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Entanglement purification is a very important element for long-distance quantum communication. Different
from all the existing entanglement purification protocols (EPPs) in which two parties can only obtain some
quantum systems in a mixed entangled state with a higher fidelity probabilistically by consuming quantum
resources exponentially, here we present a deterministic EPP with hyperentanglement. Using this protocol,
the two parties can, in principle, obtain deterministically maximally entangled pure states in polarization
without destroying any less-entangled photon pair, which will improve the efficiency of long-distance quantum
communication exponentially. Meanwhile, it will be shown that this EPP can be used to complete nonlocal
Bell-state analysis perfectly. We also discuss this EPP in a practical transmission.
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I. INTRODUCTION

The realization of long-distance quantum communica-
tion schemes should resort to the distribution of entangled
states between distant locations [1]. Although photons are
the optimal quantum information carriers in long-distance
quantum communication, as the interaction between them and
environment is weaker than others, the polarization degree
of freedom of photons is incident to the noise in a quantum
channel. Noise will degrade the entanglement of a photon pair
or even turn it into a mixed state. If the destructive effect of
the noise is low, the two parties in quantum communication,
say Alice and Bob, can first exploit entanglement purification
to improve the entanglement of the quantum systems and then
achieve the goal of quantum communication with maximally
entangled states. Entanglement purification becomes a very
important element in a quantum repeater [2] for long-distance
quantum communication.

In 1996, Bennett et al. [3] proposed an entanglement
purification protocol (EPP) based on quantum controlled-NOT

(CNOT) logic operations, and subsequently it was improved by
Deutsch et al. [4] using similar logic operations. In 2001, Pan
et al. [5] proposed an EPP with linear optical elements. In 2002,
Simon and Pan [6] improved their protocol. They considered
a currently available source, a parametric downconversion
(PDC) source, to prepare entangled photon pairs, and they first
used spatial entanglement to purify polarization entanglement.
Both of these protocols should resort to sophisticated single-
photon detectors, which is not a simple task in linear optics. In
2008, an EPP based on nondestructive quantum nondemolition
detectors was proposed [7]. By far, all existing EPPs cannot
obtain maximally entangled states. They only improve the
fidelity of an ensemble in a mixed entangled state. In order to
obtain some entangled states with higher fidelity, they have to
consume more and more less-entangled ones. Theoretically
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speaking, it is impossible to get a pair of photons in a
maximally entangled state with conventional EPPs [3–7].

Recently, the applications of hyperentangled states have
been studied by some groups. A state of being simultane-
ously entangled in multiple degrees of freedom is called
a “hyperentangled state” [8–10]. The most important use
of hyperentanglements is in complete deterministic local
Bell-state analysis [11–13]. In 2008, with the help of the
hyperentangled state in both polarization and orbit angular
momentum, Barreiro et al. [14] beat the channel capacity
limit for linear photonic superdense coding. With a type-I and
type-II β barium borate (BBO) crystal, photon pairs produced
by spontaneous parametric downconversion (SPDC) can be
in the hyperentangled state in polarization and spatial degrees
of freedom, polarization, spatial, energy, and time degrees of
freedom, polarization and frequency degrees of freedom [15];
and so on. In 2009, Vallone et al. [16] also reported their
experiment with a six-qubit hyperentangled state in three
degrees of freedom. If we substitute the SPDC source in
Ref. [15] for the PDC source in Ref. [6], we can produce
the hyperentanglement with the following form:

1

2
√

2
(|HH 〉 + |V V 〉)(|ω1ω2〉 + |ω2ω1〉)(|a1b1〉 + |a2b2〉).

(1)

Here, H (V ) represents the horizontal (vertical) photon
polarization, ω1 (ω2) represents the frequency of the signal
(idler) photon, and a1b1 (a2b2) represents the spatial mode of
photons.

In this article, we will present a deterministic EPP with
hyperentangled states in the form of Eq. (1). The two parties
in quantum communication, say Alice and Bob, can get a
maximally entangled photon pair from each hyperentangled
state in this EPP, which is, in essence, different from all the
existing conventional EPPs [3–7]. The deterministic feature of
our protocol will improve the efficiency of long-distance quan-
tum communication exponentially as the conventional EPPs
will consume entangled quantum resources exponentially for
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obtaining some maximally entangled states. Also, this EPP
can accomplish the complete nonlocal Bell-state analysis.

