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Efficient compression of quantum information
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We propose a scheme for an exact efficient transformation of a tensor product state of many identically prepared
qubits into a state of a logarithmically small number of qubits. Using a quadratic number of elementary quantum
gates we transform N identically prepared qubits into a state, which is nontrivial only on the first �log2(N + 1)�
qubits. This procedure might be useful for quantum memories, as only a small portion of the original qubits has
to be stored. Another possible application is in communicating a direction encoded in a set of quantum states, as
the compressed state provides a high-effective method for such an encoding.
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I. INTRODUCTION

Product states of many identical copies of a one-qubit state
are a specific type of symmetric states. Having only two
parameters, they span the symmetric subspace with linear
dimension N + 1 (when N is the number of the copies).
On the other hand, this subspace is logarithmically small in
comparison to the whole Hilbert space of all qubits, which
has dimension 2N . Thus, one may ask if (and how) it would
be possible to “compress” information encoded in an N -fold
product state of a single qubit state into a smaller number of
qubits, prepared in a complicated, possibly entangled state.
Comparing the dimensions of the Hilbert space of symmetric
states of N qubits (N + 1) with the whole Hilbert space of a
smaller number n of qubits (2n) one can immediately see that
the number of qubits needed to store the compressed state is
n = �log2(N + 1)�.

Gisin and Popescu [1] showed that two qubits in antiparallel
states provide a better encoding of a direction in three-
dimensional (3D) space than two copies of the same qubit.
In a sense, one might see even these two antiparallel spins as
a compressed state, representing a higher (though not natural)
number of copies of a single qubit. In Ref. [2] it was proved
that sending of a direction in space with the help of two qubits
is optimally performed exactly by sending two antiparallel
states. The proof is relying on the fact that the sender and the
receiver should not share a common reference frame. More
general research on this topic was performed later in Ref. [3].

However, if we relax the condition of not sharing a reference
frame between the communicating parties, we can expect to be
able to communicate the direction in a more effective way. In
this case the possible encoding and decoding procedures may
include basis-dependent operations and thus allow for a more
effective communication. A possible scenario is to prepare a
dozen of the qubits (spins), all pointing in the direction in
space that has to be communicated. Then these states will be
compressed and only a logarithmic number of qubits will be
sent. The other party can decompress the state and perform
state tomography on an exponentially higher number of qubits
than it received. The reconstructed state will be obtained with
high fidelity and so will be the precision of the communication
of the direction.

Another possible scenario for utilizing the compression
procedure is a quantum memory. Both the encoding and the

decoding will be done by the same party, so the correct
reference frame will always be available. Having a-priori
information about the fact that a set of qubits is prepared
in a symmetric state, we can reduce the resources needed by
storing just the compressed state.

However, any compression algorithm1 will be of possible
practical use only if it can be performed in reasonable
time, using reasonable resources. Such a condition is usually
understood as performing at most a polynomial number of
elementary (local) operations with respect to the number of
qubits. If we allow a small error ε in the compressing operation,
then methods to design circuits to perform the Schur transform
are known even for qudits [5]. These circuits are polynomial
in the dimension d of the qudits, the number N of qudits, and
log(ε−1).

The situation changes if we insist on performing the unitary
transformation exactly, not allowing any errors. In this case
we cannot utilize the Solovay-Kitaev theorem [4], which
implies the existence of effective quantum circuits, containing
operations only from a discrete set, and approximating any
unitary in an effective way. Instead of this, we will work with
the standard gate library [6], consisting of the controlled-NOT

(CNOT) gate (as a single two-qubit gate) and a continuous set
of single-qubit gates. It is possible to exactly perform any
unitary transformation with gates from this library. However,
this generally requires an exponential number of gates to be
used. Contrary to the general case, our circuit uses only a
polynomial (quadratic) number of elementary gates.

Similar research was performed by Phillip Kaye and
Michele Mosca. In Ref. [7] they suggest an algorithm for
effective entanglement concentration. However, before apply-
ing their algorithm, they perform a positive operator valued
measure (POVM) on their states. Such a method is competent
in cases where we wish to utilize only some quality of the
states (say entanglement), but it is not suitable if we need to
store all of the parameters of the unknown state. In Ref. [8],
the authors suggest an effective algorithm for preparation of

1The suggested scheme should not be confused with the Schu-
macher compression [4]. This compression is suitable for known
quantum sources, whereas our scheme is designed for unknown
sources.
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MARTIN PLESCH AND VLADIMÍR BUŽEK PHYSICAL REVIEW A 81, 032317 (2010)

(classically) known states, which is a conceptually different
problem, leading to a different solution.

