi-
cally, the (k + 1)th-order representation exploits a cranking
transformation Gk(t) = e−iϕk (t)Jze−iθk (t)Jy which converts the
orientation of the �J of the Hamiltonian H [k]

g (t) along the
z axis. The corresponding H [k+1]

g in the representation has a
form of H [k+1]

g (t) = �[k](t)Jz + �[k](t) in which the gauge

potential �[k](t) ≡ −iG
†
k∂tGk accounts for the (k + 1)th-

order nonadiabatic effect. The kth-order approximation to the
evolution of the system is obtained by discarding �[k](t) and
the evolution operator of the original Schrödinger equation is
written as

U [k](t) = G0(t) · · ·Gk(t)U [k]
g (t)G†

k(t0) · · · G†
0(t0), (7)

where U [k]
g (t) = exp{−i

∫ t

t0
�[k](t ′)dt ′Jz}.

B. Dynamical invariants associated with concatenated
cranking representation

Let us consider the corresponding dynamical invariant
with respect to the approximative dynamics yielded by the
concatenated cranking representation. Recall that the LR
invariant of a time-dependent quantum system is defined by
an observable I (t) that satisfies

i∂t I (t) − [H (t), I (t)] = 0. (8)

The peculiar interest of finding such an invariant resides in that
its eigenvectors, denoted as |φm(t)〉, are transported diagonally
during the evolution generated by the Schrödinger equation.
Indeed, the basic solution of the Schrödinger equation can be
derived straightforwardly by adding a total phase to |φm(t)〉,
i.e., |ψm(t)〉 = ei	m(t)|φm(t)〉, where

	m(t) =
∫ t

t0

〈φm(t ′)|i∂t ′ − H (t ′)|φm(t ′)〉dt ′. (9)

Intriguingly, the above-established concatenated represen-
tation indicates a series of dynamical invariants under trun-
cation approximation. Specifically, the first-order invariant,
corresponding to an approximative evolution of Eq. (6), takes
the form of

I [1](t) = G0(t)G1(t)JzG
†
1(t)G†

0(t)

= 1

�[1](t)
[H (t) + �̃[0](t)], (10)

where �̃[0](t) = G0(t)�[0](t)G†
0(t). One can recognize that

the eigenvectors of I [1](t), |φ[1]
m (t)〉 = G0(t)G1(t)|m〉, are

transported diagonally under the action of the evolution
operator (6). More generally, for the kth-order approximation
specified by Eq. (7), the associated dynamical invariant is
derived as

I [k](t) = G0(t) · · ·Gk(t)JzG
†
k(t) · · ·G†

0(t)

= 1

�[k](t)

[
H (t) +

k−1∑
i=0

�̃[i](t)

]
, (11)

where �̃[i](t) = G0(t) · · ·Gi(t)�[i](t)G†
i (t) · · ·G†

0(t). It turns
out that the total phase induced to the eigenvector |φ[k]

m (t)〉 =
G0(t) · · ·Gk(t)|m〉 can be expressed by a consistent formula

	[k]
m (t) =

∫ t

t0

〈
φ[k]

m (t ′)
∣∣i∂t ′ − H (t ′)

∣∣φ[k]
m (t ′)

〉
dt ′

= m

∫ t

t0

�[k](t ′)dt ′, (12)

in which m denotes the quantum number of Jz.

C. Spin-half model in a rotating field

To testify the efficiency of the proposed concatenated
cranking approach, let us apply it to the spin- 1

2 system in a
rotating magnetic field with a Hamiltonian

H (t) = �B(t) · �S, (13)

where �B(t) = B0(sin θ cos ωt, sin θ sin ωt, cos θ ). One can
directly obtain, through the canonical transformation
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G0(t) = e−iωtSze−iθSy to its Schrödinger equation, the first-
order cranking representation with its Hamiltonian

H [1]
g = ��[1] · �S, ��[1] = (ω sin θ, 0, B0 − ω cos θ ). (14)

The effective magnetic field ��[1] now is independent of
time. Consequently, by employing further a constant rotation
G1 = e−iθ1Sy with θ1 = arctan[ω sin θ/(B0 − ω cos θ )], the
concatenated representation terminates autonomously. The
evolution of the system is then resolved exactly with the time
evolution operator given as

