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Strong superadditivity and monogamy of the Rényi measure of entanglement

Marcio F. Cornelio* and Marcos C. de Oliveira†

Instituto de Fı́sica Gleb Wataghin, Universidade Estadual de Campinas, Caixa Postal 6165, CEP 13084-971, Campinas, São Paulo, Brazil
(Received 3 June 2009; revised manuscript received 29 September 2009; published 29 March 2010)

Employing the quantum Rényi α entropies as a measure of entanglement, we numerically find the violation of
the strong superadditivity inequality for a system composed of four qubits and α > 1. This violation gets smaller
as α → 1 and vanishes for α = 1 when the measure corresponds to the entanglement of formation. We show
that the Rényi measure aways satisfies the standard monogamy of entanglement for α = 2, and only violates a
high-order monogamy inequality, in the rare cases in which the strong superadditivity is also violated. The sates
numerically found where the violation occurs have special symmetries where both inequalities are equivalent.
We also show that every measure satisfying monogamy for high-dimensional systems also satisfies the strong
superadditivity inequality. For the case of Rényi measure, we provide strong numerical evidences that these two
properties are equivalent.
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I. INTRODUCTION

Quantum resources present several counterintuitive features
allowing more efficient realization of classical and quantum
communication tasks. Unfortunately, it is hard to predict the
way in which those features are distributed or extended. This
is the case for several and important additivity problems, such
as for the Holevo capacity of a quantum channel, minimal
output entropy of a quantum channel, and the additivity
of entanglement of formation (EOF) [1], one of the most
important entanglement measures. These were shown by Shor
[2] to be all equivalent to the strong superadditivity (SS) [3]
of the EOF. An entanglement measure E satisfies SS if

Ea1a2|b1b2 � Ea1|b1 + Ea2|b2 , (1)

meaning that, when Alice holds parties a1 and a2 and Bob
holds parties b1 and b2, the entanglement between Alice and
Bob is larger than the entanglement between a1 and b1 plus the
one between a2 and b2. It is a very important relation since it
is connected to the ability to extract arbitrary entangled states
from a standard one and the ability to communicate classical
information using a quantum channel. Moreover, if a measure
E is additive for pure states and extends for mixed states
through its convex roof, the SS implies the additivity of the
measure for mixed states as well. Although the additivity of
EOF was proved previously in some very particular cases [4],
recently, Hastings demonstrated in a remarkable work [5] that
once all of these conjectures were equivalent they were also
in general false due to the existence of counterexamples for
the minimal output entropy for sufficiently large dimensions
of the Hilbert spaces involved. Whether there is a violation of
SS of EOF for lower dimensions is unknown. Perhaps finding
counterexamples for lower dimensions requires new insights
from the Theory of Information.

In this article we derive an entanglement measure based on
the α-quantum Rényi entropy. For α > 1 we numerically find
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counterexamples violating the SS (1) for four qubits systems,
the smallest possible situation for which SS can be written.
This suggests that counterexamples for SS of EOF (α = 1)
may exist for smaller dimensions. Moreover, this measure also
provides an important relation between SS and the so-called
monogamy of entanglement [6]. The last is related to the way
in that quantum correlation (entanglement) can be distributed
between many parties. A measure of entanglement E satisfying
the monogamy relation with Alice’s subsystem a and Bob’s
subsystems b1 and b2 must follow

Ea|b1b2 � Ea|b1 + Ea|b2 . (2)

Important measures of entanglement, and particularly the
EOF, fail to satisfy monogamy [6]. In some sense it seems
that these two properties, in principle unrelated, SS and
monogamy of entanglement, may actually be related and this
could be important for quantum information tasks since it
would be also equivalent to the other existent conjectures.
We start by discussing entanglement monogamy relations and
we show how a second-order monogamy relation implies the
SS inequality independently of the measure of entanglement.
Then we show that the Rényi measure, for α = 2, satisfies
the standard monogamy inequality for qubits. Numerically,
we investigate the interrelation between these two inequalities
using that measure. Interestingly, we find that violation
of these two inequalities happens quite rarely but always
simultaneously. Thus, we conjecture that SS violation of the
Rényi measure for α = 2 is necessary and sufficient for the
second-order monogamy violation. After that we show how
numerical methods can be used to find violations of SS of the
Rényi measure for α very close to one.

II. SECOND-ORDER MONOGAMY AND STRONG
SUPERADDITIVITY

Monogamy of entanglement shows how quantum cor-
relation is special and different from the classical one.
While classical correlation can be arbitrarily shared with
as many individuals as desired, quantum correlation cannot.
This impossibility of sharing quantum entanglement was first
quantified by Coffman, Kundu, and Wooters (CKW) [6],
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through the squared concurrence C2, as follows:

C2
a|b1b2

(ρab1b2 ) � C2
ab1

(ρab1b2 ) + C2
ab1b2

(ρab1b2 ) (3)

for any pure or mixed state ρab1b2 of a tripartite system built of
qubits a, b1, and b2.