The article is organized as follows: in Sec. II we define
symmetric states and computational states, which are specific
states written in the computational basis. In Sec. III we
describe the transformation procedure of symmetric states into
computational states, including an example for three qubits.
In Sec. IV we describe the final procedure, which transforms
computational states into states nontrivially occupying only
the subspace of the first �log2(N + 1)� qubits. In Sec. V
we analyze the influence on a specific type of noise on the
compressed state and compare it to the naive scenario of
storing all qubits. Finally, in Sec. VI we discuss possible further
optimizations of the scheme and suggest possible applications.

II. SYMMETRIC STATES

Any symmetric state of N qubits exhibits the property

|�〉123...N = |�〉σ (123...N) , (1)

where σ (.) denotes a permutation of the individual qubit
systems. A basis for the set of symmetric states can be chosen
so that every basis state has a definite number of excitations
(qubits in the state |1〉) and respective basis states can be
labeled by this number,

|N ; k〉 =
(

N

k

)− 1
2 ∑

σ

σ (|1〉⊗k ⊗ |0〉⊗(N−k)), (2)

where the sum runs through all permutations of the qubit
systems, having

(
N

k

)
terms. The basis states are perpendicular

to each other and normalized,

|〈N ; k|N ; l〉| = δkl . (3)

We suggest a transformation that takes the symmetric states
Eq. (2) into a subset of computational basis vectors. This subset
is formed by the vector |0〉⊗N and all vectors having a single
excitation. It occupies the Hilbert space of the same dimension
as symmetric states and is defined as

|C〉k = |0〉⊗(k−1) ⊗ |1〉 ⊗ |0〉⊗(N−k)

(4)|C〉0 = |0〉⊗N .

This subset is very accessible for the computation for two
reasons:

It is easy to change a state, as only a two-qubit operation
is needed to take one basis state to another one.
It acts as a control very easily, as every basis state is
defined just by the position of a single excitation, which
can act as a control qubit.

III. TRANSFORMATION

We suggest a transformation U in the form,

U (|N ; k〉) = |C〉k . (5)

This transformation is not defined on the whole Hilbert
space, which leaves some possibilities for further optimization.
However, we will show that even without any optimization it
is possible to implement Eq. (5) with O(N2) elementary gates.
Let us examine the cases of few qubits first.

A. One qubit

For one qubit the situation is rather trivial and no transfor-
mation is needed,

|0〉 −→ |0〉
(6)|1〉 −→ |1〉 .

B. Two qubits

Here, we need to perform a transformation only on a part
of the whole Hilbert space:

|00〉 −→ |00〉
|01〉 + |10〉 −→

√
2|10〉 (7)

|11〉 −→ |01〉.
In the second row of Eq. (7) the symmetric combination

of two states possessing a single excitation is combined to the
state |10〉. The state |1〉 is on the first position, encoding a
single excitation of the original state. In the third row the state
|11〉 is transformed into |01〉, encoding two original excitations
into excitation on the second position.

For two qubits, only a single state is not defined
by this transformation allowing one parameter for further
optimization,

1√
2

(|01〉 − |01〉) −→ eiφ|11〉. (8)

In general (as a two-qubit operation), it is realizable by at most
three CNOT gates in combination with single-qubit operations.

C. Three qubits

Out of eight independent basis states of the three-qubit
Hilbert space, the operation U defines only four states:

|000〉 −→ |000〉
1√
3

(|001〉 + |010〉 + |100〉) −→ |100〉
(9)

1√
3

(|011〉 + |101〉 + |110〉) −→ |010〉
|111〉 −→ |001〉.

Similarly to the case of two qubits, there is a simple logic
behind this operation. We need to combine all states having
the same number of excitations, taken with equal weights and
equal phases, into one single state with a single excitation on
the proper position. This can be clearly seen in the second and
third row of the definition Eq. (9).

