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Quantum-information-processing architecture with endohedral fullerenes in a carbon nanotube
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A potential quantum-information processor is proposed using an array of the endohedral fullerenes 15N@C60

or 31P@C60 contained in a single walled carbon nanotube (SWCNT). The qubits are encoded in the nuclear spins
of the doped atoms, while the electronic spins are used for initialization and readout, as well as for two-qubit
operations.
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I. INTRODUCTION

Quantum-information processing (QIP) has attracted con-
siderable attention over the last years, since it allows one to
efficiently solve computational problems that have no efficient
solution in classical computer science [1,2]. Unleashing
this potential requires the design of quantum-information
processors that control a large number of qubits. Among
the interesting qubit candidates are endohedral fullerenes
15N@C60 or 31P@C60 [3–8] whose decoherence times are
longer than those of most other candidates. Quantum gate
operations on these qubits can be implemented by electron
spin resonance (ESR) and nuclear magnetic resonance (NMR)
techniques.

The endohedral atoms (15N or 31P) have electron spins as
well as nuclear spin degrees of freedom. The electron spins are
particularly well suited for individual addressing, for coupling
neighboring qubits, and for readout. The nuclear spins, in
contrast, are not coupled to each other, and their decoherence
time is particularly long. It appears therefore useful to
combine these properties and use the nuclear as well as the
electronic spin for quantum-information processing [4–8].
This combination can also solve some problems associated
with the fact that the electronic spin is not a two-level system,
but has S = 3/2.

One of the main obstacles for implementing such fullerene-
based quantum computers is the lack, until now, of a single-
qubit readout capability [9,10]. Here, we would like to discuss
a system that might solve this difficulty. We consider a row
of endohedral fullerenes 15N@C60 or 31P@C60 enclosed in
a single walled carbon nanotube (SWCNT). This system has
been called fullerene peapod. Such systems have been studied
experimentally [11,12]. One of the attractive features of the
SWCNT is that it allows transport of mobile electrons [12],
which could be used to read out the state of the electron
spins in the peapod. This idea is sketched in Fig. 1 where
the doped fullerenes are positioned as a line in a SWCNT.
Using the mobile electrons on the SWCNT may help to solve
the problem of the single-spin readout, which was left open in
earlier proposals [4–8].
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Our article is structured as follows. In Sec. II we present
our system architecture and work through the requirements
for implementing universal quantum computation [13]. This
includes one-qubit and two-qubit gating, initialization, and
readout. Sec. III discusses some details that arise when
large quantum registers are implemented. Sec. IV gives the
requirements that must be met by such an apparatus and
discusses some issues related to its realization. The article
ends with a short summary in Sec. V.

II. THE MODEL

A. System and Hamiltonian

The system that we consider consists of a linear chain of
endohedral fullerenes confined in a SWCNT, as sketched in
Fig. 1. The 31P nuclear spins represent the qubits, while the
electronic spins provide ancilla qubits for coupling the nuclear
spin qubits to each other. Between gate operations, the electron
spin state does not contain quantum information and we are
free to choose the state most suitable to our purpose. In the
following, we will assume that it is in the ms = +3/2 state.

We label the states of the auxiliary qubits |3/2〉S = |↑〉S
and |−3/2〉S = |↓〉S . The states of the nuclear spins encoding
the qubits are |1/2〉I = |↑〉I and |−1/2〉I = |↓〉I . The system
is placed in a magnetic field oriented along the peapod axis.
The i th qubit experiences a field,

�Bi =
[
B0 + dB

dz
zi

]
�ez,

where dB/dz is the magnetic field gradient, �ez is a unit vector
along the axis of the peapod, zi is the position of the ith qubit
from the origin, and B0 is the strength of the magnetic field at
the origin.