The article is organized as follows. In Sec. II A, we describe
the principle of the deterministic entanglement purification
for bit-flip errors with spatial entanglement. In Sec. II B, the
purification for phase-flip errors is discussed. In Sec. III,
we discuss the method of nonlocal Bell-state analysis with
hyperentanglement. In Sec. IV, we analyze the essence of
entanglement purification. In Sec. V, we discuss the present
EPP in a practical transmission. A discussion and a summary
are given in Sec. VI.

II. DETERMINISTIC ENTANGLEMENT PURIFICATION

It is well known that the most important application of
EPPs is in constructing quantum repeaters for long-distance
quantum communication in a noisy channel [2,17–20]. In order
to connect the adjacent nodes, the two parties in quantum
communication should first transmit their photons in a noisy
channel and then connect them with quantum entanglement
swapping. Usually, the channel noise will degrade the en-
tanglement of photon pairs. Also, the imperfect operations
will disturb the entanglement of quantum systems. Now let us
start the explanation of our entanglement purification scheme
by discussing an ordinary example. During a quantum-signal
transmission, polarization degree of freedom suffers from the
channel noise as both the spatial degree of freedom and the
frequency degree of freedom are more stable than polarization.
The previous experiments showed that the polarization entan-
glement is quite unsuitable for transmission over distances of
more than a few kilometers in an optical fiber [1]. For example,
Naik et al. demonstrated the Ekert protocol [21] over only a few
meters [1,22]. Also, they observed the quantum bit error rate
(QBER) increase to 33% in the experimental implementation
of the six-state protocol [23,24]. For frequency coding [25–30],
for example, the Besancon group performed a key distribution
over a 20-km single-mode optical-fiber spool. They recorded
a QBERopt contribution of approximately 4% and estimated
that 2% could be attributed to the transmission of the central
frequency by the Fabry-Perot cavity [30]. The experiment by
Minář et al. [31] for phase-noise measurements showed that
in a realistic environment, the phase in long fibers (several
tens of km) remains stable, which is an acceptable level for
time on the order of 100 µs. The phase stabilization is relevant
for the quantum repeaters in installed optical fiber networks. In
Simon’s protocol [6], they also performed an EPP using spatial
entanglement to purify polarization entanglement based on the
good mode overlap on the PBS and phase stability that were
achieved in previous experiments.

In fact, that frequency and spatial entanglement absolutely
do not suffer from the noise is only a hypothesis and is
unpractical. Here we only use it to show the basic principle for
our entanglement purification process. We also will discuss
the entanglement purification under a realistic environment.
Moreover, other degrees of freedom, such as time-bin, which
is more robust than polarization, can also be used to implement
this scheme [32,33]. In the discussion section of this article
we will show that the entanglement purification essentially
performs entanglement transformation between different de-
grees of freedom, that is, transforms robust entanglements

in channel transmissions (frequency and spatial) into easily
manipulatable entanglements (polarization).

Under the hypothesis mentioned previously, the entan-
glement purification in the present scheme is divided into
two steps, that is, purification for bit-flip errors and that for
phase-flip errors. We discuss them in detail in this section as
follows.

A. Deterministic purification for bit-flip errors

After the transmission, the hyperentangled state of Eq. (1)
will become a mixed one in polarization:

ρp = a|�+〉AB〈�+| + b|�−〉AB〈�−|
+ c|�+〉AB〈�+| + d|�−〉AB〈�−|. (2)

Here a + b + c + d = 1 and ρp is the mixed part of Eq. (1) in
polarization. |�±〉AB and |�±〉AB are the four Bell states for
an entangled photon pair AB:

|�±〉AB = 1√
2

(|H 〉A|H 〉B ± |V 〉A|V 〉B), (3)

|�±〉AB = 1√
2

(|H 〉A|V 〉B ± |V 〉A|H 〉B). (4)

After the transmission, the initial state becomes

ρ = ρpρf ρs, (5)

with one photon belonging to Alice and the other belonging
to Bob. Here ρf = 1

2 (|ω1ω2〉 + |ω2ω1〉)(〈ω1ω2| + 〈ω2ω1|) and
ρs = 1

2 (|a1b1〉 + |a2b2〉)(〈a1b1| + 〈a2b2|). We also let |�f 〉 =
1√
2
(|ω1ω2〉 + |ω2ω1〉) and |�s〉 = 1√

2
(|a1b1〉 + |a2b2〉).

