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Quantum correlations through event horizons: Fermionic versus bosonic entanglement

Eduardo Martı́n-Martı́nez* and Juan León†

Instituto de Fı́sica Fundamental, CSIC Serrano 113-B, ES-28006 Madrid, Spain
(Received 25 January 2010; published 22 March 2010)

We disclose the behavior of quantum and classical correlations among all the different spatial-temporal
regions of a space-time with an event horizon, comparing fermionic with bosonic fields. We show the emergence
of conservation laws for entanglement and classical correlations, pointing out the crucial role that statistics
plays in the information exchange (and more specifically, the entanglement tradeoff) across horizons. The results
obtained here could shed new light on the problem of information behavior in noninertial frames and in the
presence of horizons, giving better insight into the black-hole information paradox.
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I. INTRODUCTION

Relativistic quantum information, among other topics,
analyzes entanglement behavior in noninertial settings. It
combines tools from general relativity, quantum-field theory,
and quantum-information theory. It is a new and fast-growing
field [1–16]. Among its hot topics is the analysis of how
the Unruh effect [17–20] affects the possible entanglement
that an accelerated observer would share with an inertial
observer.

For a bipartite entangled system, it is commonplace in
relativistic quantum information to call the two observers Alice
and Rob. We now consider that while the Alice proper frame
is inertial, Rob undergoes a constant acceleration a.

It has been shown [4,5,15] that the Unruh effect degrades
the entanglement between the two partners, thus affecting
all the quantum-information tasks that they could perform.
Specifically, it was demonstrated that as Rob accelerates,
entanglement is completely degraded for a scalar field and,
conversely, some degree of entanglement is preserved for
fermionic fields. This behavior of fermionic fields has been
proven to be universal [21], namely, it is independent of (i) the
spin of the fermionic field, (ii) the kind of maximally entangled
state from which we start, and (iii) the number of participating
modes when going beyond the single-mode approximation
(even an infinite number of them).

When Rob accelerates, the description of his partial state
must be done by means of Rindler coordinates [19,22]. As
shown below, when doing that, the description of the system
splits into three different subsystems: Alice’s Minkowskian
system, a subsystem in region I of Rindler space-time (which
we assign to Rob), and another subsystem, called AntiRob,
constituted by the modes of the field in region IV of Rindler
space-time.

It is important to note that Schwarzschild metrics in the
neighborhood of the event horizon can be approximated by
Rindler metrics. Therefore, an observer arbitrarily close to the
Schwarzschild event horizon would correspond to an observer
arbitrarily close to the Rindler horizon. Being arbitrarily close
to the Rindler horizon is achieved when the acceleration
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parameter a goes to infinity. This would mean that the limit
a → ∞ of our analysis would correspond to a scenario in
which Rob is resting arbitrarily close to the event horizon of a
Schwarzschild black hole, while Alice is free-falling into it.

Any accelerated observer is constrained to either region I
or IV of Rindler space-time. If we select region I coordinates
to account for the accelerated observer Rob, he would
remain causally disconnected from region IV, and therefore,
Rob would be unable to communicate with the hypothetical
observer AntiRob in region IV.

That means that to describe the point of view of Rob, we
need to remove the part of the system on the other side of
the event horizon. This is done by tracing over region IV
of Rindler space-time, in other words, erasing the AntiRob
information from the system. This partial tracing is the final
step responsible for the entanglement degradation due to
Unruh effect.

To gain a deeper understanding of those degradation
mechanisms, it is useful to study how entanglement is lost
as one traces over regions of the Rindler space-time. Although
the system is obviously bipartite (Alice and Rob), in shifting
to Rindler coordinates for Rob, the mathematical description
of the system [4,5,15] admits a straightforward tripartition:
Minkowskian modes (Alice), Rindler region I modes (Rob),
and Rindler region IV modes (AntiRob).

In this paper, instead of considering only the Alice-Rob
bipartition, we deal with all the different bipartitions of the
system to study the correlation tradeoffs among them. These
three bipartitions are

1. Alice-Rob (AR)
2. Alice-AntiRob (AR̄)
3. Rob-AntiRob (RR̄)
Bipartition 1 is the one most commonly considered in

the literature. It represents the system formed by an inertial
observer and the modes of the field which an accelerated
observer is able to access.

The second bipartition represents the subsystem formed by
the inertial observer Alice and the modes of the field which
Rob is not able to access due to the presence of a horizon as
he accelerates. The physical meaning of this bipartition can be
more clearly understood in the limit a → ∞, in which Rob
is equivalent to an observer standing outside but arbitrarily
close to a Schwarzschild black-hole event horizon. Then, the
AntiRob subsystem represents the field modes inside the event
horizon.
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The third bipartition lacks physical meaning in terms of
information theory, because communication between Rob and
AntiRob is not allowed. Anyway, studying this bipartition is
still useful to account for the correlations created between the
spatial-temporal regions separated by an event horizon, and,
therefore, its study is necessary and complementary to the
previous ones in order to give a complete description of the
information behavior across an event horizon.

In [5] the existence of these three possible bipartitions was
considered only for spinless fermion fields. In this work, we
will go far beyond the previous analysis and compare the
correlation tradeoffs among different bipartitions for bosonic
and fermionic fields, showing the leading role of statistics in
the behavior of information on the proximity of event horizons.

The dimension of the Hilbert space for each mode has
often been blamed as responsible for the difference between
fermionic and bosonic entanglement behavior in the presence
of horizons. Here we will disclose in which cases changing
the dimension affects the correlation behavior, showing that,
for the physical systems, it is largely irrelevant.

The work presented here will show that the role played by
statistics in the comportment of information in the proximity of
an event horizon is so important that it could even give a hint
about the relationship between statistics and the black-hole
information paradox.

This paper is organized as follows. In Sec. II we introduce
some basic notions about an accelerated observer reference
frame and present the Bogoliubov transformations which
relate the Minkowskian modes of the fields with the analogous
modes in Rindler coordinates. In Sec. III, we introduce some
notation and present the vacuum and one-particle states for a
scalar and a Dirac field as seen from an accelerated observer’s
point of view. We also write down the qubit states which we
are going to analyze when one of the partners accelerates. In
Sec. IV, we compute the quantum and classical correlations
(in terms of mutual information and measures of quantum
entanglement) for all the possible bipartitions of the system
for a Dirac field, showing the emergence of an entanglement
conservation law for the systems AR and AR̄, as well as the
conservation of classical correlations. In Sec. V, we repeat the
same exercises for the case of scalar fields, finding striking
differences which point out the enormous impact of statistics
on correlation behavior. In both Secs. IV and V, we also
analyze the correlations across the horizon, i.e., the RR̄ system.
Then we present our results and conclusions in Sec. VI.