The electronic spins of neighboring molecules interact
by dipole-dipole couplings. As in relevant articles published
previously, we only take the nearest-neighbor interactions into
account and find for the system Hamiltonian,

H =
N∑

i=1

{
�i

SS
i
z − �i

I I
i
z + ASi

zI
i
z

} +
N−1∑
i=1

Di,i+1S
i
zS

i+1
z , (1)

where the first two terms are the electronic and nuclear Zeeman
splitting, the third term denotes the hyperfine interaction, and
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FIG. 1. (Color online) Schematic setup of 31P@C60@SWCNT
system, where the fullerene molecules 31P@C60 are trapped equidis-
tantly. A magnetic field gradient, generated by micropatterned wires,
is applied.

the last term represents the secular part of the magnetic dipolar
interaction between the nearest-neighbor electronic spins. The
electron spin Larmor frequency is �i

S = gµBBi , the nuclear
spin Larmor frequency �i

I = γIBi , µB is the Bohr magneton,
g is the Land é g factor of the electron, γI is the gyromagnetic
ratio of the nucleus, A the hyperfine coupling strength, and
Di,i+1 is the nearest-neighbor dipole-dipole coupling strength.
We have omitted the couplings between nuclear spins because
they are too small and use frequency units, where h̄ = 1.
We have truncated the dipolar coupling operator with respect
to the difference of the electron spin Larmor frequencies.
The validity of this approximation depends on the magnetic
field gradient and on the distance between the qubits. For a
nearest-neighbor distance of r = 2.91 nm and a magnetic field
gradient of 4 × 105 T/m, the relevant resonance frequencies
of the electron spin |3/2〉S ↔ |−3/2〉S transitions differ by
97.2 MHz, while the coupling strength is of the order of 3 MHz.
Under these conditions, the truncation is therefore an excellent
approximation.

B. Quantum gate operations for a single fullerene

Consider a single C60 molecule in a SWCNT under an
external magnetic field B0. The Hamiltonian of Eq. (1) reduces
then to

H1 = �0
SSz − �0

I Iz + ASzIz, (2)

where �0
S = gµBB0 and �0

I = γIB0. For 31P and 15N, the
hyperfine interaction strength A/2π are about 138.4 MHz
and 21.2 MHz, respectively [3]. For most of the specific
data in the article, we will use the number from 31P, but the
concept is equally applicable to both molecules. In a field of
B0 = 1 T, the Larmor frequencies of the electron and the 31P
nuclear spins are �0

S/2π ≈ 28 GHz and �0
I /2π ≈ 17.2 MHz,

respectively. Straightforward calculations yield the energies of
the eigenstates as listed in Table I.

Figure 2 represents the energies of the spin states and
identifies them by the spin states. Figure 3 shows the magnetic
dipole transitions between these states, which correspond
to a change of the nuclear spin quantum number by one
unit (left-hand side, NMR) or the electron spin (right-hand
side, ESR). The electron spin transitions have the frequencies
�0

S ± A/2 and fall therefore into the microwave frequency
range (≈ 28 GHz in a field of 1 T). The nuclear spin transition
frequencies are 3A/2 ± �0

I and A/2 ± �0
I and fall into the

radiofrequency (RF) range (≈70–210 MHz).

TABLE I. Energies of the spin Hamiltonian Eq. (2).

Nuclear spin Electron spin Energy

|1/2〉I |3/2〉S 3�0
S/2 + �0

I /2 − 3A/4
|1/2〉I |1/2〉S �0

S/2 + �0
I /2 − A/4

|1/2〉I |−1/2〉S −�0
S/2 + �0

I /2 + A/4
|1/2〉I |−3/2〉S −3�0

S/2 + �0
I /2 + 3A/4

|−1/2〉I |3/2〉S 3�0
S/2 − �0

I /2 + 3A/4
|−1/2〉I |1/2〉S �0

S/2 − �0
I /2 + A/4

|−1/2〉I |−1/2〉S −�0
S/2 − �0

I /2 − A/4
|−1/2〉I |−3/2〉S −3�0

S/2 − �0
I /2 − 3A/4

Resonant microwave pulses are well suited for generating
quantum gate operations in spin qubits. However, if we apply
them to the S = 3/2 electron spin, they usually mix the
(ancilla-) qubit states | ± 3/2〉S with the unused | ± 1/2〉S
states, thus causing loss of quantum information. This is not the
case for π rotations around an axis in the xy plane, so we only
use this type of operation on the electron spins. Specifically,
the flip of the electronic spin by the inversion operation,

P̂ = e−iπSx = i

⎛
⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ ,

exchanges the states |+1/2〉S ↔ |−1/2〉S and |+3/2〉S ↔
|−3/2〉S but does not mix the subspaces spanned by |±3/2〉S
and by |±1/2〉S . If the P̂ operation is generated by a frequency-
selective pulse tuned to the appropriate component of the
hyperfine doublet, we obtain a CNOTIS operation, as required
in the sequences described below.