There are admixtures of the unwanted states |�−〉AB and
|�±〉AB . We note that the state |�+〉AB becoming |�+〉AB is a
bit-flip error, becoming |�−〉AB is a phase-flip error, and both
a bit-flip error and a phase-flip error take place when |�+〉AB

becomes |�−〉AB . From Eqs. (2) and (5), the original state can
be seen as a probabilistic mixture of four pure states: with a
probability of a the photon pair in the state |�+〉|�f 〉|�s〉, with
a probability of b the pair in the state of |�−〉|�f 〉|�s〉, and
with the probability of c and d in |�±〉|�f 〉|�s〉. The whole
task of purification is to correct the bit-flip and the phase-flip
errors. So this scheme includes two steps, one for bit-flip error
correction and the other for phase-flip error correction.

The principle of our scheme for bit-flip error correction
is shown in Fig. 1, where +θ represents a cross-Kerr non-
linear medium which will make the coherent state |α〉 pick
up a phase shift θ when it and one photon couple with
the medium [34–36]. We now consider the combinations
|�+〉|�f 〉|�s〉 and |�+〉|�f 〉|�s〉. Let us first discuss the
state |�+〉|�f 〉|�s〉. In Fig. 1, the items |HH 〉(|ω1ω2〉 +
|ω2ω1〉)|a1b1〉 and |V V 〉(|ω1ω2〉 + |ω2ω1〉)|a2b2〉 make the
two coherent beams |α〉 and |α〉′ obtain the same phase
shift of θ , which can be detected by Alice and Bob with
an X homodyne measurement [34–36]. Finally, coupled by
the two polarizing beam splitters (PBSs), they will emit from
a2b2. The whole state becomes 1

2 (|HH 〉 + |V V 〉)(|ω1ω2〉 +
|ω2ω1〉). Following the same principle, we can also get
the state 1

2 (|HH 〉 + |V V 〉)(|ω1ω2〉 + |ω2ω1〉) from a1b1 if
both Alice and Bob get no phase shifts. In the case of
|�+〉|�f 〉|�s〉, it never leads to the same phase-shift case.
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FIG. 1. Schematic drawing of the principle of bit-flip error
purification. The source emits the entangled pair with the form of
Eq. (1). One member of pair has been sent to Alice and the other
to Bob. Both Alice and Bob perform X homodyne measurements on
their coherent beams |α〉 and |α′〉, respectively, and compare the
results via classical communication. If their results are different,
they need to perform a bit-flipping operation to correct this error.
Otherwise, there are no bit-flip errors. PBS, polarizing beam splitter.

If Alice gets the phase shift of θ and Bob gets no phase shift,
it means that the preceding state is changed to 1

2 (|HV 〉 +
|V H 〉)(|ω1ω2〉 + |ω2ω1〉). The photon which belongs to Alice
is in the mode of a2, and which belongs to Bob is in b1.
There is another case for Alice and Bob. That is, Alice gets
no phase shift and Bob gets θ . The corresponding state is
also 1

2 (|HV 〉 + |V H 〉)(|ω1ω2〉 + |ω2ω1〉), but with the spatial
modes of a1 and b2.

By applying our purification procedure, Alice and Bob
can easily check the bit-flip error as they get different phase
shifts with their X homodyne measurements on their coherent
beams. The spatial modes are also different, corresponding
to the different collapsed states, but which can be completely
determined. Therefore, by classical communication, if a bit-
flip error occurs, Alice and Bob will get rid of the bit-flip error
by performing a bit-flip operation σx = |H 〉〈V | + |V 〉〈H |.
Next we show that our protocol works for the other cases.
The case of |�−〉|�f 〉|�s〉 will get the same result with
|�+〉|�f 〉|�s〉. After the PBSs, the two photons will be either
in the upper modes a1 and b1 or in the lower modes a2 and b2.
For the case |�−〉|�f 〉|�s〉, part of the polarization contains
both a bit-flip error and a phase-flip error, so Alice and Bob will
get the phase shift of θ and 0 or 0 and θ , respectively. It has an
analogy with the case of |�+〉|�f 〉|�s〉. We can also perform
a bit-flip operation to correct it. In this case, a phase-flip error
still remains.