U (t) = G0(t)G1e
−i�[1](t−t0)SzG

†
1G

†
0(t0). (15)

Accordingly, the rigorous dynamical invariant of the system
is obtained

I (t) = G0(t)G1SzG
†
1G

†
0(t) = H (t) − ωSz

�[1]
. (16)

This leads straightforwardly to the recurrent bases of the
original Schrödinger equation

|φ1/2(t)〉 = cos �|↑〉 + eiωt sin �|↓〉,
(17)|φ−1/2(t)〉 = sin �|↑〉 − eiωt cos �|↓〉,

where � = (θ + θ1)/2. From Eq. (12), the total phases induced
to these bases during cyclic evolution with T = 2π/ω are
worked out to be 	± = ±π (�/ω + 1).

III. PULSED QUANTUM GATE OPERATIONS ON
ELECTRON SPINS IN THE PRESENCE OF

ANISOTROPIC EXCHANGE

We are now beginning to consider the pulsed quantum
gate scheme in quantum dot systems based on spin exchange
interactions. In the ideal situation with an isotropic exchange
coupling, a SWAP gate can be generated through the evolution
U (λ) = exp(−iλ�S1 · �S2) by setting the pulse strength λ =∫ τs

−τs
J (t)dt = π , where J (t) is the coupling coefficient of the

exchange interaction. According to Loss and DiVincenzo’s
proposal [9], the rigorous CNOT operation is then achieved by
combining the “square-root-of-SWAP” gate Us ≡ U (π

2 ) with
single-qubit operations:

UCNOT = ei π
2 S1z e−i π

2 S2zUse
iπS1zUs. (18)

In a realistic system, however, the presence of the spin-orbit
coupling will induce additional anisotropic exchange and the
resulted Hamiltonian takes the form [10–13]

H (t) = J (t)�S1 · �S2 + Jβ(t)(S1xS2y − S1yS2x)

+Jγ (t)(S1xS2x + S1yS2y), (19)

where the added two terms describe an asymmetric
Dzyaloshinski-Moriya interaction and a symmetric anisotropic
ingredient, respectively. As the coefficients Jβ,γ (t) cannot be
tuned optionally, these anisotropic terms act as a source of
noises and their influence to the gate scheme has been studied
in many literatures [11–14]. Particularly, it was shown [12,13]
that in the case the Hamiltonian is weakly time dependent,
e.g., the pulses Jβ,γ (t) have the same form with J (t) or
these interaction pulses are exerted adiabatically, the noise
effect from the spin-orbit coupling should cancel itself in the
Loss-DiVincenzo gate sequence of Eq. (18).

In the case that the pulse of the anisotropic coupling Jβ,γ (t)
is not proportional to J (t), the influence from nonadiabatic
effects to the gate operation requires a careful analysis [12]. We
resume this issue and explore the imperfection to both quantum
operations of the single SWAP gate and the Loss-DiVincenzo
pulse sequence. It is noteworthy that we can demonstrate that
the Loss-DiVincenzo proposal is able to produce a rigorous
CNOT operation in the case of nonadiabatic evolution, provided
that the interaction pulses J (t) and Jβ,γ (t) have a time-reversal
symmetry. We emphasize that this consequence releases the
requirement for spin-based quantum computation which has
not been aware of before.

A. Loss of fidelity in the SWAP gate operation

The resource of the SWAP gate alone is sufficient for
universal quantum computation in an encoded space [15].
To investigate the imperfection effect to the evolution U (π )
owing to the existence of anisotropic terms, we note that
the assumed interaction (19) possesses an axial symmetry
hence the total spin Sz = S1z + S2z is conserved along the
evolution. The generated operation then reduces to a form
UH (π ) ∼= (e−iφ Ī2) ⊕ (eiφUsub), where Ī2 stands for a projector
on the subspace {|↑↑〉,|↓↓〉} and Usub is an evolution operator
acting on {|e±〉 = 1√