In the following, we will need to SWAP information between
the electron and nuclear spin. In terms of spin states, this
corresponds to

|3/2〉S |−1/2〉I ↔ |−3/2〉S |1/2〉I ,

which cannot be induced by a single RF or microwave pulse.
It can, however, be decomposed into CNOT operations,

SWAPSI = CNOTSI · CNOTIS · CNOTSI ,

= CNOTIS · CNOTSI · CNOTIS, (3)

where CNOTSI (CNOTIS) is the controlled-NOT operation acting
on the nuclear (electron) spin, controlled by the electron

FIG. 2. Energies of a single endohedral fullerene 31P@C60.
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FIG. 3. Magnetic-dipole transitions for a single endohedral
fullerene 31P@C60. The left-hand spectrum corresponds to the nuclear
spin transitions (NMR), the right-hand part to the electron spin
transitions (ESR). Each transition of the nuclear spin is labeled with
the corresponding mS value of the electron spin and the electron spin
transitions are labeled with the nuclear spin states.

(nuclear) spin. The first decomposition corresponds to the
exchange of the states,

|3/2〉S |−1/2〉I ↔ |3/2〉S |1/2〉I
|−3/2〉S |1/2〉I ↔ |3/2〉S |1/2〉I (4)

|3/2〉S |−1/2〉I ↔ |3/2〉S |1/2〉I .
Each of these CNOT gates can be implemented by a selective
microwave or RF pulse; the CNOTSI , for example, corresponds
to a π rotation of the nuclear spin, conditional on the electron
spin being in the mS = +3/2 state. As can be seen from Figs. 2
and 3, this can be implemented as a P̂ operation by an RF pulse
with the frequency of 204.5 MHz (in a field of 1 T).

We are now left with the task of implementing arbitrary
single-qubit operations on the nuclear spin qubit. This can in
principle be accomplished with the help of resonant RF pulses,
as in NMR quantum computing [14,15]. However, these pulses
would have to compete with the hyperfine coupling. Direct
application of an RF field that is strong enough to make the
effect of the hyperfine coupling negligible would not only be
technically very challenging, it would also strongly violate the
rotating wave approximation and thereby lead to a very poor
fidelity of the gate operation. Instead, it will be much easier
and result in higher fidelity, if the single-qubit operations are
implemented by pairs of RF pulses applied simultaneously at
the frequencies 204.5 MHz and 210.7 MHz. One of these RF
fields will implement the operation conditional on the electron
spin being in the logical 0 state, the other if the electron spin
is in the logical 1 state. The combined effect thus corresponds
to an unconditional gate operation.

C. Extended quantum registers

Large and therefore powerful quantum registers can be
implemented by extended chains of qubits. The different qubits
can be addressed in frequency space by applying a magnetic
field gradient. For the Hamiltonian of Eq. (1), the transition
frequencies of every electron spin split into 16 transitions,
whose frequencies depend on the state of the neighboring
electron spin, and which are up to fourfold degenerate, as
shown in Fig. 4 and Table II.

As discussed in Sec. II B, single-qubit operations can be
implemented directly on the nuclear spin. Since the nuclear
spin transitions are the same for qubits in extended chains
as for isolated qubits, all the nuclear spin operations remain
the same. We do, however, have to modify the electron

FIG. 4. Schematic representation of the transition frequencies of
the electron spins in a linear chain of fullerene qubits. The central
transition frequency �i

S corresponds to the frequency of an isolated
electron spin and includes contributions from the magnetic field
gradient and the nuclear hyperfine interaction. D is the coupling
constant. Transitions between states that are not populated in an ideal
quantum processor are gray.

spin operations, for example, the selective inversion of the
electron spin discussed in the second line of Eq. (4). The
single resonance line that has to be inverted in the case
of an isolated qubit corresponds now to 16 lines at seven
frequencies. Single-qubit gate operations applied to qubit i

have to excite all these transitions equally, since they must
not depend on the states of the neighboring qubits. This
is a rather challenging task, which can be implemented by
multifrequency excitation [16]. The task can be simplified
if we assume that our quantum-information processor works
under ideal conditions: in this case, only the ±3/2 states are
occupied, and we can disregard all transitions in which one of
the neighboring qubits is in the states ±1/2. These transitions
are grayed in Fig. 4 and in normal typeface in Table II. This
leaves us with four transitions at frequencies �i

S,�
i
S ± 3D, as

shown in bold in Table II and as black lines in Fig. 4.