II. SCALAR AND DIRAC FIELDS FROM CONSTANTLY
ACCELERATED FRAMES

A uniformly accelerated observer viewpoint is described
by means of the Rindler coordinates [22]. To cover the
whole Minkowski space-time, two different sets of coordinates
are necessary. These sets of coordinates define two causally
disconnected regions in Rindler space-time. If we consider that
the uniform acceleration a lies on the z axis, the new Rindler
coordinates (t, x, y, z) as a function of Minkowski coordinates
(t̃ , x̃, ỹ, z̃) are

at̃ = eaz sinh(at), az̃ = eaz cosh(at), x̃ = x, ỹ = y,

(1)

FIG. 1. (Color online) Rindler space-time diagram: lines of
constant position z = const are hyperbolas, and all the curves of
constant proper time t for the accelerated observer are straight lines
that come from the origin. A uniformly accelerated observer, Rob,
travels along a hyperbola constrained to region I.

for region I, and

at̃ = −eaz sinh(at), az̃ = −eaz cosh(at),
(2)

x̃ = x, ỹ = y,

for region IV. As we can see from Fig. 1, although we have
covered the whole Minkowski space-time with these sets of
coordinates, there are two more regions labeled II and III. To
map them, we would need to trade cosh by sinh in Eqs. (1)
and (3). In these regions, t is a spacelike coordinate and z is
a timelike coordinate. However, considering such regions is
not required to describe fields from an accelerated observer’s
perspective [4,5,15,22,23].

The Rindler coordinates z, t go from −∞ to ∞ indepen-
dently in regions I and IV. It means that each region admits
a separate quantization procedure with its corresponding
positive and negative energy solutions of Klein-Gordon or
Dirac equations1 {ψI+

k,s , ψI−
k,s } and {ψIV +

k,s , ψIV −
k,s }.

Particles and antiparticles will be classified with respect to
the future-directed timelike Killing vector in each region. In
region I, the future-directed Killing vector is

∂I
t = ∂t̃

∂t
∂t̃ + ∂z̃

∂t
∂z̃ = a(z̃∂t̃ + t̃ ∂z̃), (3)

whereas in region IV, the future-directed Killing vector is
∂IV
t = −∂I

t .
This means that solutions in region I, having time depen-

dence ψI+
k ∼ e−ik0t with k0 > 0, represent positive energy

solutions; whereas solutions in region IV, having time depen-
dence ψI+

k ∼ e−ik0t with k0 > 0, are actually negative energy
solutions since ∂IV

t points to the opposite direction of ∂t̃ . As
I and IV are causally disconnected ψIV ±

k,s and ψI±
k,s only have

support in their own regions, vanishing outside them.

1Throughout this work we will consider that the spin of each mode
lies in the acceleration direction and, hence, spin will not undergo
Thomas precession due to instant Wigner rotations [5,24].
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Let us denote (aI,k, a
†
I,k) for the scalar field and (bI,k,s ,

b
†
I,k,s) for the Dirac field as the particle annihilation and

creation operators in region I, and (cI,k,s , c
†
I,k,s) the correspond-

ing antiparticle Dirac field operators. Analogously we define
(aIV,k, a

†
IV,k, bIV,k,s , b

†
IV,k,s , cIV,k,s , c

†
IV,k,s) as the particle and

antiparticle operators in region IV.
The bosonic operators satisfy the commutation relations

[aR,k, a
†
R′,k′] = δRR′δkk′ and the fermionic operators satisfy

the anticommutation relations {cR,k,s , c
†
R′,k′,s ′ } = δRR′δkk′δss ′ .

The subscript R notates the Rindler region of the operator
R = {I, IV }. All other commutators and anticommutators are
zero. This includes the anticommutators between operators in
different regions of the Rindler space-time.

We can relate Minkowski and Rindler creation and anni-
hilation operators by taking appropriate inner products and
computing the so-called Bogoliubov coefficients [5,19,23,24].
For a scalar field, the Bogoliubov relationships for the
annihilation operator of modes with positive frequency are

aM,k = cosh rsaI,k − sinh rsa
†
IV,−k, (4)

where

tanh rs = e−π
k0c

a . (5)

For a Dirac field, the Bogoliubov relationships take the form

bM,k,s = cos rdbI,k,s − sin rdc
†
IV,−k,−s ,

(6)
c
†
M,k,s = cos rdc

†
IV,k,s + sin rdbI,−k,−s ,

where

tan rs = e−π
k0c

a . (7)

III. VACUUM AND ONE-PARTICLE STATES

The Minkowski vacuum state for the scalar field is defined
by the tensor product of each frequency mode vacuum

|0〉 =
⊗

k

|0k〉, (8)

such that it is annihilated by ak for all values of k. The
Minkowski vacuum state for the Dirac field is defined by the
tensor product of each frequency mode vacuum

|0〉 =
⊗
k,k′
s,s ′

|0k,s〉+|0k′,s ′ 〉−, (9)

such that it is annihilated by bk,s and ck,s for all values of k, s.
The ± label indicates particle and antiparticle mode.

For the sake of this work, we are going to constrain
ourselves to the single-mode approximation (SMA) [1,12].
In any case in [21] we showed, as a universality principle, that
going beyond this approximation does not modify the way
in which Unruh decoherence affects entanglement of spinless
fermionic and Dirac fields. Specifically, it was shown that
Unruh decoherence is independent of the number of modes of
the field considered in the analysis, statistics being the ruler
of this process. Hence, for our purposes, carrying out this
approximation or not will not be relevant.

As shown in [4], the vacuum state for a k-momentum mode
of a scalar field seen from the perspective of an accelerated
observer is

|0k〉M = 1

cosh rs

∞∑
n=0

tanhn rs |nk〉I |n−k〉IV , (10)

and as shown in [15], the vacuum state for a Dirac field seen
from the accelerated frame is

|0〉M = cos2 rd |0k〉+I |0k〉−IV + sin rd cos rd (|↑k〉+I |↓k〉−IV

+ |↓k〉+I |↑k〉−IV ) + sin2 rd |pk〉+I |pk〉−IV , (11)

where |pk〉± represents the pair of particles or antiparticles for
frequency k as defined below. In these expressions, we use the
same notation as in Refs. [4,15].

Notice that for fermions, there is a constraint due to the
Pauli exclusion principle

b
†
k,sb

†
k,s ′ |0〉 = |ss ′

k〉δs,−s ′ . (12)

If s = s ′ the two-particle state is not allowed. Therefore
the allowed Minkowski states for each mode of particle or
antiparticle are

{|0k〉±, |↑k〉±, |↓k〉±, |pk〉±}. (13)

From now on, we will drop the sign ± because, in this work,
a mode in region I will always be a particle mode and a mode
in region IV will always represent an antiparticle mode. To
simplify notation, we will also drop the k label, because we
are working under the SMA.

We will use the following definitions for a pair of fermions:

|p〉I = b
†
I↑b

†
I↓|0〉I = −b

†
I↓b

†
I↑|0〉I ,

(14)
|p〉IV = c

†
IV ↑c

†
IV ↓|0〉IV = −c

†
IV ↓c

†
IV ↑|0〉IV ,

and, being consistent with the different Rindler region operator
anticommutation relations,

|s〉I |s ′〉IV = b
†
Isc

†
IV s ′ |0〉I |0〉IV = −c

†
IV s ′b

†
Is |0〉I |0〉IV ,

(15)
c
†
IV s ′ |s〉I |0〉IV = −|s〉I |s ′〉IV .