B. Deterministic purification for phase-flip errors

So far, we have been talking about a bit-flip error for the
mixed state in polarization. By correcting this error, the initial
state in polarization becomes

ρp′ = (a + c)|�+〉AB〈�+| + (b + d)|�−〉AB〈�−|. (6)

As we know, a phase-flip error cannot be purified directly,
but it can be transformed into a bit-flip error by Hadamard
(H) operations. In an optical system, it can be finished by a
λ/4-wave plate (QWP). By performing the H operations on

c1

d2c2

Classical communication

Homodyne

X X

PBS PBS

X X

c1
d1

d1

d2c2

Homodyne

1

2

2

1

EPR Source

 Alice Bob

WDM WDM
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FIG. 2. Scheme showing the principle of phase-flip purification.
After two Hadamard operations, a phase-flip error is transformed
into a bit-flip error. Two WDMs are used to guide the the photons
to the different paths according to their frequencies. Similar to the
bit-flip error correction, if Alice and Bob get different phase shifts,
the phase-flip error occurs, and then they add a bit-flipping operation
to correct this error. Otherwise, there is no phase-flip error.

the two photons with two QWPs, Eq. (6) evolves:

ρp′′ = (a + c)|�+〉AB〈�+| + (b + d)|�+〉AB〈�+|. (7)

That is, the initial state becomes

ρ ′ = ρp′′ρf . (8)

It is interesting to find that the entanglement in frequency was
not affected during the procedure discussed previously, but the
spatial entanglement is consumed for correcting bit-flip errors.

Now we focus on the second step of our EPP: correcting
the phase-flip error. In Fig. 2, two photons in the from of
Eq. (8) belong to Alice and Bob, respectively. Two
polarization-independent wavelength division multiplexers
(WDMs) are used to guide photons to different paths, accord-
ing to their frequencies. For example, in Alice’s laboratory, it
leads the photon in ω1 to the mode c1 and the photon in ω2 to
the mode c2. However, in Bob’s laboratory, it leads the photon
in ω1 to the mode d2 and the photon in ω2 to the mode d1.

From Eq. (7), it follows that the original state of the pairs
can be seen as a probabilistic mixture of two pure states: with
a probability of a + c the photon pair is in the state |�+〉|�f 〉
and with a probability of b + d the pair is in the state |�+〉|�f 〉.
It is obvious that |�+〉|�f 〉 leads to the same phase shift for
both θ and 0. They will be either in the mode c1d1 with the
state of 1√

2
(|Hω2〉A|Hω1〉B + |V ω1〉A|V ω2〉B) or in the mode

c2d2 with the state of 1√
2
(|Hω1〉A|Hω2〉B + |V ω2〉A|V ω1〉B).

This is the maximally entangled state we need. However, for
|�+〉|�f 〉, it never leads to the same phase shift. Alice will
get θ while Bob will get 0 with the state 1√

2
(|Hω1〉A|V ω2〉B +

|V ω2〉A|Hω1〉B) in the mode c2d1 or Alice gets 0 and Bob
gets θ with the state 1√

2
(|Hω2〉A|V ω1〉B + |V ω1〉A|Hω2〉B)

in the mode c1d2. We can perform a bit-flip oper-
ation to get rid of the errors. Finally, we will get
the entangled state 1√

2
(|Hω2〉A|Hω1〉B + |V ω1〉A|V ω2〉B) or

1√
2
(|Hω1〉A|Hω2〉B + |V ω2〉A|V ω1〉B) with a deterministic

spatial mode. With quantum frequency upconversion, we can
erase distinguishability for frequency [37].
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III. NONLOCAL BELL-STATE ANALYSIS

Now let us discuss the relationship between this EPP and a
nonlocal Bell-state analysis (NBSA). A universal conclusion
is that a completely local Bell-state analysis with linear
optics is not possible and one can get an optimal success
probability of only 3

4 [38–40]. Several works have shown
that with additional degrees of freedom such as timing and
momentum it is possible to distinguish the four Bell states
locally [11–13]. However, compared with local BSA, NBSA
cannot be completed with the collective operations and they
can only resort to local operation and classical communication
(LOCC). Here we will show that with hyperentangled states
and quantum nondemolition measurement (QND), we can also
perform a complete NBSA. The difference is that we have to
need another two degrees of freedom in NBSA, but only one is
needed in local BSA. The initial state is a hyperentangled state
with the form |�±〉|�f 〉|�s〉 or |�±〉|�f 〉|�s〉. The whole
protocol is the same as our EPP discussed previously. The first
step for NBSA is shown in Fig. 1. If Alice and Bob get the
same phase shift, that is, if both get 0 or θ , they can decide
that the photon pair should be in one of the two states |�±〉.
Subsequently, they add a H operation on each photon and
then make the second check of the phase shifts (shown in
Fig. 2). If the phase shifts are still the same, the state should be
|�+〉; otherwise, it is |�−〉. |�±〉 can be distinguished in the
same way. In the first step, if their phase shifts are different, it
must be one of the two states |�±〉. Alice and Bob perform a
bit-flip operation on one of the photons and a H operation
on each photon, which will complete the transformation
|�+〉|�f 〉 −→ |�+〉|�f 〉 and |�−〉|�f 〉 −→ |�+〉|�f 〉. In
the second step, with the help of frequency degree of freedom,
if the outcomes of the measurements on phase shifts are the
same, Alice and Bob can conclude that the initial state should
be |�+〉; otherwise, it is |�−〉.