TABLE II. List of the transition frequencies of the electronic spin
versus the corresponding states of the neighboring electron spins.
Transitions that occur in an ideal quantum-information processor are
in boldface.

No. State of neighbor qubits Transition frequency

1 |3/2, 3/2〉 �i
S + 3D

2 |3/2, 1/2〉 �i
S + 2D

3 |3/2, −1/2〉 �i
S + D

4 |3/2, −3/2〉 �i
S

5 |1/2, 3/2〉 �i
S + 2D

6 |1/2, 1/2〉 �i
S + D

7 |1/2, −1/2〉 �i
S

8 |1/2, −3/2〉 �i
S − D

9 |−1/2, 3/2〉 �i
S + D

10 |−1/2, 1/2〉 �i
S

11 |−1/2, −1/2〉 �i
S − D

12 |−1/2, −3/2〉 �i
S − 2D

13 |−3/2, 3/2〉 �i
S

14 |−3/2, 1/2〉 �i
S − D

15 |−3/2, −1/2〉 �i
S − 2D

16 |−3/2, −3/2〉 �i
S − 3D
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D. Two-qubit gates

We now consider two-qubit operations between neigh-
boring qubits (i − 1, i) in an extended chain of fullerene
molecules. All such operations start with SWAPSI operations
on the molecules participating in the two-qubit operation. The
central part of our two-qubit gate consists of the CNOTi−1i

gate or the controlled phase flip CPFi−1i acting on a nearest-
neighbor pair of electron spins. The gate ends with a second
pair of SWAPSI operations on the molecules participating in
the two-qubit operation. The net effect of this sequence of
operations is that the two nuclear spins have undergone the
CNOTi−1i (or CPFi−1i) operation, while the electron spins
return to their initial state (which we assume to be the
m = +3/2 ground state). This assures that the passive electron
spins are always in the m = +3/2 state, as we assumed in the
preceding subsection. Furthermore, it minimizes the effect of
decoherence, since this is the thermal equilibrium state at low
temperature and therefore not affected by relaxation.

Considering now the central part of the two-qubit operation,
the CNOTi−1,i gate between the electron spins, inspection of
Table II shows that it can be implemented by applying π pulses
to transitions 1 and 4; this implements an operation NOT on
qubit i conditional on the qubit i − 1 being in state +3/2
and unconditional with respect to the state of qubit i + 1.
Unfortunately, a π pulse applied to transition 4 will also
invert transition 13, which is degenerate with transition 4,
and which corresponds to qubit i − 1 being in state −3/2 and
therefore invalidates the CNOT operation. This difficulty can be
eliminated by various approaches, including multifrequency
excitation of several transitions. Alternatively, we may take
into account that qubit i + 1 is not active during a CNOTi−1,i

operation, that is, the information is in the nuclear spin, and
the state of the electron spin is the state into which it was
initialized (i.e., the |+3/2〉S state). This eliminates the need
to invert transition 4 and makes the π pulse on transition 1 a
perfect CNOTi−1,i operation.

In an extended quantum register, we also have to consider
that the operations on the nuclear spins will affect all nuclei
in the quantum register (i.e., also passive qubits, which should
not be affected by the specific gate operations). If we try to
make the pulses on the nuclear spins sufficiently weak, so that
their effect on the passive qubits is negligible, they will become
unacceptably slow: with the parameters as discussed above, the
difference in the Larmor frequencies of neighboring nuclear
spins is only on the order of 10 Hz (for 31P). It will then be
advantageous to use hard pulses that simultaneously affect all
nuclear spins. Since the only operations applied to the nuclear
spins in our scheme are the SWAPSI operations of Eq. (3), this
turns out not to be a problem: For the passive qubits, where
the CNOTIS operations are identity operations, the first version
of the SWAPSI gate becomes CNOTSI CNOTSI = 1, while the
second version becomes CNOTSI . Since all operations (one-
and two-qubit) involve pairs of SWAPSI gates, even the second
version leaves passive qubits invariant.