Surprisingly, not all measures of entanglement satisfy
monogamy relations, for increased Hilbert space dimension
and/or number of systems, with the exception of the squashed
entanglement [7]. Moreover, there exists a constraint in the
CKW monogamy relation: it is true only when a, b1, and b2

are qubits. In Ref. [8], the authors extended its validity when
b2 is an n-level system, allowing them to prove the CKW
monogamy for N -qubits, C2

1|23...N � C2
12 + C2

13 + · · · + C2
1N ,

as conjectured in Ref. [6]. However, the inequality (3) is not
satisfied by increasing the dimension of a [9]. In fact, a measure
of entanglement which is monogamous when the subsystem a

has higher dimensions implies directly the SS as we now show.
Let us consider the case of subsystem a being broken into two
subsystems, a1 and a2, and apply the monogamy relation (2)
again to obtain

Ea1a2|b1b2 � Ea1|b1 + Ea2|b1 + Ea1|b2 + Ea2|b2 . (4)

We call this relation second-order monogamy, whose meaning
is similar to that of (2): The amount of bipartite entanglement
shared between a1 ⊗ a2 and b1 ⊗ b2 gives us an upper bound
to the sum of entanglement shared by a1 and b1, a2 and b1,
a1 and b2, and a2 and b2. This idea can be generalized and
we can obtain higher-order monogamy relations by successive
applications of (2). We are, however, more interested in the
fact that a measure E satisfying this second-order relation (4)
also satisfies the SS inequality (1). Note, however, that by
this reasoning it is not possible to show whether SS implies
the second-order monogamy (4) directly. Instead, the SS is a
necessary condition for satisfying monogamy for any measure
of entanglement. Then we question if it is sufficient as well. To
investigate this point we choose the family of Rényi entropies
which are known to be additive [10,11].

III. RÉNYI MEASURE OF ENTANGLEMENT

The quantum Rényi entropy of order α [12] is defined as

Rα = 1

1 − α
log Trρα, (5)

where α � 0 and the logarithmic function will always be
assumed to be base 2 in this article. In this way, for any
pure bipartite system, the Rényi α entropy of one of the
subsystems is a good and additive measure of entanglement.
The natural way to define the Rényi measure of entanglement,
Rα , for a bipartite mixed-state ρab is to use the convex roof
reasoning of Ref. [1]. We consider the set E of all ensembles
of pure states |ϕi〉 with weight pi realizing the state ρab,
ρab = ∑

i pi |ϕi〉〈ϕi |. For each ensemble, we can define an
average value of Rα . Then we define Rα(ρab) as the minimal

value of this average over all the possible ensembles,1

Rα(ρab) = min
E

{∑
i

piRα(|ϕi〉)
}

. (6)

In the case of two qubits, we can show an analytical
expression for Rα for all α > 1. For pure states,

Rα(ρab) = 1

1 − α
log[xα + (1 − x)α, (7)

where x = (1 + √
1 − C2)/2 and C is the concurrence [1].

When α → 1, this formula goes to the usual one for the EOF
[16]. To see that this relation is also true for mixed states, we
must notice that Rα is a convex function of C for α � 1 and
the ensemble realizing the convex roof of concurrence is an
ensemble composed of states with the same value of C [16].
By this construction, Rα would be an additive measure if the
SS was true.

Now we show that R2 satisfies the CKW monogamy for
systems of N qubits. First we consider the case of an N -
partite pure state. Noticing that Eq. (7) simplifies for α = 2, we
can write the R2 between subsystem 1 and the other (N − 1)

subsystems asR1|23...N

2 = − log
(2−C2

1|234...N )

2 � − log (2−∑
i C2

1i )
2 ,

where the second inequality comes from the CKW monogamy
[6,8]. The entanglement between the two subsystems is given
by Eq. (7). Then, if we can show

− log

(
2 − ∑

i C
2
1i

)
2

� −
∑

i

log
2 − C2

1i

2
, (8)

we obtain the CKW monogamy for R2. However, the inequal-
ity (8) is equivalent to

0 � 1

22

∑
i �=j

1

2!
C2

1iC
2
1j − 1

23

∑
i �=j �=k

1

3!
C2

1iC
2
1jC

2
1k

+ 1

24

∑
i �=j �=k �=m

1

4!
C2

1iC
2
1jC

2
1kC

2
1m

− 1

25

∑
i �=j �=k �=m�=n

1

5!
C2

1iC
2
1jC

2
1kC

2
1mC2

1n + · · · . (9)

It is easily seen that this inequality is always true since
each negative term is always smaller than its preceding
positive one. Since it implies the CKW monogamy, we have
proved our claim. The result generalizes for mixed states by
straightforward use of the definition of R2 as a convex roof
and the fact the monogamy is true for pure states.

