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Multiplexed communication over a high-speed quantum channel
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In quantum information systems it is of particular interest to consider the best way in which to use the
nonclassical resources consumed by that system. Quantum communication protocols are integral to quantum
information systems and are among the most promising near-term applications of quantum information science.
Here we show that a multiplexed, digital quantum communications system supported by a comb of vacuum
squeezing has a greater channel capacity per photon than a source of broadband squeezing with the same analog
band width. We report on the time-resolved, simultaneous observation of the first dozen teeth in a 2.4-GHz comb
of vacuum squeezing produced by a subthreshold optical parametric oscillator, as required for such a quantum
communications channel. We also demonstrate multiplexed communication on that channel.
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I. INTRODUCTION

Quantum information science lies at the nexus of quantum
mechanics and information science [1]. Quantum information
systems will most likely comprise quantum information pro-
cessing nodes connected by quantum communication channels
[2] on which quantum communication protocols, such as
quantum key distribution [3,4], quantum dense coding [5,6],
and quantum teleportation [7,8], can be implemented [9–14]. A
particularly important question in quantum information is how
to make the best use of the quantum resources available, given
the constraints of the system and its expected use (e.g., [15]).
Here we consider the issue of making the best use of quantum
resources in the context of high-capacity, multiplexed quantum
communications.

One particularly useful optical nonclassical state for
quantum communications is the squeezed vacuum [16,17].
The squeezed vacuum exhibits reduced noise relative to a
classical channel in one measurement quadrature, at the cost of
increased noise in the orthogonal quadrature. Simple passive
operations can create entanglement, a key quantum resource,
from squeezed vacua. With the addition of photon counting,
other key resource states such as single photons [18] and cat
states [19] can be heralded from squeezed vacua. Hence the
study of quantum channels based on squeezed vacuum states
can lead to a quite general understanding of the requirements
of quantum communication channels. Here we produce and
analyze such a channel.

Despite its name, a squeezed vacuum actually carries
photons [20]. So the spectral properties of the squeezed
vacuum must be well matched to the digital signaling scheme
to avoid consuming nonclassical resources (i.e., photons)
unnecessarily. Irrespective of the details of the coding protocol,
contemporary digital communication schemes must all allow
multiple users to have access to a high-capacity channel
without experiencing interference from other users [21].
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We show theoretically that a comb of squeezing can support
a greater multiplexed channel capacity per photon than a source
of broadband squeezing with the same analog bandwidth. We
report on the time-resolved, simultaneous observation of the
first dozen teeth in a >2.4-GHz comb of vacuum squeezing
produced by a subthreshold optical parametric oscillator
(OPO) and we demonstrate frequency-division multiplexed
(FDM) communication on that channel. Combs of squeezing
have been shown to be useful as the basic resource in creating
cluster states for one-way quantum computing with continuous
variables [22], but here we focus on their utility as a resource
for quantum communication protocols.

II. THEORY

The Shannon capacity [23] of a communication channel
with Gaussian noise (signal) of variance Vn (Vs) operating at
the bandwidth limit is

C = 1
2 log2[1 + (Vs/Vn)]. (1)

Equation (1) can be used to calculate the channel
capacities of quantum states with Gaussian probability
distributions [24,25].

The quality of a quantum channel is quantified by the
bandwidth-limited channel capacity for a given consumption
of nonclassical resources, in this case, photon number. The
mean photon number per bandwidth per second of a light beam
is related to the normalized variances in both the amplitude
(V +) and the phase (V −) quadratures [26] as

n̄(ω) = 1
4 [V +(ω) + V −(ω) − 2]. (2)

The variance in the encoded quadrature is Vne = V − + Vs ,
while the variance in the unencoded quadrature is Vnu =
1/V −, assuming minimum uncertainty states and phase
quadrature encoding.

We are interested in determining the maximum channel
capacity for a given mean photon flux in the physical channel.
The mean photon flux is given by � = ∫

n̄(ω)dω and may be
combined with Eq. (1), Eq. (2), and the power spectral densities
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of the squeezing and signal spectra to find the channel capacity
for a given mean photon flux.