In this case there are four more basis states, for which the
operation is undefined, leaving us with 12 free parameters.
Even without utilization of this option one needs at most 21
CNOT gates to perform (any) three-qubit operation [9].

D. More qubits

For more qubits, the number of CNOT gates needed to
perform a general operation grows exponentially and is not
known exactly. Attempts to perform general optimizations
have been made in several articles [9–11] with only partial
success. Here, we suggest a sequence of small (three-qubit)
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operations, which follows the logic illustrated on the two- and
three-qubit cases and guarantees a quadratic number of CNOT

gates and local operations with respect to the number of qubits.
Moreover, the free parameters in operations used allow further
optimization of this scheme.

We will define the scheme on the basis states of symmetric
subspace of the N -qubit Hilbert space. Due to linearity, if the
scheme performs operation U on basis states, it does so on
any symmetric state. For nonsymmetric states (which occupy
the substantial portion of the Hilbert space of many qubits) the
action of the operation may be arbitrary.

Let us start with a basis state |N ; k〉. The number of qubits
N is supposed to be known and the operation may and will
depend on it. On the contrary, the number of excitations k

must not be part of the definition of the operation itself, as the
operation is applied on a superposition of states with a fixed
N , but different k’s.

As the first step we perform the operation Eq. (7) on the
first two qubits of the state:

|N ; k〉 =
(

N

k

)− 1
2 ∑

σ

σ (|1〉⊗k ⊗ |0〉⊗(N−k))

−→ |00〉
(

N − 2

k

)− 1
2 ∑
(N−2

k )

P (|1〉⊗k ⊗ |0〉⊗(N−2−k))

+
√

2|10〉
(

N − 2

k − 1

)− 1
2 ∑
(N−2

k−1)

P (|1〉⊗k−1⊗ |0〉⊗(N−1−k))

+ |01〉
(

N − 2

k − 2

)− 1
2 ∑
(N−2

k−2)

P (|1〉⊗k−2 ⊗ |0〉⊗(N−k)).

(10)

One needs no more than three CNOT gates for this operation.
The

√
2 in the third row of the definition Eq. (10) comes from

the fact that the state beginning with |10〉 contains two original
states (both beginning with |10〉 and |01〉).

Now we have virtually divided the state of N qubits into two
parts. In the first part (two qubits) the logic of the output basis
is implemented, where the position of the excitation encodes
the number of excitations originally contained in the first part
of the state. The second part of the state is in its original form,
symmetric with respect to the permutation of qubits within this
part.

We will proceed with the transformation to gradually
enlarge the transformed part of the state. To do this, we will
take the first qubit (let us denote this qubit as the ath qubit) of
the nontransformed part of the state. We will perform specific
three-qubit operations on this qubit and any neighboring pair
of qubits in the transformed part of the state. This operation
will perform the following actions:

1. If the ath qubit is in the state |0〉, no change needs
to be done to the transformed part of the state, as the
excitation is on the proper position also including the
ath qubit into the transformed part of the state.

2. If the ath qubit is in the state |1〉, the sequence of
operations will “scan” the transformed state and shift

the excitation by one position to the right and remove
the excitation from the ath qubit.

3. Specifically, if the ath qubit is in the state |1〉 and
there was no excitation so far in the transformed part of
the state, the operation will switch the first qubit to the
state |1〉 and remove the excitation from the ath qubit at
the same time.

4. Specifically, if the ath qubit is in the state |1〉 and the
excitation in the transformed part of the string is on the
last position (qubit a − 1), the operation will remove
this excitation, but will keep the excitation on the ath
qubit.