IV. THE ESSENCE OF THE PRESENT ENTANGLEMENT
PURIFICATION SCHEME

In the previous works on entanglement purification, another
entanglement of degree of freedom, such as spatial entangle-
ment, has been used to purify the polarization entanglement
of photon pairs [6,7]. In Simon’s protocol [6], the spatial
entanglement can be used to purify a bit-flip error. After
consuming the resource of spatial entanglement, the phase-flip
error has to be purified with the conventional method to repeat
the same procedure [3–5]. With another degree of freedom
of photons, we can accomplish a deterministic entanglement
purification.

Let us now discuss why our protocol can purify the mixed
state completely. From Eq. (2), we know that there are two
kinds of errors in the mixed state; that is, one is a bit-flip error
and the other is a phase-flip error. The conventional EPPs [3–7]
are used to purify a bit-flip error. The phase-flip error cannot
be purified directly, but can be transformed into a bit-flip error.
For the bit-flip purification, Alice and Bob can check whether
one of the pairs has a bit-flip error. For instance, in Ref. [5], the
error corresponds to the cross-combinations of |�+〉AB |�+〉AB

and |�+〉AB |�+〉AB . However, there always exists another
possibility that both of the states have bit-flip errors, which

corresponds to |�+〉AB |�+〉AB . In this case, Alice and Bob
cannot pick up these corrupt states and always keep them in
the quantum systems that remain for a next purification. That
is, a bit-flip error cannot be purified completely. Neither can a
phase-flip error. They cannot make the remaining ensemble
reach an indeed pure state. In Simon’s protocol [6], they
revealed that another kind of entanglement can also be used
to purify the polarization entanglement state. In their protocol,
they can correct the bit-flip error completely as the spatial
entanglement state is a maximally entangled perfect pure state
and is not affected by the channel noise. Their protocol does
not lead to the case that each two-photon pair has bit-flip
errors after their purification. Following the same principle,
we use the frequency degree of freedom for a phase-flip error
correction. Also, we can use another kind of degree of freedom
to complete this task if it does not suffer from the channel noise.

LOCC cannot increase the entanglement of quantum
systems. Therefore, the process of entanglement purification is
essentially the transformation of entanglement. In the previous
works [3–5], the transformation is between the same kind of
entanglement, that is, polarization entanglement. So they need
to consume the less-entangled pairs largely. The previous work
of Simon [6] and this protocol show that entanglement can
be transformed between some different degrees of freedom.
We let the initial state be a hyperentangled state, and it owns
three kinds of degrees of freedom. During the purification step,
we consume the entanglement in frequency and spatial degrees
of freedom to get a pure polarization entangled state. Thus,
the whole entanglement purification process does not need to
consume the photon pairs but to consume other degrees of
freedom of entanglement.

V. ENTANGLEMENT PURIFICATION IN A PRACTICAL
TRANSMISSION

We have discussed our deterministic entanglement pu-
rification scheme in the case where there are two degrees
of freedom that are insensitive to channel noise. We use
the spatial freedom and the frequency freedom of photons
as an example to describe the principle of our scheme.
Of course, the main experimental requirement of this scheme
is the phase stability if we use the spatial entanglement
and the frequency entanglement to purify the polarization
entanglement. This requirement may limit the distance of
the quantum communication. However, this scheme can be
adapted to the case of energy-time entanglement, which would
allow the two parties in quantum communication to be farther
apart [6,41].

Now, let us discuss the present entanglement purification
scheme with a practical transmission based on the spatial
entanglement and the frequency entanglement.