E. Initialization and readout

The proposed system can be initialized into the ground
state by relaxation of the electron spins: In a field of B = 1T,
at a temperature T = 0.1 K, the equilibrium ground-state

FIG. 5. (Color online) Scheme for the detection of the state of
electron spins inside a fullerene embedded in a SWCNT. The spin
filter A(B) located in the front (back) of the SWCNT only allows
the down(up)-polarized electrons to pass. The bias stops the mobile
electron along the SWCNT at a place above the caged spin and an
ESR pulse generates a CNOT operation between the mobile and the
caged electron spins.

population is > 0.99999. This electron spin polarization
can be transferred to the nuclear spin qubits by a SWAP

operation.
Readout may be accomplished by using mobile electrons

on the outside of the peapod. Various schemes have been
developed for the detection of single spins [17–20], which
cannot be applied directly to the spins of electrons in C60 cages.
Nevertheless, this can also be achieved, by coupling the caged
spin to external spins and converting the spin degree of freedom
to charges, then detecting the charges [9,10].

This can also be achieved in the present system, as shown
schematically in Fig. 5. The electrons used for detection are
spin polarized by passing them through a spin filter and guiding
them along the SWCNT by applying suitable bias fields. At
the position of the qubit that is to be read out, the mobile
electron is stopped by adjusting the bias field. The separation
between the mobile and the caged electrons is small enough
that a sizable magnetic dipole-dipole coupling exists between
them. We may then write the Hamiltonian of the two electron
spins as

Hsub = �i
SS

i
z + �m

S Sm
z + D′Si

zS
m
z , (5)

where Si
z is the spin operator of the caged qubit electron

(S = 3/2) and Sm
z the spin of the mobile electron (S = 1/2),

and D′ represents the strength of the coupling between the
mobile and the caged spins. For a separation of 0.8 nm, the
dipole coupling strength would be of the order of 100 MHz.
Depending on the state of the caged electron (m = ±3/2), the
transition frequency of the mobile electron is thus shifted from
its Larmor frequency �m

S by ±3/2D′.
This can be used for a detection mechanism: If we want to

detect the m = +3/2 state of the caged electron, we send
a stream of electrons along the SWCNT, which are spin
polarized in the spin filter A. This spin filter can be made
from ferromagnetic materials [21], or semiconductor quantum
dots [22]. When the electrons are trapped near qubit i, we apply
a microwave pulse with frequency �m

S + 3/2D′ and a flip
angle of ≈π . This operation corresponds to a CNOT operation
conditional on the caged spin being in the m = +3/2 state and
thus to a COPY operation. The mobile spin is then transported
further down along the SWCNT and through spin filter B,
which is oriented such that it only allows those electrons
to pass whose spin has been flipped. This procedure can be
repeated as often as necessary to get a sufficient signal at the
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detector. Here, we have only considered the coupling between
the mobile electron and the nearest qubit. The couplings to
the other qubits are at least 30 times smaller. The additional
small line splittings and line broadenings arising from these
long-range couplings do not significantly affect the precision
of the readout mechanism.

III. BEYOND THE NEAREST-NEIGHBOR
APPROXIMATION

A. Non-nearest-neighbor couplings

So far, we have considered only interactions between
nearest neighbors. In reality, dipolar interactions exist between
any pair of spins. In a linear chain, the strength Di,k of the
interaction between qubits i and k decreases as

Di,k ∝
(

1

|i − k|
)3

. (6)

Figure 6 illustrates the effect of the non-nearest neighbor
couplings. The uppermost spectrum corresponds to the case
of nearest neighbors only (i.e., to the situation discussed
in Sec. II). If we add non-nearest neighbors [trace (b)],
each resonance line splits into seven lines separated by
Dnn/8, where Dnn is the coupling between nearest neighbors.
The weight of the lines (1:2:3:4:3:2:1) is given by the
number of states of the next-nearest neighbors; the outermost
lines correspond to the next-nearest neighbors being in the
|+3/2,+3/2〉 or both in the |−3/2,−3/2〉 state. The lines

FIG. 6. (Color online) Transitions of a single qubit in the presence
of couplings to other qubits as a function of the chain length.
(a) Nearest neighbors only. (b) Nearest neighbors and next-nearest
neighbors. (c) Three qubits on each side. (d) Infinite chain, where all
but the nearest neighbors are polarized. �L is the Larmor frequency
of the central qubit and Dnn is the nearest-neighbor coupling
strength.

with relative amplitude 2 correspond to the coupling partners
being in the |+3/2,+1/2〉 or |+1/2,+3/2〉 state for one line
or |−3/2,−1/2〉 or |−1/2,−3/2〉 for the other line.