Written in mathematical terms, omitting the part of the state
starting with the qubit a + 1, we will perform the operation
U (a) as follows:

|ψ〉|0〉a −→ |ψ〉|0〉a
|0 . . . 0〉|1〉b|0 . . . 0〉|1〉a −→ |0 . . . 0〉|1〉b+1|0 . . . 0〉|0〉a

|0 . . . 0〉|1〉a −→ |1〉|0 . . . 0〉|0〉a (11)

|0 . . . 0〉|1〉|1〉a −→ |0 . . . 0〉|1〉a.
To perform this transformation, we need to apply a three-

qubit operation U (a, b) on qubits on the positions b, b + 1,

and a, for every b running from 1 to a − 2:

|00〉b|0〉a −→ |00〉b|0〉a
|10〉b|0〉a −→ |10〉b|0〉a

(12)|00〉b|1〉a −→ |00〉b|1〉a
|01〉b|1〉a −→ |01〉b|1〉a

α101|10〉b|1〉a + α010|01〉b|0〉a −→ β010|01〉b|0〉a,
where

α101 =
√(

a − 1

b

)

α010 =
√(

a − 1

b + 1

)

β010 =
√(

a

b + 1

)
,

and

|00〉b = |0〉b|0〉b+1. (13)

The first two rows of the operation Eq. (12) obey the first
condition posed on the transformation—if the ath qubit is not
excited, the string should not be changed. The third and fourth
rows are part of the “scanning” process, where we need to
find the excitation in the transformed string and push it by one
position. We did not find the excitation in the third row, so no
action is performed. The excitation was found in the fourth
row, but should be transformed to the position b + 2, which
is not part of the transformation, so no action is required here
again. The crucial part of the transformation is in the fifth row.

The state |01〉b|0〉a should not be transformed obeying the
first condition, as the state of the ath qubit is |0〉. However,
the state |10〉b|1〉a should be transformed to |01〉b|0〉a obeying
the second condition. This cannot be done separately, as this
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would induce a nonunitary operation (two perpendicular states
would be transformed into one state). What can be done is to
transform a specific linear combination of these two states.

Let us change the normalization until the end of this
section and suppose that all states that formed the original
state |N ; k〉 (written in computational basis) had norm 1 [this
would result in the norm

(
N

k

)
of the state |N ; k〉]. Then,

the partially transformed state containing |10〉b|1〉a will have
the amplitude

√(
a−1
b

)
, which comes from the fact that there

are already combined all states that contained b excitations
within a − 1 positions. The same holds for the state |01〉b|0〉a ,
where the amplitude is

√(
a−1
b+1

)
. For the state |01〉b|0〉a after

transformation the amplitude is
√(

a

b+1

)
, as we have b + 1

excitations within a qubits. Preservation of the norm by the
transformation can be seen very easily: Taking the squares
of amplitudes we get combinatorial numbers forming a small
edge-down triangle in the Pascal triangle. A rule applies there
that the value on a specific position is given by the sum of two
values above it, that is,(

a

b + 1

)
=

(
a − 1

b

)
+

(
a − 1

b + 1

)
. (14)

To successfully conclude the operation U (a) Eq. (11) for
a specific a, we still need to apply the last two conditions,
dealing with the specific cases of 0 and a excitations in the
transformed string. To do that, we will perform an operation
acting on the first qubit and on the pair of qubits on the positions
a − 1 and a :

|0〉1|00〉a−1 −→ |0〉1|00〉a−1

|0〉1|10〉a−1 −→ |0〉1|10〉a−1
(15)|0〉1|11〉a−1 −→ |0〉1|01〉a−1

α001|0〉1|01〉a−1 + α100|1〉1|00〉a−1 −→ β100|1〉1|00〉a−1,

where

α001 = 1; α100 = √
a − 1; β100 = √

a.

Here, the first two rows of the operation obey the first condition
that for no excitation on the ath position no action is required.
The third row applies the fourth condition; if a − 1 excitations
were in the original nontransformed state (resulting in the
excitation of the position a − 1 in the transformed state) and
ath qubit is excited, it should remain excited but the excitation
of the qubit on the position a − 1 has to be removed. The last
row of Eq. (15), similarly to the situation in Eq. (12), combines
two states in a specific superposition. The state |0〉1|01〉a has
a unit norm, as it was not combined until now with any other
state. State |1〉1|00〉a before transformation has the amplitude√

a − 1 (one excitation among a − 1 possible positions) and
the state |1〉1|00〉a after transformation has the amplitude

√
a

(one excitation among a possible positions).
For every a from 3 to N we have to perform a − 2

operations of the type Eq. (12) and one operation of the type
Eq. (15). This results in, altogether,

N∑
3

(a − 2) + (N − 2) = (N + 1)(N − 2)