In a practical transmission for long-distance quantum
communication, the relative phase between two different
spatial modes is sensitive to path-length instabilities, which
may be caused by the fiber length dispersion or atmospheric
fluctuation in a free-space transmission. In this way, not only
might part of the polarization of the hyperentangled state
become a mixed state shown in Eq. (2), the entanglement
in spatial mode may become 1√

2
(|a1b1〉 + ei
φs |a2b2〉) after

transmission. The relative phase between the different spatial
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modes is denoted by 
φs = k
x. Here k is the wave vector
of the photons and 
x is the path-length dispersion between
the two spatial modes with 
x = xa1b1 − xa2b2 . That is to say
the spatial entanglement will pick up a phase shift 
φs .

Approximatively, the frequency entanglement has similar
features to the spatial entanglement. That is, it may become

1√
2
(|ω1ω2〉 + ei
φf |ω2ω1〉) after transmission. Here 
φf is the

phase dispersion coming from the different frequencies.
After a practical transmission, the initial state may become

ρ ′ = ρpρ ′
f ρ ′

s , (9)

where

ρ ′
f = 1

2 (|ω1ω2〉 + ei
φf |ω2ω1〉)(〈ω1ω2| + e−i
φf 〈ω2ω1|)
and

ρ ′
s = 1

2 (|a1b1〉 + ei
φs |a2b2〉)(〈a1b1| + e−i
φs 〈a2b2|).
With the first step for the purification of bit errors (the same
as the case where the entanglements in the spatial and the
frequency degrees of freedom do not suffer from the phase
fluctuation, as shown in Fig. 1), if both Alice and Bob get
the phase shift θ on their coherent beams, the photon pair
is in the state 1

2 (|HH 〉 + ei
φs |V V 〉)(|ω1ω2〉 + ei
φf |ω2ω1〉)
with the probability of A

2 and in the state 1
2 (|HH 〉 −

ei
φs |V V 〉)(|ω1ω2〉 + ei
φf |ω2ω1〉) with the probability of B
2 ,

and they will emit from the spatial modes a2b2. If both Alice
and Bob get the phase shift 0, the photon pair will emit from
the spatial modes a1b1 and will be in the state 1

2 (ei
φs |HH 〉 +
|V V 〉)(|ω1ω2〉 + ei
φf |ω2ω1〉) with the probability of A

2 and in
the state 1

2 (ei
φs |HH 〉 − |V V 〉)(|ω1ω2〉 + ei
φf |ω2ω1〉) with
the probability of B

2 . When Alice gets the phase shift θ and
Bob gets 0, the photon pair will emit from a2b1 and will
be in the state 1

2 (|HV 〉 + ei
φs |V H 〉)(|ω1ω2〉 + ei
φf |ω2ω1〉)
with the probability of C

2 and in the state 1
2 (|HV 〉 −

ei
φs |V H 〉)(|ω1ω2〉 + ei
φf |ω2ω1〉) with the probability of D
2 .

When Alice gets the phase shift 0 and Bob gets θ , the photon
pair will emit from a1b2 and will be in the state 1

2 (ei
φs |HV 〉 +
|V H 〉)(|ω1ω2〉 + ei
φf |ω2ω1〉) with the probability of C

2 and in
the state 1

2 (ei
φs |HV 〉 − |V H 〉)(|ω1ω2〉 + ei
φf |ω2ω1〉) with
the probability of D

2 . With some unitary operations, Alice and
Bob can make the state of their photon pair in the polarization
degree of freedom be

ρ ′
p′ = (a + c)|�′+〉AB〈�′+| + (b + d)|�′−〉AB〈�′−|. (10)

Here

|�′+〉AB = 1√
2

(|HH 〉 + ei
φs |V V 〉), (11)

|�′−〉AB = 1√
2

(|HH 〉 − ei
φs |V V 〉). (12)

Also, the state ρ ′
p′ can be rewritten under the basis {|�+〉,

|�−〉, |�+〉, |�−〉} as

ρ ′
p′ = 1

2 [1 + (a + c − b − d)cos
φs]|�+〉AB〈�+|
+ 1

2 [1 − (a + c − b − d)cos
φs]|�−〉AB〈�−|. (13)

That is, all the bit-flip errors in the photon pair are corrected
completely and there are only phase-flip errors in the quantum
system.

After the purification for bit-flip errors, Alice and Bob
can transfer phase-flip errors into bit-flip errors with unitary
operations again. That is, the state of the photon pair becomes

ρ ′′
p′ = 1

2 [1 + (a + c − b − d)cos
φs]|�+〉AB〈�+|
+ 1

2 [1 − (a + c − b − d)cos
φs]|�+〉AB〈�+|. (14)

With the setup shown in Fig. 2, if both Alice and Bob get the
phase shift θ , the photon pair will emit from c2d2 and will
be in the state 1√

2
(|Hω1〉A|Hω2〉B + ei
φf |V ω2〉A|V ω1〉B).