For this work, we will also need the Minkowskian one-
particle state in Rindler coordinates. This state would be

|1〉M = 1

cosh2 rs

∞∑
n=0

tanhn rs

√
n + 1|n + 1〉I |n〉IV (16)

for the scalar field [4] and

|↑〉M = cos rd |↑〉I |0〉IV + sin rd |p〉I |↑〉IV ,
(17)|↓〉M = cos rd |↓〉I |0〉IV − sin rd |p〉I |↓〉IV ,

for the Dirac field [15].
Now we need to consider the following maximally entan-

gled states in Minkowski coordinates:

|�s〉 = 1√
2

(|0〉M |0〉M + |1〉M |1〉M ), (18)

|�d〉 = 1√
2

(|0〉M |0〉M + |↑〉M |↓〉M ). (19)

These two maximally entangled states are analogous, both are
qubit states and superpositions of the bipartite vacuum and
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the bipartite one-particle state. The difference is that in (19)
we have a Dirac field state, and hence, the one-particle states
have spin.

For |�d〉, we have selected one among the possible values
for the spin of the terms with one particle for Alice and
Rob, but it can be shown that the election of a specific
value for these spins is not relevant when considering the
behavior of correlations. Then, the results presented here are
independent of the particular choice of a spin state for the
superposition (19).

IV. CORRELATIONS FOR THE DIRAC FIELD

The density matrix for whole tripartite state, which includes
modes on both sides of the Rindler horizon along with
Minkowskian modes, is built from (19)

ρARR̄
d = |�d〉〈�d |. (20)

The three different bipartitions for the Dirac field case are
obtained by partial tracing over the part which we want to
eliminate, that is,

ρAR
d = TrIV ρARR̄

d =
∑

s∈{0,↑,↓,p}
〈s|IV ρARR̄

d |s〉IV , (21)

ρAR̄
d = TrI ρ

ARR̄
d =

∑
s∈{0,↑,↓,p}

〈s|I ρARR̄
d |s〉I , (22)

ρRR̄
d = TrMρARR̄

d =
∑

s∈{0,↑,↓,p}
〈s|MρARR̄

d |s〉M. (23)

And the density matrix for each individual subsystem is
obtained by tracing over the other subsystems:

ρA
d = TrI ρ

AR
d = TrIV ρAR̄

d , (24)

ρR
d = TrIV ρRR̄

d = TrMρAR
d , (25)

ρR̄
d = TrI ρ

RR̄
d = TrMρAR̄

d . (26)

The different bipartitions are characterized by the following
density matrices:

ρAR
d = 1

2 [cos4 rd |00〉〈00| + sin2 rd cos2 rd (|0 ↑〉〈0 ↑|
+ |0 ↓〉〈0 ↓|) + sin4 rd |0p〉〈0p| + cos3 rd (|00〉
× 〈↑↓| + |↑↓〉〈00|) − sin2 rd cos rd (|0 ↑〉〈↑ p|
+ |↑ p〉〈0 ↑|) + cos2 rd |↑↓〉〈↑↓| + sin2 rd

× |↑ p〉〈↑ p|], (27)

ρAR̄
d = 1

2 [cos4 rd |00〉〈00| + sin2 rd cos2 rd (|0 ↓〉〈0 ↓|
+ |0 ↑〉〈0 ↑|) + sin4 rd |0p〉〈0p| − sin3 rd

× (|0p〉〈↑↓| + |↑↓〉〈0p|) + sin rd cos2 rd (|0 ↑〉
× 〈↑, 0| + |↑ 0〉〈0 ↑|) + cos2 rd |↑ 0〉〈↑ 0|
+ sin2 rd |↑↓〉〈↑↓|], (28)

ρRR̄
d = 1

2 [cos4 rd |00〉〈00| + sin rd cos3 rd

× (|00〉〈↑↓| + |00〉〈↓↑| + |↑↓〉〈00| + |↓↑〉〈00|)
+ sin2 rd cos2 rd (|00〉〈p, p| + |↑↓〉〈↑↓|
+ |↑↓〉〈↓↑| + |↓↑〉〈↑↓| + |↓↑〉〈↓↑|
+ |p, p〉〈00|) + sin3 rd cos rd (|↑↓〉〈p, p|
+ |p, p〉〈↑↓| + |↓↑〉〈p, p| + |p, p〉〈↓↑|)

+ cos2 rd |↓ 0〉〈↓ 0| + sin2 rd |p ↓〉〈p ↓|
− cos rd sin rd (|↓ 0〉〈p ↓| + |p ↓〉〈↓ 0|)
+ sin4 rd |pp〉〈pp|], (29)

where the bases are

|nm〉 = |nA〉M |mR〉I , (30)

|nm〉 = |nA〉M |mR̄〉IV , (31)

|nm〉 = |nR〉I |mR̄〉IV , (32)

respectively, for (27)–(29).
On the other hand, the density matrices for the individual

subsystems (24)–(26) are

ρR
d = 1

2 [sin2 rd (1 + sin2 rd )|p〉〈p| + sin2 rd cos2 rd |↑〉〈↑|
+ cos2 rd (1 + sin2 rd )|↓〉〈↓| + cos4 rd |0〉〈0|],

(33)

ρR̄
d = 1

2 [cos2 rd (1 + cos2 rd )|0〉〈0| + sin2 rd cos2 rd |↑〉〈↑|
+ sin2 rd (1 + cos2 rd )|↓〉〈↓| + sin4 rd |p〉〈p|],

(34)

ρA
d = 1

2 (|0〉〈0| + |↑〉〈↑|). (35)

A. Mutual information: Creation, exchange, and conservation

Mutual information accounts for the correlations (both
quantum and classical) between two different parts of a system.
It is defined as

IAB = SA + SB − SAB, (36)

where SA, SB , and SAB are, respectively, the von Neumann
entropies for the individual subsystems A and B and for the
joint system AB. To compute the mutual information for each
bipartition we will need the eigenvalues of the corresponding
density matrices. We will go through the entire process step
by step in the lines below.

1. Bipartition Alice-Rob

The eigenvalues of the matrix for the Alice-Rob system
(27) are

λ1 = λ2 = 0,

λ3 = 1
2 sin2 rd cos2 rd,

λ4 = 1
2 sin4 rd,

(37)
λ5 = 1

2 cos2 rd (1 + cos2 rd ),

λ6 = 1
2 sin2 rd (1 + cos2 rd ).