2
, (16)

three-qubit operations, plus a two-qubit operation from the
very first step. As any three-qubit operation can be realized

by at most 21 CNOT gates (plus local transformations) and any
two-qubit operation by at most three CNOT gates (plus local
transformations), we get as the upper bound,

n(N ) = 21
2 (N2 − N − 2) + 3, (17)

that is quadratically dependent on the number of qubits. This
is far better than any optimization method can perform in a
general case and causes an exponential speed-up in comparison
to any known general decomposition. Moreover, the open
parameters in the definition of the operations Eqs. (12) and
(15) may allow for further optimization. Optimization of the
final configuration may also result in further decrease of
the number of CNOTs needed; however, the dependence on
the number of qubits will most probably remain quadratic.

E. Five-qubit example

As the above-described procedure is rather complicated and
not easy to understand, we present an example of five qubits.
In this case, the input state has the form,

|�〉 = |ψ〉⊗5 = (α|0〉 + β|1〉)⊗5

= α5|00000〉 +
√

5α4β|5; 1〉
+

√
10α3β2|5; 2〉 +

√
10α2β3|5; 3〉

+
√

5αβ4|5; 4〉 + β5|11111〉. (18)

Let us now apply the transformation step by step on one of
the components of the state Eq. (18), for example, on |5; 3〉. In
further steps we omit the amplitude of the state in the original
state |�〉 given by α and β, but keep the norm factor

√
10 for

simplicity. As the first operation we apply Eq. (10) on the first
two qubits. This results in the state,

√
10|5; 3〉 → |00〉|111〉 +

√
6|10〉|3; 2〉 +

√
3|01〉|3; 1〉.

(19)

Now we apply the operation Eq. (12); indices a and b

run from 3 to 5 and from 1 to a − 2, respectively. Graphical
representation of the circuit is depicted in Fig. 1 and results of
the operations after each step are shown in Table I.

The state
√

10|5; 3〉 was transformed to the state√
10|00100〉 (i.e., the number of excitations in the state was

transformed into the position of a single excitation). In every
step of the operation [in the state Eq. (19) and in every row
of Table I], the position of the excitation in the “processed”
part of the state (denoted as the first ket) plus the number of
excitations in the “unprocessed” part of the system (denoted

TABLE I. The resulting state after partial transformations U (a, b)
is displayed for the specific case of transformation of the state |5; 3〉.

a b Result after transformation

3 1
√

3 |100〉 |11〉 + √
6 |010〉 |2; 1〉 + |001〉 |00〉

4 1
√

6 |0100〉 |1〉 + √
3 |010〉 |10〉 + |001〉 |00〉

4 2
√

6 |0100〉 |1〉 + √
4 |0010〉 |0〉

5 1
√

6 |0100〉 |1〉 + √
4 |0010〉 |0〉

5 2
√

10 |00100〉
5 3

√
10 |00100〉
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FIG. 1. Sequence of gates of compression transformation in the
five-qubit example. Operation V represents the starting two-qubit
transformation Eq. (10) and operations U represent relevant U (a, b)
operations Eq. (12).

as the second ket) sum to three, the number of excitations in
the untransformed state. The operations Eq. (15) were omitted
as they cause no action for the specific state.

IV. FINAL STEP

As the final step of the procedure, we need to perform a
transformation,

|C〉k −→ |B〉k , (20)

where |B〉k is a set of N + 1 states occupying nontrivially only
the subspace of �log2(N + 1)� qubits. As a natural suggestion
we define the states as binary notation of the number k, that is,
for every k, the state |B〉k will have excited the qubits on those
positions, on which there is a 1 in the binary notation of the
number k. The qubits will be in the ground state on all other
positions. The state |B〉k will have the form,

|B〉k = |b〉k |0〉⊗{N−�log2(N+1)�} , (21)

where |b〉k is a state of �log2(N + 1)� qubits. After the whole
procedure, we can simply discard most of the qubits and keep
only a logarithmic number of them, still keeping the whole
information.