IV. NUMERICAL RESULTS

The Rényi measure of entanglement does not satisfy the
SS only in some very particular cases. Numerically, we

1Due to the Schur concavity of Rényi entropy, Rα does not increase
under deterministic local operations and classical communication
(LOCC) [13]. However, the Rényi entropy for α � 2 is known to
be concave only if the dimension of the space is 2 [14]. There is a
counterexample to the concavity for a dimension larger than 8 and
α = 2 [14]. This implies that Rα might increase on average under
probabilistic LOCC for higher-dimensional systems [15].
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FIG. 1. (Color online) Evolution of the minimization. Each point
is a new state found with a smaller residual entanglement than the
previous one. The total number of states generated in this example
was about 10 000. One can see that the residues of monogamy and
strong additivity start to coincide when they are close to zero.

were able to find counterexamples for α very close to one
with systems of only four qubits (Fig. 1). The violation is
smaller as α → 1 and vanishes for the case of EOF (Fig. 2).
These counterexamples suggest that counterexamples to the
additivity of EOF and Holevo capacity may exist for smaller
dimensions. Furthermore, in the particular case of α = 2, we
could not find any violation of monogamy inequality not
corresponding to the violation of the SS as well. In fact, all
states numerically found where this violation occurs are such
that two of the bipartite entanglements appearing on the right
side of Eq. (4) vanish, being thus equivalent to the SS inequality
(1). Thus, we conjecture that SS is necessary and sufficient for
monogamy.

Violations of inequalities (1) and (4) are not easy to find.
For the case of α = 2, we were not able to find a violation
by choosing 50 million pure states randomly (according to the
Haar measure), which takes about a week of computing time on
a standard PC. To find one, we had to employ a simple Monte
Carlo minimization algorithm. The function to be minimized is
the difference between the first and the second members of (1)
and (4), also called residual entanglement [6]. So there are two
residual entanglements, one for SS (1) and one for monogamy
(4). The algorithm works as follows. First, we choose randomly
a state as a seed and we fix a distance δ. Then we look randomly
for a state with smaller residual entanglement within a distance
(trace distance) δ from the seed. We also use a counter to count
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FIG. 2. (Color online) Violation of SS for some states numerically
found. These states are found successively minimizing the residual
entanglement for SS for α = 2, 1.5, 1.2, 1.1, and 1.05.

the number of random states generated until we find a state with
smaller residual entanglement. When we find one we always
reset the counter and start the search from this state as a new
seed. When the counter gets some large value (1000 is usually
large enough), we divide by 2 the distance δ from the seed and
reset the counter. When the distance gets smaller than 10−4,
we stop (this is sufficient to get a precision of order 10−8).
A standard PC can run this in some minutes for four-qubit
systems and the results are very reasonable. Figure 1 shows
the progress of the algorithm for one particular case.

With this method, the algorithm finds a vanishing residual
entanglement on 70% of the runnings and a negative residual
entanglement of −0.0197 on the remaining 30%. This state,
which we call |ψvio〉, has a reduced density matrix ρa1a2 with
eigenvalues {0.66, 0.14, 0.14, 0.06} and has a considerable
entanglement,R2 = 1.06, between a and b. The density matrix
ρa1b1 and ρa2b2 has eigenvalues {0.997, 0.003, 0, 0}; that is,
they are almost pure. So |ψvio〉 is very close to a product state
of the form |ψa1b1〉 ⊗ |ψa2b2〉. The entanglement between the
subsystems a1 and b1 and a2 and b2 are all equal to 0.54. The
entanglements between all the other qubits vanish. Therefore,
these states can be characterized by showing entanglement
only between the components relevant to the SS inequality
and been close to product states of the subsystems 1 and 2.

We also conducted an extensive numerical test to check if
all states violating monogamy have these properties. Using
the search algorithm described, we obtain a sequence of
states forming a path from an initially random state to one of
maximum violation of (4). The states of this path start to violate
monogamy at the same point that they violate SS and the value
of violation is always the same (see Fig. 1), confirming that
two bipartite entanglements of (4) vanish. Furthermore, during
the process, thousands of random states are generated near
this path and tested. With this method we tested more than
3 × 106 states in many different runnings of the algorithm. In
order to check this more carefully, we made a modification
in the algorithm for not staying always near this path. When
we get inside the region of states having negative residual
entanglement, we stop to decrease the distance and start a
random walk in that region. With this modified method, we
checked more than 4 × 106 states and all of them have the same
residual entanglement for monogamy and SS inequalities.
Therefore, in the case of the R2 for four-qubit systems, we
conjecture that states violating the monogamy inequality (4)
are the ones that also violate the SS (1) as well.