2. Bipartition Alice-AntiRob

The eigenvalues of the matrix for the Alice-AntiRob system
(28) are

λ1 = λ2 = 0,

λ3 = 1
2 sin2 rd cos2 rd,

λ4 = 1
2 cos4 rd,

(38)
λ5 = 1

2 sin2 rd (1 + sin2 rd ),

λ6 = 1
2 cos2 rd (1 + sin2 rd ).
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3. Bipartition Rob-AntiRob

All the eigenvalues of the matrix for the Rob-AntiRob
system (29) are zero, except two of them:

λ1 = λ2 = 1
2 , λi>2 = 0. (39)

4. Von Neumann entropies for each subsystem and
mutual information

To compute the von Neumann entropies, we need the eigen-
values of every bipartition and the individual density matrices.
The eigenvalues of ρAR

d , ρAR̄
d , and ρRR̄

d are, respectively (37),
(38), and (39). The eigenvalues of the individual system density
matrices can be directly read from (33), (34), and (35), since
ρR

s , ρR̄
s , and ρA

s have diagonal forms in the given basis. The
von Neumann entropy for partition B of the system is

SB = −Tr(ρ log2 ρ) = −
∑

λi log2 λi. (40)

At this point, computing the entropies is quite straightfor-
ward. The von Neumann entropies for all the partial systems
are

SR = 1 − sin2 rd log2(sin2 rd ) − 3

2
cos2 rd log2(cos2 rd )

− 1 + sin2 rd

2
log2(1 + sin2 rd ),

SR̄ = 1 − cos2 rd log2(cos2 rd ) − 3

2
sin2 rd log2(sin2 rd )

− 1 + cos2 rd

2
log2(1 + cos2 rd ),

SAR = SR̄, SAR̄ = SR, SRR̄ = SA = 1. (41)

And then, the mutual information for all possible bipartitions
of the system will be

IAR = SA + SR − SAR = 1 + SR − SR̄,

IAR̄ = SA + SR̄ − SAR̄ = 1 + SR̄ − SR,

IRR̄ = SR + SR̄ − SRR̄ = SR + SR̄ − 1.

At first glance, we can see a conservation law of the mutual
information for the Alice-Rob and Alice-AntiRob systems:

IAR + IAR̄ = 2, (42)

which suggests a correlations transfer from the Alice-Rob to
the Alice-AntiRob system as the acceleration increases.

Figure 2 shows the behavior of the mutual information for
the three bipartitions. It also shows how the correlations across
the horizon (Rob and AntiRob) increase, up to a certain finite
limit, as Rob accelerates.

If we recall the results on spinless fermion fields [5], we see
that the results for Alice-Rob and Alice-AntiRob are exactly
the same as those obtained in [5], being that the conservation
law obtained here is also valid for that spinless fermion
case. This result was expected according to the universality
argument adduced in [21] as the explanation for the Unruh
decoherence for fermion fields of arbitrary spin.

However, something different occurs with the Rob-AntiRob
system. The creation of correlations between modes on both
sides of the horizon is greater in the Dirac field case. This is
related to the dimension of the Hilbert space. As we will see
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FIG. 2. (Color online) Dirac field: Mutual information tradeoff
and conservation law between the Alice-Rob (AR, blue solid line) and
Alice-AntiRob (AR̄, red dotted line) systems as acceleration varies. It
also shows the behavior of mutual information for the Rob-AntiRob
system (RR̄, black dashed line).

in more detail later, the dimension of the Hilbert space plays a
determinant role only in the comportment of the Rob-AntiRob
correlations.

B. Entanglement conservation and behavior across the horizon

We will use the negativity to account for the distillable
entanglement of the different bipartitions of the system.
Negativity is an entangle monotone which is only sensitive
to distillable entanglement and is defined as the sum of the
negative eigenvalues of the partially transposed density matrix
for the system, which is defined as the transpose of only one
of the subsystem qudits in the bipartite density matrix. If σi

are the eigenvalues of ρ
pT

AB, then

NAB = 1

2

∑
i

(|σi | − σi) = −
∑
σi<0

σi. (43)

Therefore, to compute it, we will need the partial transposition
of the bipartite density matrices (27), (28), and (29), which we
will notate as ηAR

d , ηAR̄
d , and ηRR̄

d , respectively.

ηAR
d = 1

2 [cos4 rd |00〉〈00| + sin2 rd cos2 rd (|0 ↑〉〈0 ↑|
+ |0 ↓〉〈0,↓|) + sin4 rd |0p〉〈0p| + cos3 rd

× (|0 ↓〉〈↑, 0| + |↑ 0〉〈0,↓|) − sin2 rd cos rd

× (|0p〉〈↑↑| + |↑↑〉〈0p|) + cos2 rd |↑↓〉〈↑↓|
+ sin2 rd |↑ p〉〈↑ p|], (44)

ηAR̄
d = 1

2 [cos4 rd |00〉〈00| + sin2 rd cos2 rd (|0 ↓〉〈0 ↓|
+ |0 ↑〉〈0 ↑|) + sin4 rd |0p〉〈0p| − sin3 rd

× (|0 ↓〉〈↑ p| + |↑ p〉〈0 ↓|) + sin rd cos2 rd

× (|00〉〈↑↑| + |↑↑〉〈00|) + cos2 rd |↑ 0〉〈↑ 0|
+ sin2 rd |↑↓〉〈↑↓|], (45)
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ηRR̄
d = 1

2 [cos4 rd |00〉〈00| + sin rd cos3 rd (|0 ↓〉〈↑ 0|
+ |0 ↑〉〈↓ 0| + |↑ 0〉〈0 ↓| + |↓ 0〉〈0 ↑|) + sin2 rd

× cos2 rd (|0p〉〈p0| + |↑↓〉〈↑↓| + |↑↑〉〈↓↓|
+ |↓↓〉〈↑↑| + |↓↑〉〈↓↑| + |p0〉〈0p|) + sin3 rd

× cos rd (|↑ p〉〈p ↓| + |p ↓〉〈↑ p| + |↓ p〉〈p ↑|
+ |p ↑〉〈↓ p|) + cos2 rd |↓ 0〉〈↓ 0| + sin2 rd |p ↓〉
× 〈p ↓| − cos rd sin rd (|↓↓〉〈p0| + |p0〉〈↓↓|)
+ sin4 rd |pp〉〈pp|]. (46)

In the following subsections we will compute the negativity
for each bipartition of the system.

1. Bipartition Alice-Rob

The eigenvalues of the partially transposed density matrix
for the bipartition Alice-Rob (44) turn out to be

λ1 = 1

2
cos4 rd, λ2 = 1

2
cos2 r sin2 rd,

λ3 = 1

2
sin2 rd, λ4 = 1

2
cos2 rd,

(47)

λ5,6 = 1

4
sin2 rd cos2 rd

(
1 ±

√
1 + 4 cos2 rd

sin4 r

)
,

λ7,8 = 1

4
sin4 rd

⎛
⎝1 ±

√
1 + 4 cos2 rd

sin4 rd

⎞
⎠ .

As we can see, λ8 is nonpositive and λ6 is negative for all
values of a; therefore, the state will always preserve some
degree of distillable entanglement. The negativity is, after
some basic algebra,

NAR
d = 1

2 cos2 rd . (48)

2. Bipartition Alice-AntiRob

The eigenvalues of the partially transposed density matrix
for the bipartition Alice-AntiRob (45) turn out to be

λ1 = 1

2
sin4 rd, λ2 = 1

2
sin2 rd cos2 rd,

λ3 = 1

2
cos2 rd, λ4 = 1

2
sin2 rd,

(49)

λ5,6 = 1

4
sin2 rd cos2 rd

⎛
⎝1 ±

√
1 + 4 tan2 rd

cos2 rd

⎞
⎠ ,

λ7,8 = 1

4
cos4 rd

⎛
⎝1 ±

√
1 + 4 tan2 rd

cos2 rd

⎞
⎠ .