Now the main task is to perform the transformation
efficiently (i.e., with at most the polynomial number of
elementary gates). This does not seem to be a crucial problem,
as we will work strictly in the computational basis and perform
only transformations from one basis state to other basis state.
Similarly to the previous transformation, we will perform it
consecutively from the first to the last qubit. First of all, let us
remark that for k < 3 the transformation is trivial and no action
is needed. The first nontrivial number is k = 3 where we need
to transform |0〉⊗(N−3)|100〉 −→ |0〉⊗(N−3)|011〉. This can be
done easily by performing two CNOT gates with the third qubit
as control and the first and second qubit as targets. After that,
we can perform a Toffoli gate with the first and second qubits
as controls and third qubit as target. Obviously, these gates will
act nontrivially only on the desired state, as all other states |C〉k
with k �= 3 have |0〉 on the third position. All states with k �= 3
do not have |1〉 both on the first and second position.

For k > 3 we will perform similar operations. For every k

we will perform CNOT gates with the kth qubit as control and
those qubits as targets, which represent the number k in binary
notation. In the end we will perform a single Toffoli gate with
all these (target) qubits as control, all other qubits on positions
smaller than k as reversed controls (initiating the operation if
in the state |0〉) and the kth qubit as target. If we perform these
operations subsequently from smaller to bigger k (from 3 to

FIG. 2. Sequence of gates for the final step operation in the five-
qubit example.

N ), they will always act nontrivially only on the relevant state
|C〉k . An example of the network for five qubits is shown in
the Fig. 2.

For every k, we will need to perform at most log(k) CNOT

gates and one Toffoli gate with log(k) controls. Such a Toffoli
gate can always be performed with quadratic number of CNOT

gates [6] with respect to the number of control qubits. Hence,
for every k, we need roughly log2(k) CNOT gates. Thus, the
number of CNOT gates for the whole transformation will be of
the order of

N∑
k=3

log2(k) <

N∑
k=3

log2(N ) < N log2(N ),

at most.

V. NOISE ANALYSIS

To examine the capabilities of compressed state to resist to
noise, we have performed analysis on a specific noise model.
Within this model, every qubit is unitarily rotated by a specific
angle φ around a defined axis on the Bloch sphere. Such noise
can be imagined to be active, for example, a magnetic field
causing precession of the stored (or sent) qubits. In the same
way a passive “noise” can be imagined, causing rotation or
misalignment of the reference frames.

We consider two scenarios. In the first scenario, all N qubits
are stored without compression and noise is acting on all the
qubits. In the second scenario, we first compress the N qubits
and store only the nontrivial part of the state. The noise is
acting only on the stored qubits now. In the end we add qubits
in the state |0〉 and decompress the state.

The decompression procedure is fully defined only for
N = 2k − 1 for every k > 0. In other cases, the Hilbert
space of the compressed system has dimensions not used
for storing information; the unperturbed compressed state has
zero amplitudes within these dimensions. However, the noise
can rotate the compressed state so, that these dimensions
are also used. In such a case one would have to define the
decompressing operation further to cover the whole Hilbert
space of the compressed state.

A. Global state fidelity

The global state fidelity between the original, unperturbed
state Eq. (1) with the state after action of noise on all qubits is
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FIG. 3. Fidelity of the global state after the action of noise
with and without compression and decompression. The fidelity
of the compressed state is clearly higher than the fidelity of the
uncompressed one.

compared to the fidelity with the state after compression, action
of noise, and decompression. We average over all possible
input states of qubits and over all axes of rotation of the noise.
The results for φ = 0.1 rad and different number of qubits
are shown in Fig. 3. In this case, the dimensions of the Hilbert
space of compressed state not used for storing information will
never contribute to the resulting fidelity and, therefore, we do
not have to further define the decompression operation.

The figure for the compressed state shows a clear structure
with maximums of fidelity for specific numbers of qubits
(3,7,15). These are numbers for which the whole Hilbert space
of compressed state is used to store information. By increasing
the number of qubits just above these numbers, a sudden drop
of fidelity appears due to the increase of the number of qubits
of the compressed state (which are subject to the action of
noise). In every situation the fidelity of the state after the
compression-decompression procedure is higher than in the
naive scenario of storing all qubits.

B. Single-qubit fidelity

Here the fidelity of the single-qubit state is examined under
the scenarios described above (with and without compression).
In this case the unused dimensions in the Hilbert space of
compressed state may contribute to the result, therefore, we
examined a specific case of N = 7, where this is not the
case. The symmetries of the operation as well as of the errors
guarantee the symmetry of the resulting state. In general, the
state after decompression will be entangled, resulting in mixed
one-qubit states, but still all of them identical.