To the signal spectrum first. Multiple users can be given
mulitplexed access to a digital communications channel via
either time-division multiplexing (TDM) or FDM [27]. In
TDM, individual users are given access to the channel in
specific time slots, with guard intervals between each use of the
channel. In FDM, individual users are given access to specific-
frequency subbands within the channel for the duration of their
access to the channel, with guard bands between each sub-
band. The guard intervals (bands) for TDM (FDM) ensure that
there is no cross talk between users. Assuming that the channel
is under more or less continuous use, the signal spectrum in a
multiplexed, low-cross-talk, digital quantum communications
system will be a continuous-wave frequency comb [21,27].

First consider the usual situation of squeezing, which is
spectrally white over the analog bandwidth of the quantum
channel. The signal spectrum will be a cw frequency comb, so

� = 1

4

∫
dω

{
Vs + [

(V − − 1)2/V −]}

= 1

4

{
BsṼs + [

B(Ṽ − − 1)2/Ṽ −]}
, (3)

where the normalized power spectral densities of the signal
and noise are Vs = Ṽ f (ω) and V − = Ṽ −. The function
f (ω) represents the comblike nature of the signal spectrum.
We define Bs to be the integrated bandwidth consumed by
the digital signaling scheme. The analog bandwidth of the
quantum channel is B � BS .

The maximum signal-to-noise for a given � will be
Ṽs/Ṽ

− = 4(�2 + �B)/(BBs), and the capacity for the quan-
tum channel supported by a white squeezing spectrum is

Cwhite = 1
2 log2[(BBs + 4�2 + 4�B)/(BBs)]. (4)

Now consider the situation in which the squeezing spec-
trum is matched to the signal spectrum (i.e., the squeezing
spectrum also has a comb structure) so that V − = Ṽ −f (ω),
and thus,

� = 1
4

{
Ṽs + [

(Ṽ − − 1)2/Ṽ −]}
Bs. (5)

For Eq. (5), the maximum signal-to-noise ratio for a given
� in the channel is Ṽs/Ṽ

− = 4(�2 + �Bs)/B2
s , which occurs

at the optimum level of squeezing Ṽ −
opt = Bs/(Bs + 2�). This

leads to the following capacity:

Ccomb = log2 [1 + (2�/Bs)] . (6)

The channel capacity for a comb of squeezing is always
greater than that for a white squeezing spectrum when
constrained to the same photon flux.

Equation (6) is the standard result for a squeezed channel
[25]. Comparison between Eq. (4) and Eq. (6) shows that
the “standard result” is in fact the optimum squeezed channel
capacity, achieved only when the signal and squeezing spectra
are properly matched.

When restricted to homodyne detection, the optimum
squeezed channel capacity is always greater than the capacity
of the coherent-state (i.e. classical) channel with the same
bandwidth and photon flux. In the notation used here, the
coherent-state channel capacity with homodyne detection is
Ccoh = log2[

√
1 + (4�/Bs)] [24]. It has been shown that

communications systems using coherent states and optimal
detection schemes can exceed Ccoh, but as yet there is no
known realization for those detection schemes (see Ref. [28]
and references therein). We have restricted the analysis
presented here to homodyne detection, for which there is an
established experimental realization [25] and which therefore
can be tested experimentally using current technology.

The ultimate capacity of a quantum communications
channel exceeds the squeezed channel capacity and is set by
the Holevo bound [25]. The Holevo-bounded channel capacity
can be achieved using Fock states and photon number detection
[25]. Dense coding systems constructed from squeezed vac-
uum sources can meet and even exceed the Holevo bound under
experimentally realistic levels of squeezing and purity [24].
One observation to be made from the analysis herein is that the
conclusions from previous analyses of dense coding capacities
still stand, but only if the signal and squeezing spectra are well
matched.

The output of a subthreshold OPO has been predicted
theoretically to exhibit precisely the required spectral charac-
teristics [29]. Frequency-resolved measurements of the first
three resonances of an OPO were measured in Ref. [30]
and subsequent measurements indicated that such systems
could exhibit useful squeezing at many more resonances
[31]. In neither case were multiple resonances observed
and used simultaneously. Here we present time-resolved,
simultaneous measurements of the first dozen teeth in the comb
of squeezing produced by a subthreshold OPO, as required
for a high-speed multiplexed digital quantum communications
channel.