The negativity, after some basic algebra, turns out to be

NAR̄
d = 1

2 sin2 rd . (50)

It is remarkable—and constitutes one of the most suggestive
results of this article—that we have obtained here a conserva-
tion law for the Alice-Rob and Alice-AntiRob entanglements,
since the sum of both negativities is independent of the

accelerations, i.e.,

NAR̄
d + NAR

d = 1
2 . (51)

This is similar to the result (42) for mutual information. Again,
one could check that for spinless fermion fields, the same
conservation law (51) obtained here applies. This was again
expected due to the universality principle demonstrated in [21].

As we will see below, this conservation of quantum
correlations is exclusive of fermionic fields. Statistics can be
blamed for this neat result. This is in line with what was
suggested in [21], since nothing of the sort will be found for
bosonic fields.

3. Bipartition Rob-AntiRob

The eigenvalues of the partially transposed density matrix
for the bipartition Rob-AntiRob (46) turn out to be

λ1 = cos4 rd

2
, λ2 = sin4 rd

2
,

λ3 = λ4 = sin2 rd cos2 rd

2
,

λ5,6 = ± sin rd cos3 rd

2
,

(52)

λ7,8 = ±cos rd sin3 rd

2
,

λ9,10 = cos2 rd

4
(1 ±

√
1 + sin2(2rd )),

λ11,12 = sin2 rd

4
(1 ±

√
1 + sin2(2rd )),

λ13,14,15,16 = ± sin(2rd )

8
(1 ±

√
1 + sin2(2rd )),

and, therefore, the sum of the negative eigenvalues gives a
negativity

N RR̄
d = 1

4

[
sin(2rd )

2
− 1 + [1 + sin(2rd )]

√
1 + sin2(2rd )

]
.

(53)

As can be seen from (53) and graphically in Fig. 3, the
entanglement between Rob and AntiRob, created as Rob
accelerates, grows up to a finite value. Although this entangle-
ment is useless for quantum-information tasks because of the
impossibility of classical communication between both sides
of an event horizon, the result obtained here is a useful hint
in understanding how information behaves in the proximity of
horizons.

Comparing again this result with spinless fermions [5], we
see that for Dirac fields, the maximum value of the negativity
is greater. Again this is strongly related to the dimension of
the Hilbert space, as we will comment on more deeply below,
when we deal with scalar fields.

V. CORRELATIONS FOR THE SCALAR FIELD

The density matrix for the whole tripartite state, which
includes modes in both sides of the horizon along with
Minkowskian modes, is built from (18):

ρARR̄
s = |�s〉〈�s | (54)
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FIG. 3. (Color online) Same as Fig. 2, but showing negativity
tradeoff and conservation law between the AR and AR̄ systems as
acceleration varies, and the behavior of the quantum correlations for
the RR̄ system.

As in the fermion case, the three different bipartitions for the
scalar field case are obtained as follows:

ρAR
s = TrIV ρARR̄

s , (55)

ρAR̄
s = TrI ρ

ARR̄
s , (56)

ρRR̄
s = TrMρARR̄

s , (57)

and the density matrix for each individual subsystem is

ρA
s = TrI ρ

AR
s = TrIV ρAR̄

s , (58)

ρR
s = TrIV ρRR̄

s = TrMρAR
s , (59)

ρR̄
s = TrI ρ

RR̄
s = TrMρAR̄

s . (60)

The bipartite systems are characterized by the following
density matrices:

ρAR
s =

∞∑
n=0

tanh2n rs

2 cosh2 rs

[
|0n〉〈0n| +

√
n + 1

cosh rs

(|0n〉〈1n + 1|

+|1n + 1〉〈0n|) + n + 1

cosh2 rs

|1n + 1〉〈1n + 1|
]
,

(61)

ρAR̄
s =

∞∑
n=0

tanh2n rs

2 cosh2 rs

[
|0n〉〈0n| +

√
n + 1

cosh rs

tanh rs(|0n + 1〉

×〈1n| + |1n〉〈0n + 1|) + n + 1

cosh2 rs

|1n〉〈1n|
]
,

(62)

ρRR̄
s =

∞∑
n=0
m=0

tanhn+m rs

2 cosh2 rs

(
|nn〉〈mm| +

√
n + 1

√
m + 1

cosh2 rs

× |n + 1n〉〈m + 1m|
)

, (63)

where the bases are, respectively,

|nm〉 = |nA〉M |mR〉I , (64)

|nm〉 = |nA〉M |mR̄〉IV , (65)

|nm〉 = |nR〉I |mR̄〉IV , (66)

for (61), (62), and (63).
On the other hand, the density matrices for the individual

subsystems (58), (59), and (60) are

ρR
s =

∞∑
n=0

tanh2(n−1) rs

2 cosh2 rs

(
tanh2 rs + n

cosh2 rs

)
|n〉〈n|, (67)

ρR̄
s =

∞∑
n=0

tanh2n rs

2 cosh2 rs

(
1 + n + 1

cosh2 rs

)
|n〉〈n|, (68)

ρA
s = 1

2
(|0〉〈0| + |1〉〈1|). (69)

A. Mutual information: Creation, exchange, and conservation

Mutual information accounts for the correlations (both
quantum and classical) between two different parts of the
system. Its definition is (36).

To compute the mutual information for each bipartition,
we will need the eigenvalues of the corresponding density
matrices. We will go through the entire process in detail in the
lines below.

1. Bipartition Alice-Rob

The density matrix for the Alice-Rob system (61) con-
sists of an infinite number of 2 × 2 blocks in the basis
{|0n〉, |1n + 1〉}∞n=0 which have the form

tanh2n rs

2 cosh2 rs

⎛
⎝ 1

√
n+1

cosh rs

√
n+1

cosh rs

n+1
cosh2 rs

⎞
⎠ , (70)

and whose eigenvalues are

λ1
n = 0,

(71)

λ2
n = tanh2n rs

2 cosh2 rs

(
1 + n + 1

cosh2 rs

)
.

2. Bipartition Alice-AntiRob

Except for the diagonal element corresponding to |00〉〈00|
(which forms a 1 × 1 block itself), the density matrix for the
Alice-AntiRob system (62) consists of an infinite number of
2 × 2 blocks in the basis {|0n〉, |1n − 1〉}∞n=1 which have the
form

tanh2n rs

2 cosh2 rs

⎛
⎝ 1

√
n

sinh rs

√
n

sinh rs

n

sinh2 rs

⎞
⎠ . (72)

We can gather all the eigenvalues in the following expression:

λ1
n = tanh2n rs

2 cosh2 rs

(
1 + n

sinh2 rs

)
,

(73)
λ2

n = 0.
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3. Bipartition Rob-AntiRob

It is easy to see that the density matrix for Rob-AntiRob
(63), which basically consists of the direct sum of two blocks
of infinite dimension, only has rank rank(ρRR̄

s ) = 2. Therefore
its eigenvalues are zero except for two of them, which are

λRR̄
1 =

∞∑
n=0

tanh2n rs

2 cosh2 rs

= 1

2
,

(74)

λRR̄
2 =

∞∑
n=0

(n + 1) tanh2n rs

2 cosh4 rs

= 1

2
.

So, the von Neumann entropy for ρRR̄ is

SRR̄ = 1. (75)

4. Von Neumann entropies for each subsystem and
mutual information

To compute the von Neumann entropies, we need the eigen-
values of every bipartition and the individual density matrices.
The eigenvalues of ρAR

s , ρAR̄
s , and ρRR̄

s are, respectively, (71),
(73), and (74).