If both Alice and Bob get the phase shift 0, the pho-
ton pair will emit from c1d1 and will be in the state

1√
2
(ei
φf |Hω1〉A|Hω2〉B + |V ω2〉A|V ω1〉B). When Alice gets

the phase shift θ and Bob gets 0, the photon pair will emit
from c2d1 and will be in the state 1√

2
(|Hω1〉A|V ω2〉B +

ei
φf |V ω2〉A|Hω1〉B). When Alice gets the phase shift 0 and
Bob gets θ , the photon pair will emit from c1d2 and will be
in the state 1√

2
(ei
φf |Hω1〉A|V ω2〉B + |V ω2〉A|Hω1〉B). With

quantum frequency upconversion, Alice and Bob can erase
distinguishability for frequency [37] and they will get the
entangled state 1√

2
(|H 〉A|H 〉B + ei
φf |V 〉A|V 〉B) with some

unitary operations.
As in the case discussed in Sec. II, Alice and Bob can

correct the bit-flip errors in their photon pair completely.
In the step for purification of phase-flip errors, the two
different frequency modes will introduce a relative phase
shift 
φf in the Bell state. In theory, 
φf does not change
if the channel lengths do not fluctuate with time t . That
is, Alice can get approximatively the maximally entangled
state 1√

2
(|H 〉A|H 〉B + ei
φf |V 〉A|V 〉B). With a phase com-

pensation, Alice and Bob will get the standard Bell state
1√
2
(|H 〉A|H 〉B + |V 〉A|V 〉B).

VI. DISCUSSION AND SUMMARY

There are two approximative methods used in our scheme in
a practical transmission. One is the assumption that the phase
dispersion in frequency degree of freedom 
φf is independent
of that in spatial modes 
φs . The other is the invariability of

φf with time t . Certainly, the case in a practical experiment
is more complicated than that with these two assumptions.

For the state

|�〉fs ≡ 1
2 (|ω1ω2〉 + |ω2ω1〉)(|a1b1〉 + |a2b2〉)

= 1
2 (|ω1ω2〉|a1b1〉 + |ω2ω1〉|a1b1〉
+ |ω1ω2〉|a2b2〉 + |ω2ω1〉|a2b2〉),

each term will pick up a relative phase in a practical
transmission. That is, the state |�〉fs will become

|�〉′fs = 1
2 [e

i
v

(ω1La1 +ω2Lb1 )|ω1ω2〉|a1b1〉
+ e

i
v

(ω2La1 +ω1Lb1 )|ω2ω1〉|a1b1〉
+ e

i
v

(ω1La2 +ω2Lb2 )|ω1ω2〉|a2b2〉
+ e

i
v

(ω2La2 +ω1Lb2 )|ω2ω1〉|a2b2〉]. (15)
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Here v is the velocity of photons in quantum channel. La1 , La2 ,
Lb1 , and Lb2 are the channel lengths in the spatial modes a1,
a2, b1, and b2, respectively. When

ω2La2 + ω1Lb2 � ω2La1 + ω1Lb1 + ω1(La2 − La1 )

+ω2(Lb2 − Lb1 ) − ω2La2 − ω1Lb2 ,

|�〉′fs can be rewritten as

|�〉′fs ≈ 1
2

(
e

i
v

(ω1La1 +ω2Lb1 )

×{|ω1ω2〉 + e
i
v

[(ω2−ω1)La1 +(ω1−ω2)Lb1 ]|ω2ω1〉}
× {|a1b1〉 + e

i
v

[ω1(La2 −La1 )+ω2(Lb2 −Lb1 )]|a2b2〉}
)
.

(16)

That is, when 2(ω2La2 + ω1Lb2 ) − ω2La1 − ω1Lb1 −
ω1(La2 − La1 ) − ω2(Lb2 − Lb1 ) � 0, the phase dispersion in
frequency degree of freedom 
φf can be regarded as being
independent of that in spatial modes 
φs .