Generalizing the result from Ref. [29] to include losses, the
quadrature fluctuations for the channel as a function of angular
frequency ω are

δX∓
out =

[
2κin − κ ∓ χ + (

1−eiωτ

τ

)]
δX±

in + 2
√

κinκlδX
±
l

κ ± χ − (
1−eiωτ

τ

) ,

(7)

where the cavity decay rate is κ = κin + κl for κin = T/τ

and κl = L/τ . The cavity round-trip time is τ and the
phase-matching bandwidth of the crystal is taken to be large
compared to 1/τ . The nonlinear frequency conversion rate
is χ = 2βinχ

(2), where χ (2) is the second-order coefficient
of nonlinearity for the nonlinear material and β in is the
amplitude of the pump field (assumed to be real without loss
of generality).

Here the OPO output phase (δX−
out) and amplitude (δX+

out)
quadrature fluctuations set the noise floor in the encoded
and unencoded quadratures, respectively. The variances of
the amplitude and phase quadratures, normalized to the
quantum noise limit (QNL), are found from V (ω) = |δX(ω)|2.
Resonances in the squeezing spectrum are separated in
frequency by the cavity free-spectral range, and we can think
of each squeezing resonance as contributing to the quantum
channel.

III. EXPERIMENT

Figure 1 illustrates the experiment schematically. The
532-nm, frequency-doubled output of a diode-pumped,
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FIG. 1. (Color online) Schematic of experiment.

miniature monolithic Nd:YAG laser is used to pump a
subthreshold OPO. The nonlinear crystal is periodically poled
potassium titanyl phosphate, with a phase-matching tempera-
ture of 33.5◦C. The OPO has a free-spectral range of 199 MHz
and is operated with a parametric amplification of 3.9 dB and
deamplification of 2.6 dB. A small fraction of the source laser
power is tapped off prior to frequency doubling and is used as
the seed to the OPO and the local oscillator for the homodyne
measurements

The output of the OPO is sent to a homodyne detection
system with an analog bandwidth of 2.5 GHz. The homodyne
measurement is digitally sampled at 8 GS/s, which is sufficient
for time-resolved homodyne detection. For the purposes of
producing a frequency-resolved view, the discrete Fourier
transforms of 12 207 time-resolved measurements of 1.024-µs
duration are computed and their magnitudes averaged. The
resulting frequency spectrum is shown in Fig. 2. The variances
of the squeezed and anti-squeezed output of the OPO are
shown relative to the measured quantum noise limit. The first
dozen teeth in the comb of squeezing are clearly shown in
Fig. 2.

We illustrate the principle of multiplexed communica-
tion on the quantum channel by implementing FDM on
the first two resonances of the squeezing spectrum. Two
independent sinusoids are generated, combined electrically,
and used to phase modulate the OPO output as illustrated
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FIG. 2. (Color online) Averaged discrete Fourier transform of
time-resolved quadrature homodyne measurement of squeezing
comb. Artifacts arise from the frequency response of data acquisition.

FIG. 3. (Color online) Measurements of FDM communications
over the first and second resonances of the squeezing comb.

in Fig. 1. Subsequent detection and analysis complete the
scheme. Figure 3 shows the measured frequency spectrum
of the scheme. The solid (dashed) trace shows measurements
relative to the quantum noise limit when the carrier frequencies
are (are not) aligned with the resonances in the squeezing spec-
trum, 199 and 398 MHz (192 and 392 MHz), respectively. The
improved signal-to-noise ratio (Vs/Vn ≈ 1.46 vs Vs/Vn ≈ 1),
and hence channel capacity (C ≈ 0.65 vs C ≈ 0.5), when the
signaling and squeezing spectra are aligned is clearly shown.
The insets in Fig. 3 show a separate zoomed-in view of each
independent frequency band.

IV. CONCLUSION

In summary, we have reported on time-resolved, simulta-
neous observation of the first dozen teeth in a 2.4-GHz comb
of vacuum squeezing produced by a subthreshold OPO, and
demonstrated multiplexed communications on that channel.
We have shown theoretically that a quantum communications
channel supported by such a comb of vacuum squeezing
would have a greater channel capacity per photon than one
supported by a source of broadband squeezing with the
same analog bandwidth. These arguments carry over directly
to the multiplexed distribution of quantum entanglement. If
we consider quantum communication protocols that include
photon counting, then our system has the added advantage of
producing well-resolved frequency modes that can be cleanly
separated through optical means and distributed to different
photon counting modules.
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