The results of the calculations are shown in Fig. 4 for
different values of φ. Results are averaged through all input
states. For the uncompressed state, the resulting fidelity is not
dependent on the axis of rotation of the error. However, this
is not the case for the compressed state. Therefore, the figure
shows results for three specific axes of rotation, as well as the
result after averaging over all possible axes.

We can conclude that in general the modeled type of noise
is more harmful to the compressed state. However, as only a
small amount of qubits is stored in the compressing scenario in
comparison with the naive scenario, one can expect the ability
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FIG. 4. Fidelity of the one-qubit state after the action of noise with
and without compression and decompression. For the compression
scenario, results for noise acting around x, y, and z axis, as well as
for noise averaged through all axes are shown.

to guarantee smaller average errors. In specific situations, we
can obtain better fidelity in the compressing scenario even with
the same error rate. If we have a prediction about one more sta-
ble axis within the one-qubit Hilbert space, we can choose this
to be the z axis of the compression-decompression operation
(defining the computational base and CNOT operation). Toward
errors causing rotation around this axis, the compressed state
is more stable then the uncompressed one.

VI. CONCLUSIONS

In this article, we have suggested a quantum compression
scheme for transformation of an N -fold product state of a
single qubit state into a state, which is non-trivial only on
�log2(N + 1)� qubits. The same procedure also describes the
inverse operation (decompression). Both of these are effective
in a sense that only O(N2) CNOT gates are needed to perform
the operations.

Possible use of the scheme is a quantum memory. Having
more copies of a single-qubit state, it might be very reasonable
to compress them into a state of only a few qubits, which will
be more easily protected against decoherence. If the copies are
needed again, we perform the decompression transformation.

The scenario of storing quantum information is imaginable
(e.g., in a case when a single-qubit state is a result of a stage of
quantum computation and is needed as an input for a following
stage of the computation). If some stages of the computation
cannot be performed immediately after each other (they may
use the same “hardware,” which needs to be adjusted, etc.), the
N -fold symmetric state of a single-qubit state (obtained after
N runs of the computation) may be compressed and stored
effectively, for example, with exponentially smaller memory
demands and lower error rate, in the meantime.

Another possible application is the sending of classical
information about a direction using quantum states. In cases
when two communicating parties share a reference frame,
states resulting from the suggested compression are very
effective in communicating the direction. If the sender has
an option to send at most n qubits, he prepares a 2(n−1)-fold
symmetric state of a single-qubit states (spins) pointing in the
desired direction in ordinary 3D space. After compression,
the resulting compressed state will span the Hilbert space
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TABLE II. The comparison of fidelities of sending of a direction
in 3D using quantum states in cases of a naı̈ve scenario—transfer of
multiple copies of a single qubit, the Bagan et al. scheme [3] (EB)
and our compression scheme (PB).

n 1 2 3 4 5 6

|ψ〉⊗n 0.666 0.750 0.800 0.833 0.855 0.875
EB 0.666 0.789 0.845 0.911 0.931 0.943
PB 0.666 0.800 0.889 0.941 0.970 0.992

of exactly n qubits and can be sent to the receiver. He will
then decompress it back into 2(n−1)-fold symmetric state of a
single-qubit state and perform standard state tomography or
adaptive methods. As a result, he will obtain a reconstructed
one-qubit state (spin) and the direction of the spin in 3D space
will be the communicated direction.

The fidelity between the reconstructed one-qubit state and
the original one expresses the precision of the procedure
of sending direction in space, measured in the value of the

scalar product between the sent and received direction. To
compare the power of the suggested compression scheme with
known procedures, fidelities using a small number of qubits
are presented in Table II. For a big number of qubits, the
fidelity of our procedure grows as F = 1 − 1

2n+2 , which is

exponentially faster than F ∼ 1 − ξ

n2 for the scheme presented
in Ref. [3] or for the case of sending simple copies of the qubit
state, where F = 1 − 1

n+2 [12]. Thus by utilizing a shared
reference frame between communicating parties and paying
the cost of it we can gain an exponential decrease of fidelity
loss.
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