2
(|↑↓〉 ± |↓↑〉)} generated by

Hsub(t) = �z(t)Kz + �y(t)Ky (20)

with �z(t) = J (t) + Jγ (t), �y(t) = −Jβ(t). The Kα (α =
x, y, x) here denote the pseudo spin operators acting on the
subspace {|e±〉}. Note that Hsub(t) contains only operators
Ky and Kz, we can now employ the following cranking
transformations to achieve the concatenated representation

Gn(t) =
{
eiθn(t)Kx , n = 2k

eiθn(t)Ky , n = 2k + 1,
(21)

where

θ0(t) = arctan
�y

�z

, θn(t) = arctan
(−1)nθ̇n−1(t)

�[n−1](t)
(22)

and �[n](t) = [(�[n−1])2 + θ̇2
n−1]1/2. Correspondingly, the

gauge potential in each cranking representation is obtained
explicitly:

�[2k](t) = θ̇2k(t)Kx, �[2k+1](t) = θ̇2k+1(t)Ky. (23)

According to Eqs. (7) and (12), the occurrence of the gauge
potential in the nonadiabatic evolution will result in a modified
phase factor in comparing with its adiabatic counterpart. We
plot the magnitude �[n](t) in Fig. 1, with its integral indicating
the total phase factor. The pulse form of J (t) and Jµ(t) (µ =
β, γ ) is assumed as

J (t) = J0Sech2(2νt), Jµ(t) = µ0Sech4(2νt). (24)

The pulse J (t) satisfies limτ→∞
∫ τ/2
−τ/2 J (t)dt = J0/ν = π and

the pulse height J0 in our calculation is taken as π × 1010 s−1

(setting h̄ = 1). Besides, in the nonadiabatic evolution the
recurrent bases will deviate from instantaneous eigenstates
of the Hamiltonian and hence induce additional correction to
the adiabatic solution. Since the anisotropic terms will not
affect the states |↑↑〉 and |↓↓〉, we depict in Fig. 2 the fidelity
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FIG. 1. Schematic of deviation of the phase factor (reflected by
the integral of the curves along horizontal coordinates) in comparing
with that of adiabatic evolution. The intensities of the anisotropic
terms are set as β0 = 0.5J0 and γ0 = 0.1J0. The series of magnitudes
�[n](t) in the concatenated representation of orders n = 0, 1, 2, 3, 4
are plotted, where n = 0 accounts for the adiabatic approximation.

between UH (π ) and the ideal SWAP gate U (π ) while acting
on the bases |e±〉. The results reveal that as β0/J0 is small the
approximation agrees well with the numerically exact value,
while if the ratio β0/J0 increases high-order calculations are
required to reach convergence.

B. Fidelity retrieval of the Loss-DiVincenzo pulse sequence
under nonadiabatic evolution

Let us look over the noise resilience feature of the pulse
sequence (18) against spin-orbit effects. Indeed, the noise
cancellation process here is very similar to the refocusing
technique that has been widely used in fault-tolerant quantum
information processing [16]. It is seen that the single qubit
operation eiπS1z contained in the sequence (18) acts as a spin
flip �̂ = eiπKx on the subspace of {|e±〉}. In the case that
the pulsed interaction is weakly time dependent, the noise
cancellation of the spin-orbit effects is clearly understood since
the twice evolution of Hsub(t) will cancel each other owing

FIG. 2. Fidelity of the SWAP gate as a function of the ratio
β0/J0 in the presence of anisotropic exchange. The interaction pulse
assumes the form of Eq. (24) with truncation at τ/2 = 150 ps
[where J (±τ/2) ∼ 10−4J0]. We assume the pulse height γ0 = 0.1J0.
The solid line accounts for the numerically exact value; rectangles
line, dots line, stars line, and triangles line stand for results of the
concatenated series n = 0, 1, 2 and 3, respectively.

to the peculiarity of Hsub(t)�̂ = −�̂Hsub(t). Intriguingly, we
show in the below that this noise-resilient property should
hold rigorously in the case of nonadiabatic evolution, provided
that the interaction pulse has a time-reversal symmetry, i.e.,
Hsub(τ − t) = Hsub(t). To prove this promising character, we
write the evolution operator Usub from time −τ/2 to τ/2 as