The eigevalues of the individual systems density matrices
can be directly read from (67), (68), and (69), since ρR

s , ρR̄
s , and

ρA
s have diagonal forms in the Fock basis. The von Neumann

entropy for a partition B of the system is (40).
At this point, computing the entropies is quite straightfor-

ward. Von Neumann entropy for the Rob partial system is

SR = −
∞∑

n=0

tanh2(n−1) rs

2 cosh2 rs

(
tanh2 rs + n

cosh2 rs

)

× log2

[
tanh2(n−1) rs

2 cosh2 rs

(
tanh2 rs + n

cosh2 rs

)]
. (76)

The partial matrices have a similar mathematical structure.
Therefore, we can express the nontrivial entropies for all the
possible partitions as a function of the entropy (76) for Rob’s
partial system

SR̄ = SR

tanh2 rs

− 1

2 sinh2 rs

log2

(
1

2 cosh2 rs

)
+ log2(tanh2 rs),

SAR = SR̄, SAR̄ = SR, SRR̄ = SA = 1. (77)

Notice that the expression for SR̄ may appear to blow up as
rs→0; however, this is not the case, and it can be checked
analytically using (76) that limr→0 SR̄ = 0.

The mutual information for all possible bipartitions of the
system will be

IAR = SA + SR − SAR = 1 + SR − SR̄,

IAR̄ = SA + SR − SAR̄ = 1 + SR̄ − SR,

IRR̄ = SR + SR̄ − SRR̄ = SR + SR̄ − 1.

Again we obtain a conservation law of the mutual informa-
tion for the Alice-Rob and Alice-AntiRob system

IAR + IAR̄ = 2, (78)

which again suggests a correlations transfer from the Alice-
Rob to the Alice-AntiRob system as the acceleration increases.
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FIG. 4. (Color online) Scalar field: Mutual information tradeoff
and conservation law between the AR (blue solid line) and AR̄ (red
dashed line) systems.

Although the conservation law is the same as for fermion
fields (42), the specific dependance of the mutual information
with the acceleration is different, as can be seen in Fig. 4.
Later, when we analyze the negativity for all the bipartitions,
we will see that even though mutual information fulfills this
conservation law, we must wait for the analysis of quantum
correlations to appreciate the striking differences between
fermions and bosons.

Figure 5 shows how the correlations across the horizon
(Rob and AntiRob) increase with no bound as Rob accelerates.
This unbounded growth is not only strongly related with the
infinite dimension of the Hilbert space, but also very much
influenced by statistics. As we will see later, we require the
infinite dimension of the bosons’ Hilbert space in order to
have correlations RR̄ which survive the limit a → ∞. That
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FIG. 5. (Color online) Scalar field: Behavior of the mutual
information for the RR̄ system as acceleration varies.
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is not the case for fermions, where those correlations survive
the limit even though the Hilbert space has finite dimension.
We will discuss how the infinite dimension is responsible for
the unbounded growth of correlations across the horizon after
studying the negativity in Sec. V B.

B. Entanglement behavior across the horizon

As we did above, we will compute the negativity (43)
for the scalar case. To compute it, we need the partial
transposition of the bipartite density matrices (61), (62)
and (63), which we will notate as ηAR

s , ηAR̄
s , and ηRR̄

s ,

respectively.

ηAR
s =

∞∑
n=0

tanh2n rs

2 cosh2 rs

[
|0n〉〈0n| +

√
n + 1

cosh rs

(|0n + 1〉〈1n|

+ |1n〉〈0n + 1|) + n + 1

cosh2 rs

|1n + 1〉〈1n + 1|
]
,

(79)

ηAR̄
s =

∞∑
n=0

tanh2n rs

2 cosh2 rs

[
|0n〉〈0n| +

√
n + 1

cosh rs

tanh rs(|0n〉

× 〈1n + 1| + |1n + 1〉〈0n|) + n + 1

cosh2 rs

|1n〉〈1n|
]
,

(80)

ηRR̄
s =

∞∑
n=0
m=0

tanhn+m rs

2 cosh2 rs

(
|nm〉〈mn| +

√
n + 1

√
m + 1

cosh2 rs

×|n + 1m〉〈m + 1n|
)

. (81)

In the following subsections we will compute the negativity
of each bipartition of the system.

1. Bipartition Alice-Rob

Except for the diagonal element corresponding to |00〉〈00|
(which forms a 1 × 1 block itself), the partial transposition of
the density matrix ρAR

s (79) has a 2 × 2 block structure in the
basis {|0n + 1〉, |1n〉}, that is,

tanh2n rs

2 cosh2 rs

⎛
⎝ tanh2 rs

√
n+1

cosh rs

√
n+1

cosh rs

n

sinh2 rs

⎞
⎠ . (82)

Hence, the eigenvalues of (79) are

λ1 = 1

2 cosh2 rs

,

λ2
n = tanh2n rs

4 cosh2 rs

⎡
⎣ (

n

sinh2 rs

+ tanh2 rs

)

±
√(

n

sinh2 rs

+ tanh2 rs

)2

+ 4

cosh2 rs

⎤
⎦ . (83)
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FIG. 6. (Color online) Scalar field: Behavior of the negativity for
the AR bipartition as Rob accelerates.

And then the negativity for this bipartition is

NAR
s =

∞∑
n=0

tanh2n rs

4 cosh2 rs

∣∣∣∣
(

n

sinh2 rs

+ tanh2 rs

)

−
√(

n

sinh2 rs

+ tanh2 rs

)2

+ 4

cosh2 rs

∣∣∣∣∣∣ . (84)

Figure 6 shows NAR
s as a function of rs .

2. Bipartition Alice-AntiRob

Except for the diagonal element corresponding to |10〉〈10|
(which forms a 1 × 1 block itself), the partial transposition of
the density matrix ρAR̄

s (80) has a 2 × 2 block structure in the
basis {|0n〉, |1n + 1〉}:

tanh2n rs

2 cosh2 rs

⎛
⎝ 1 tanh rs

cosh rs

√
n + 1

tanh rs

cosh rs

√
n + 1 tanh2 rs

cosh2 rs
(n + 2)

⎞
⎠ . (85)

Hence, the eigenvalues of (80) are

λ1 = 1

2 cosh4 rs

,

λ2
n = tanh2n rs

4 cosh2 rs

⎡
⎣ (

1 + (n + 2)
tanh2 rs

cosh2 rs

)
(86)

±
√(

1 + (n + 2)
tanh2 rs

cosh2 rs

)2

− 4 tanh2 rs

cosh2 rs

⎤
⎦ .

Therefore, the negativity for this bipartition is always 0, inde-
pendently of the value of Rob’s acceleration. The important
implications of this striking result are discussed below.

3. Bipartition Rob-AntiRob

The partial transposition of the density matrix ρRR̄
s (81)

has a block structure, but the blocks themselves are of
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different dimensions which grow up to infinity. Because of
this, negativity is not as easily computed as for the other cases,
since it is not possible to write it in a closed form.