Finding a violation for the SS for α close to one is more
difficult. The violation gets very small and the best strategy is to
use a recurrence procedure. Instead of starting our search with
a random state, we start it with the state that maximally violates
SS for α = 2 as a seed, but run the algorithm for minimizing
the residual entanglement of SS with α = 1.5 starting with a
smaller distance of 10−2 and leave it decreasing until 10−8.
Then we go successively to α = 1.2, 1.1, 1.05, . . . and soon
on. The progress of this process can be seen in Fig. 2 and
illustrates how the violation of SS vanishes as α → 1. With
this method, we found violation for α = 1.002 of order of
10−6. For large α, the violation saturates to a value depending
on the state. These counterexamples strongly suggest that
there are counterexamples to the SS of Rényi measure for
all α > 1.
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We have made an extensive search for counterexamples to
SS for α = 1 using these methods. As the numerical methods
were efficient for finding counterexamples for almost every α,
we have a strong indication that there are no violations to SS
of EOF for four-qubits systems. Despite that, the existence of
counterexamples to SS for α close to one at these very small
dimensions suggest that there can be counterexamples to SS of
EOF, and for all the other equivalent additivity questions, for
reasonably smaller dimensions than the ones necessary in the
Hastings counterexamples. It is important to remember that his
counterexamples were inspired by previous ones of Hayden
and Winter [17] for the minimal Rényi entropy output of a
quantum channel. So the counterexamples found here can be
considered as a good indication of the existence of analogous
ones for the EOF. The existence of such counterexamples,
for smaller dimensions, would have great implications for
quantum information. It would imply that the superadditivy
of the Holevo capacity and the subadditivity of EOF can be
used to improve the ability of communication over a quantum
channel and of the ability of forming states from a standard
resources like Einstein-Podolsky-Rosen pairs in more practical
and simpler situations.

V. CONCLUSIONS

In this work, we connected the properties of monogamy
and additivity of entanglement using the Rényi measure.
We show that this measure satisfies the standard monogamy
inequality for the particular case α = 2. We also show that the
second-order monogamy (4) implies the SS (1). Again in the

case of α = 2, we found numerically that the inequalities (1)
and (4) are violated rarely, but always simultaneously and with
the same magnitude. Further, we provided strong numerical
support for conjecturing that the violation of monogamy
inequality (4) is related to the SS (1) violation for the Rényi
measure of order 2. This approach made it possible to find
more counterexamples for SS as α gets closer to one. Also,
there are counterexamples to the SS of the Rényi measure
for every α > 1. The violation of SS becomes very small as
α → 1 and vanishes for α = 1.

The results here can help in the understanding of why EOF
turns out to be nonadditive. The counterexamples found can
stimulate the research of new counterexamples to the additivity
of EOF at small dimensions. Once the numerical methods
employed are very simple, they can certainly be improved.
This fact opens the possibility of numerical searching for
such counterexamples for small dimensions larger than 4
by 4. Since additivity and monogamy seem to be connected
through our findings, we expect that it may shed some light
on the understanding of the way in which entanglement is
distributed. The Rényi measure introduced here certainly plays
an important role in this research, as well as the search for new
counterexamples to the additivity of EOF.

ACKNOWLEDGMENTS

The authors acknowledge T. R. de Oliveira for fruitful
discussions. This work was supported by FAPESP and CNPq
through the National Institute of Science and Technology of
Quantum Information (INCT-IQ).

[1] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K.
Wootters, Phys. Rev. A 54, 3824 (1996).

[2] P. W. Shor, Commun. Math. Phys. 246, 453 (2004).
[3] K. G. H. Vollbrecht and R. F. Werner, Phys. Rev. A 64, 062307

(2001).
[4] G. Vidal, W. Dür, and J. I. Cirac, Phys. Rev. Lett. 89, 027901

(2002).
[5] M. B. Hastings, Nat. Phys. 5, 255 (2009).
[6] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61,

052306 (2000).
[7] M. Koashi and A. Winter, Phys. Rev. A 69, 022309 (2004).
[8] T. J. Osborne and F. Verstraete, Phys. Rev. Lett. 96, 220503

(2006).
[9] Y.-C. Ou, Phys. Rev. A 75, 034305 (2007).

[10] J. Aczél and Z. Daróczy, On Measures of Information and Their
Characterizations (Academic Press, New York, 1975).
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