If 
φf (t) fluctuates with time t in a small region,
Alice and Bob will get an ensemble in the state ρe =
Ff |�+〉〈�+| + (1 − Ff )|�−〉〈�−| after a phase compensa-
tion ei
φf (0), and they can, in this case, purify this ensemble
for getting some high-fidelity entangled states with conven-
tional EPPs [3–5,7]. Here Ff = 1

2T

∫ T

0 {1 + cos[
f (t)]}dt ,

1 − Ff = 1
2T

∫ T

0 {1 − cos[
f (t)]}dt , and 
f (t) ≡ 
φf (t) −

φf (0). Different from the case with a fixed phase dispersion,
Alice and Bob can only correct completely the bit-flip errors
in the photon pair in this case. On the one hand, they will
remove the phase-flip errors in the polarization degree of
freedom. On the other hand, they will introduce the phase-flip
errors in the frequency degree of freedom. The latter comes
from the phase dispersion between the two frequencies of
photons. If the latter is smaller than the former, this scheme
can be used to depress the ratio of phase-flip errors.

If 
φf (t) fluctuates acutely with time t , Ff ≈ 1
2 and the

ensemble maybe become a completely mixed state and the two
parties cannot distill maximally entangled states, the same as
the conventional EPPs in the case that the initial fidelity is
smaller than 1

2 . In fact, a quantum channel fluctuating with
time t acutely is unsuitable for entanglement purification as the
Bell state required is mixed uniformly with other Bell states.

As the spatial and frequency degrees of freedom of photons
are more stable than polarization, the conventional EPPs will
not work if the present scheme does not work.

In the process of describing the principle of our entangle-
ment purification scheme, we exploit the cross-Kerr nonlin-
earity to construct the QNDs. In fact, we should acknowledge
that, on the one hand, a clean cross-Kerr nonlinearity is quite a
controversial assumption with current technology. As pointed
out in Refs. [42–44], the single-photon Kerr nonlinearity may
do not help quantum computation, and a large phase shift
via a “giant Kerr effect” with single-photon wave packets is
impossible. On the other hand, here a cross-Kerr nonlinearity is
only used to make a parity check for two photons and a strong
Kerr nonlinearity is not required. Meanwhile, other elements
can also be used to construct QNDs [45–47] for this scheme.

In summary, we have presented a deterministic entangle-
ment purification scheme for purifying an arbitrary mixed
state in polarization with present technology. The biggest
advantage of this scheme is that it works in a deterministic
way in principle. That is, two parties can obtain a maximally
entangled polarization state from each hyperentangled state,
which will improve the efficiency of long-distance quantum
communication exponentially. This protocol can also be used
to do the complete nonlocal Bell-state analysis, which reveals
that this deterministic entanglement purification scheme is
equal to a complete nonlocal Bell-state analysis. In a practical
transmission, this scheme can be used to correct all bit-flip
errors approximatively and depress the phase-flip errors in
the polarization degree of freedom, which will make it more
efficient than conventional EPPs. We believe that this scheme
might be very useful in the realization of long-distance quan-
tum communication in the future as entanglement purification
is a very important element in a quantum repeater and a
quantum network.
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H. de Riedmatten, and N. Gisin, Phys. Rev. A 76, 050301(R)
(2007).

[19] C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard,
H. Zbinden, and N. Gisin, Phys. Rev. Lett. 98, 190503
(2007).

[20] B. Zhao, Z. B. Chen, Y. A. Chen, J. Schmiedmayer,
and J. W. Pan, Phys. Rev. Lett. 98, 240502 (2007).

[21] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[22] D. S. Naik, C. G. Peterson, A. G. White, A. J. Berglund,

and P. G. Kwiat, Phys. Rev. Lett. 84, 4733 (2000).
[23] D. Bruss, Phys. Rev. Lett. 81, 3018 (1998).
[24] H. Bechmann-Pasquinucci and N. Gisin, Phys. Rev. A 59, 4238

(1999).
[25] T. Zhang, Z. Q. Yin, T. F. Han, and G. C. Guo, Opt. Commun.

281, 4800 (2008).
[26] M. Bloch, S. W. McLaughlin, J. M. Merolla, and F. Patois, Opt.

Lett. 32, 301 (2007).
[27] B. Huttner, N. Imoto, N. Gisin, and T. Mor, Phys. Rev. A 51,

1863 (1995).
[28] P. C. Sun, Y. Mazurenko, and Y. Fainman, Opt. Lett. 20, 1062

(1995).
[29] Y. Mazurenko, R. Giust, and J. P. Goedgebuer, Opt. Commun.

133, 87 (1997).

[30] J. M. Merolla, Y. Mazurenko, J. P. Goedgebuer, and
W. T. Rhodes, Phys. Rev. Lett. 82, 1656 (1999).
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