However, it is still possible to numerically compute the
eigenvalues of (81) taking into account that the blocks forming
the matrix are endomorphisms that act in the subspace
expanded by the basis BD = {|mn〉} in which m + n =
D − 1 = constant; that is, the first block acts within the
subspace expanded by the basis B1 = {|00〉}, the second
B2 = {|01〉, |10〉}, the third B3 = {|02〉, |20〉, |11〉}, the fourth
B4 = {|03〉, |30〉, |12〉, |21〉}, and so forth. In this fashion,
the whole matrix is an endomorphism within the subspace⊕∞

i=1 Si , with Si the subspace (of dimension D = i) expanded
by the basis Bi .

Let us denote as MD the blocks that form the matrix (81),
with D the dimension of each block. Then its structure is

MD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 a1 0 0 · · · · · · · · · 0

a1 0 a2 0 · · · · · · · · · 0

0 a2 0 a3 · · · · · · · · · 0

0 0 a3 0 a4 · · · · · · 0

0 0 0
. . .

. . .
. . . · · · 0

...
...

...
...

. . .
. . .

. . .
...

0 0 0 0 · · · . . . 0 aD−1

0 0 0 0 0 . . . aD−1 aD

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(87)

which is to say, the diagonal terms are zero except for the last
one, and the rest of the matrix elements are zero except for the
two diagonals on top and underneath the principal diagonal.
The elements an are defined as follows:

a2l+1 = (tanh rs)D−1

2 cosh2 rs

, (88)

a2l = √
D − l

√
l
(tanh rs)D−2

2 cosh4 rs

. (89)

Notice that the elements are completely different when the
value of the label n is odd or even.

As the whole matrix is the direct sum of the blocks

ηRR̄
s =

∞⊕
D=1

MD, (90)

the eigenvalues and, specifically, the negative eigenvalues of
ηRR̄

s would be the negative eigenvalues of all the blocks MD

gathered together. It can be shown that the absolute value of
the negative eigenvalues of the blocks decreases quickly as
the dimension increases. Thus, the negativity N RR̄

s converges
promptly to a finite value for a given value of rs . Figure 7 shows
the behavior of N RR̄

s with rs , showing that the entanglement
increases unboundedly between Rob and AntiRob.

Let us compare these results with the fermion case. First, as
shown in [5], the negativity of the Alice-Rob system decreases
as Rob accelerates, vanishing in the limit a → ∞, instead of
remaining finite as in the fermionic cases [5,15].

What may be more surprising is the behavior of the quantum
correlations of the Alice-AntiRob system. In the fermion case,
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FIG. 7. (Color online) Scalar field: Behavior of negativity for the
bipartition Rob-AntiRob as Rob accelerates.

negativity grows monotonically from zero (for a = 0) to a
finite value (for a = ∞). Nevertheless, for scalars, Alice-
AntiRob negativity is identically zero for all acceleration.
Hence, there is no transfer of entanglement from Alice-Rob to
Alice-AntiRob as was the case for fermions. Still, correlations
(classical) are not lost, as can be concluded from (78).

Why do we obtain such loss of entanglement for the bosonic
case and, conversely, it does not happen in the fermionic case?
The answer is, once again, statistics.

One could think of the infinite dimensionality of the
Hilbert space for scalars (compared to the finite dimension
for fermions) as the cause of this different behavior. However,
we will prove that it has to do with the bosonic nature of the
field rather than with the infinite dimensionality of the Hilbert
space. We can see this considering hardcore bosons instead of
scalars, which is to say, we can limit the occupation number for
the bosonic modes to a certain finite limit N instead of taking
N→∞. By doing so, we transform the infinite dimension
Hilbert space for bosons into a finite dimension one. As we
will see below, in any case, the negativity would continue being
zero for all a.

To illustrate this argument, we could compare the fermionic
case with the hardcore bosonic case with N = 2 which would
be its analog, namely, a bosonic field whose occupation
number is limited to 2. Looking at the partially transposed
density matrix for the fermionic case, we can seek for the
negative eigenvalues origin and then compare the analogous
structure that would appear for the hardcore bosonic case. We
will see that in the latter case, no negative eigenvalues are
obtained.

Recalling the form of matrix (45), we can see that it has a
structure of four 1 × 1 blocks, which give positive eigenvalues,
and two 2 × 2 blocks, which are the ones whose eigenvalues
contribute to the negativity. These two blocks are

1

2

(
cos4 rd sin rd cos2 rd

sin rd cos2 rd 0

)
(91)
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in the basis {|00〉, |↑↑〉} and

1

2

(
sin2 rd cos2 rd − sin3 rd

− sin3 rd 0

)
(92)

in the basis {|0 ↓〉, |↑ p〉}.
For hardcore bosons with occupation number limited to

n = N, the structure would be quite similar to (80), but this
time we would have two 1 × 1 blocks instead of one (the
elements |00〉〈00| and |NN〉〈NN |) and N2 × 2 blocks with
the structure (85) but with n = 0, . . . , N − 1. Specifically, for
N = 2, the two blocks are

1

2 cosh2 rs

⎛
⎝ 1 tanh rs

cosh rs

tanh rs

cosh rs

2 tanh2 rs

cosh2 rs

⎞
⎠ (93)

in the basis {|00〉, |11〉} and

tanh2 rs

2 cosh2 rs

⎛
⎝ 1

√
2 tanh rs

cosh rs√
2 tanh rs

cosh rs

3 tanh2 rs

cosh2 rs

⎞
⎠ (94)

in the basis {|01〉, |12〉}.
The key difference comes from the second diagonal term

of the blocks, which in the fermionic case, it is impossible
to obtain due to the peculiar structure that fermionic statistics
imposes on (18). On the other hand, for bosons this term is
nonzero, and furthermore it has a value large enough to prevent
the partially transposed density matrix from having negative
eigenvalues.

As mentioned in Sec. III, this result is independent of the
election of the particular value for the spin components for
Alice and Rob in (19). It also does not depend on N (the limit
for occupation number we impose on hardcore boson modes),
and this phenomenon is exclusively ruled by statistics. Besides,
this is evidence of the difference between hardcore bosons and
fermions, which sometimes in the literature are considered the
same. This is not the case in terms of quantum correlations,
for which we have observed that statistics is a key feature.

This is additional confirmation of the important role that
statistics plays in the behavior of correlations in noninertial
frames, and specifically in the proximity of black holes. In fact,
getting closer and closer to the Rindler horizon (i.e., a → ∞),
the situation resembles more and more the scenario in which
Rob is arbitrarily close to the event horizon of a Schwarzschild
black hole, while Alice is free-falling into it.

About the bipartition Rob-AntiRob, at first glance at Figs. 5
and 7 one would think that there might be some inconsistency
between the behavior of entanglement and mutual information,
as the latter grows linearly while negativity seems to grow
exponentially. Since mutual information accounts for all
the correlations (quantum and classical) between Rob and
AntiRob, the result may appear paradoxical. However, these
apparently inconsistent results are due to the fact that negativity
cannot be identified as the entanglement itself, but rather as a
monotone that grows along with the degree of entanglement.
The specific functional form chosen for the monotone is not
imposed by physical motivations. Actually, we could have
chosen logarithmic negativity, instead of negativity, as our
entanglement monotone since it is in fact better for comparing
with mutual information because of its additive properties [25].
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FIG. 8. (Color online) Scalar field: Comparison of growth of
quantum and all (quantum+classical) correlations for the Rob-
AntiRob system as acceleration increases. Quantum correlations are
accounted for by logarithmic negativity (red dashed line). This figure
compares this entanglement measurement with mutual information
(blue solid line).