Usub = lim
N→∞

Usub(tN ) · · · Usub(t2)Usub(t1), (25)

where Usub(ti) = e−i�τHsub(ti ). Note that in the time interval
�τ = τ/N the Hamiltonian Hsub(ti) can be viewed as time in-
dependent, one derives �̂†Usub(ti)�̂ = U−1

sub(ti). Consequently,
there is

�̂†Usub�̂ = lim
N→∞

U−1
sub(tN ) · · · U−1

sub(t2)U−1
sub(t1)

= lim
N→∞

U−1
sub(t1) · · · U−1

sub(tN−1)U−1
sub(tN )

= U−1
sub, (26)

where we have used the property of time-reversal symmetry
of Hsub(t). This confirms that the influence of anisotropic
terms in the twice evolution inserted with �̂ will cancel
each other rigorously whatever the process is adiabatic or
nonadiabatic.

The noise-resilient feature described above could also be
explicated in the framework of the proposed concatenated
representation of the Schrödinger equation. It happens that the
rigorous dynamical invariant I (t) of the system, indicated by
the series of I [n](t) in Eq. (11) while resumming arbitrary high
order, is antisymmetric under the combined transformation of
the time reversal and the spin flip �̂. To prove this fact, we
first note that H (τ − t) = H (t) and H (t) contains only ingre-
dients Ky and Kz, so there exists Hsub(τ − t)�̂ = −�̂Hsub(t).
Second, we verify that the rotation angles of Eq. (22) satisfy
θn(−t) = (−1)nθn(t) and θ̇n(−t) = (−1)n+1θ̇n(t). Thus all
series Gn(t) specified in Eq. (21) are invariant under the
combined transformation of the time reversal and spin flip �̂,
whereas all terms �[n](t) in Eq. (23) satisfy �[n](τ − t)�̂ =
−�̂�[n](t). Consequently, all �̃[n](t) contained in I [n](t)
should satisfy the same relation with �[n](t). This completes
our proof that I (τ − t)�̂ = −�̂I (t). Therefore, one can
conclude that the eigenvectors of I (t) will undergo inversely
in the second pulsed process and the noise cancellation of
the spin-orbit effects herein is understood unambiguously in
accord with the refocusing scheme.

IV. CONCLUSION

In conclusion, we have proposed a concatenated cranking
approach to solve the Schrödinger equation for a class of time-
dependent quantum systems with specific algebraic structure.
We have resorted to an SU(2) model to characterize the
truncation procedure of the method and reveal an asymptotical
series to approximate the dynamical invariants of the system.
In principle, this method can be extended to deal with a wide
range of time-dependent physical systems which possesses
a semisimple Lie algebraic structure. We mention that for
the cases of high-dimensional algebraic systems, the canon-
ical transformation employed in the successive procedure
should be reconstructed so that the transformed instantaneous
Hamiltonian contains only the generators of Cartan subalgebra
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of the semisimple Lie algebra. The Abelian property of these
Cartan generators warrants that the ingredient U [k]

g in the
evolution operator can be easily calculated irrespective of
the time order of its integral. According to the theory of Lie
algebras, the corresponding canonical transformation is just
an element of the semisimple Lie group which can always be
found [17]. We would like to stress further that the proposed
approach utilizing the series of cranking transformations that
approximates the dynamical evolution of the system with a
desired precision differs distinctly from conventional methods
based on perturbation expansion of the time-ordered exponen-
tial operator; its mathematical and physical foundations hence
deserve further investigation.

For applications, we have exploited the method to study
imperfection effects in pulsed quantum operations of quantum

dot systems concerning the existence of the spin-orbit effects.
We have investigated the fidelity loss of the SWAP gate in the
case of nonadiabatic evolution where the anisotropic interac-
tion pulses Jβ,γ (t) have different form from the isotropic J (t).
Furthermore, we have shown that the Loss-DiVincenzo pulse
sequence has noise-resilient property against the anisotropic
exchange coupling even for the case of nonadiabatic evolution,
provided that the exerted interaction pulses have a time-
reversal symmetry.
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