The result obtained in this case, shown in Fig. 8, is that when
acceleration grows both growths become linear.

Coming back to the basic argument of this paper, we observe
that entanglement grows unboundedly for this bipartition,
converse to the fermion case in which negativity increases
up to a certain finite limit as Rob accelerates. This different
behavior is not only related to the dimension of the Hilbert
space but also strongly influenced by statistics.

Actually, if we consider again hardcore bosons, we can see
from (87) that limiting the dimension would give a finite num-
ber of blocks which contribute to the negativity, being the last
one truncated and having dimension N − 1 instead of N + 1.
In any case, taking the limit a → ∞, we can see that negative
eigenvalues of the partially transposed density matrix tend to
zero as a grows. Therefore negativity vanishes in that limit.

Naturally, the same happened in the standard bosonic case,
but then negativity was the sum of an infinite number of terms,
each vanishing when a → ∞. The negativity resulted in being
divergent, though. Now we are adding only a finite number of
vanishing terms so that negativity, which was divergent when
a → ∞ for standard bosons, now vanishes in such limit. This
behavior contrasts with the fermionic case and the standard
scalar field case.

This and other points related to the impact of dimension
and statistics on these correlations across the horizon will be
discussed elsewhere.

VI. CONCLUSIONS

This work focused on the bipartite correlations between
different spatial-temporal domains in the presence of an event
horizon. Specifically, we analyzed all the possible bipartitions
of an entangled system composed of an inertial observer and
an accelerated one, which inhabits a universe with an event
horizon.
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As pointed out in the Introduction, Rindler space-time is the
simplest case which, presenting a horizon, also reproduces two
interesting physical scenarios. Namely, it describes the point
of view of an uniformly accelerated observer and, in the limit
a → ∞, it reproduces an observer resting arbitrarily close to
a Schwarzschild black-hole event horizon.

First of all, we studied the relation between the behavior of
entanglement of the Alice-Rob and Alice-AntiRob system,
which are the two bipartitions to which one could assign
physical meaning. We have shown that the dimension of the
Hilbert space has little to do with the entanglement behavior.

We recall two results to support this statement: on one
hand, in [21] we studied the case of a Dirac and a spinless
fermion field beyond the single-mode approximation in which
fermionic Hilbert space turned out to have infinite dimension.
On the other hand, here we have analyzed bosons in a
Hilbert space of infinite and finite dimensions (scalar field
and hardcore scalar, respectively). The results are that the
characteristic differences between fermion fields and bosonic
fields for the bipartitions AR and AR̄ manifest independently
of the dimension of the Hilbert space.

Here we have disclosed a great difference in the behavior of
quantum correlations for fermions and bosons. In the fermionic
case, we showed that at the same time as Unruh decoherence
destroys the entanglement of the Alice-Rob system, entangle-
ment is created between Alice and AntiRob. This means that
the quantum entanglement lost between Alice and the field
modes outside the event horizon is gained between Alice and
the modes inside. This is expressed through the entanglement
conservation law (51), which we deduced for fermions.

Nevertheless, for bosonic states, it was shown that
as acceleration increases, entanglement is quickly and
completely lost between Alice and Rob, while no quantum
correlations are created between Alice and AntiRob.
Moreover, no entanglement of any kind survives among any
physical bipartition of the system in the limit a → ∞ for
the bosonic case. This contrasts with the fermionic case,
where the amount of entanglement among all the physical
bipartitions of the system remains always constant.

These observations are in accord with previous work [21],
in which we suggested that all entanglement which survives
a black-hole event horizon is purely statistical and gives
no further information than the statistical correlations which
inescapably appear due to the fermionic nature of the field.

These powerful and suggestive results may well be related
to what was obtained in such previous works as [26,27]. In
those works it was demonstrated, for pure states in first quan-
tization, that the fact of considering indistinguishable fermions
implies that there are quantum correlations of which we
cannot get rid due to the antisymmetrization of the fermionic
wave functions. Of course, the scenario here is not the same,
but analyzing together the results obtained here and those
in [26,27] reveals the somewhat special feature of fermionic
fields regarding entanglement comportment: statistics infor-
mation, or in this case, information of the fermionic nature
of the field, cannot be erased from our system, and still, that
information is expressed by means of quantum correlations.

Another remarkable result is the conservation law for
mutual information for fermions (42) and bosons (78) shown
in in Figs. 2 and 4. The detailed behavior is different for both

cases, but the same conservation law is obtained for the mutual
information of the bipartitions Alice-Rob and Alice-AntiRob.
Mutual information accounts for both classical and quantum
correlations (despite the fact that in general there is no trivial
relation between negativity and mutual information). However,
for the bosonic case, the mutual information distributes
between the Alice-Rob and Alice-AntiRob systems more
rapidly than for the fermion case.

This result for mutual information means that correlations
are always conserved for the Alice-Rob and Alice-AntiRob
systems, despite the fact that quantum correlations vanish for
the bosonic case and are preserved (and this is the effect
of statistics) in the fermionic case. The fact that classical
correlations behave in a similar way for fermions and bosons
while quantum correlations comport so differently suggests
again that the quantum entanglement which survives the
black-hole limit is merely statistical.

Another difference between fermions and bosons appears
in analyzing the correlations between modes inside and outside
the horizon. It is interesting to notice that as the noninertial
partner accelerates, correlations across the horizon are created.
Both the dimension of the Hilbert space and statistics play a
fundamental role in the behavior of these correlations. We have
obtained that for Dirac fields, these correlations, quantum and
classical, grow as Rob accelerates up to a finite value at the
limit a → ∞. This limit is greater than the analogous limit
obtained for spinless fermions in [5] whose Hilbert space for
each mode is smaller. For the bosonic case, on the contrary,
those correlations grow unboundedly, being infinite when
a → ∞. Surprisingly, for the hardcore bosonic field, in which
Hilbert space has an arbitrarily large but finite dimension, the
behavior of this correlations is not even monotonical, being
zero for the inertial limit as well as for the infinite acceleration
regime, but nonzero in between. Therefore, statistics and
dimensionality must be taken into account in order to find
the origin of this comportment.

We have dealt with this bipartition separately since it cannot
be given a physical interpretation in terms of information
theory. However, it is worthwhile to analyze its comportment,
since it could reveal the relative roles of dimensionality and
statistics when accounting for the behavior of correlations in
the presence of an event horizon. This topic, which deserves
further study, is expected to appear elsewhere.

It is important to recall that the limit a → ∞ can be
understood as considering an observer moving in a trajectory
arbitrarily close to the event horizon of a Schwarzschild
black hole [4]. So, along with the interest of describing the
correlations between accelerated observers, this study gives
further insight into the fate of correlations in the presence of a
black hole. Together with the results of [21], our results could
be of use in tackling the problem of the information paradox
in black holes, for which they indicate that statistics plays a
very important role.
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