Adding a third pair of qubits causes an additional splitting of
each line into a (1:2:3:4:3:2:1) multiplet, with line separation
Dnn/64. With the resolution of the figure [see trace (c)], this
appears as a line broadening. Clearly, this is an undesirable
situation, which would cause significant decoherence. This
situation can be corrected if we take into account the fact that
all electron spins of the passive qubits are in the ↑ (mS =
+3/2) state, since the quantum information was SWAPed into
the nuclear spin. This situation is depicted in trace (d), where
all but the nearest-neighbor qubits are taken to be in the
↑ state. As a result, we do not obtain a splitting of the resonance
line, but a shift by −3Dnn/7 ≈ −0.429Dnn.

B. Quantum state transfer

Universal quantum computation requires two-qubit opera-
tions between all qubit pairs. If the pair is not directly coupled
by dipolar interaction, this usually requires a series of SWAP

operations between nearest neighbors. Our present schemes
allows us to avoid this overhead by using a mobile electron.
As for the readout, we assume that this mobile electron travels
in the conduction band of the semiconducting carbon nanotube
hosting the fullerenes. Its motion is controlled by external bias
electrodes.

We consider an array of identical 31P@C60 placed in a
SWCNT as shown in Fig. 7. As described in Sec. II E, it is
possible to exchange a quantum state between the stationary
qubit and the mobile electron spin. We may therefore use the
mobile electron spin as a bus qubit. If we want to transfer
quantum information between the stationary qubits i and k,
we first move the electron to qubit i and perform a SWAP

operation, using the appropriate ESR pulse sequence. We then
move the mobile electron to position k, perform a second
SWAP operation, and move it back to position i for a third
SWAP operation. This completes the SWAPik operation.

The caged spin is well protected from external perturba-
tions, but decoherence experienced by the mobile electron
spin may be faster. Nevertheless, decoherence times of the
order of 10 µs have been reported [23], which would make it
comparable to the relaxation times of the N@C60 in the
peapods [24] and be long enough to perform SWAP operations

FIG. 7. (Color online) Scheme for transferring a quantum state
between two qubits i and k using the spin of the mobile electron as
a bus qubit. The bias voltages localize the electron at the appropriate
positions; the ESR pulses (shown as wavy arrows) induce SWAP

operations between the stationary and the bus qubit.
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as well as fast transport of the mobile electron compared to
the decoherence time.

IV. FEASIBILITY

The preceding sections presented a design for a scalable
quantum computer. For this concept to become reality, a
number of engineering challenges have to be overcome. Here,
we discuss the design parameters that have to be reached to
make such a device useful.

A. Addressing qubits

Addressing the individual electronic spins requires that
they are distinguishable in frequency space. This is achieved
by applying a magnetic field gradient, which shifts the
individual electron spin resonance. One difficulty with the
frequency-space addressing is that we must avoid generating
overlap between the hyperfine-split resonances of the indi-
vidual qubits. Furthermore, we have assumed that we work
in the weak-coupling limit, where the frequency differences
between adjacent qubits are large compared to the dipole-
dipole coupling constant. Although this is not a necessary
requirement [25], it simplifies the design of quantum gate
operations.

If we choose the separation between adjacent qubit
molecules as �z = 2.9 nm, we obtain a dipole-dipole coupling
constant of the order of 3 MHz. If we wish to stay in
the weak-coupling limit, the separation between the Larmor
frequencies of neighboring electron spins should then be at
least 30 MHz. As shown in Fig. 8(a), this allows no more

FIG. 8. Schemes for addressing electron spin qubits in a mag-
netic field gradient. (a) Three 31P@C60 molecules, separated by
�� = 2π × 45 MHz. (b) Five 31P@C60 molecules, separated by
�� = 2π × 55 MHz. (c) Five 15N@C60 molecules, separated
by �� = 2π × 55 MHz.

than three to four molecules in a row before the resonance
frequencies of the higher-frequency lines of the hyperfine
doublet start to overlap with the frequency range of the
lower-frequency lines of some other molecules. As shown in
Fig. 8(b), it is nevertheless possible to add more molecules
without generating overlap, provided the frequency separation
between the qubits is chosen correctly. An alternative approach
is depicted in Fig. 8(c): Here, we assume that the difference
between the Larmor frequencies of adjacent molecules is
large compared to the hyperfine splitting, thus avoiding any
spectral overlap between neighboring molecules. This choice
of parameters may be most suitable for 15N@C60 molecules,
where the hyperfine splitting is significantly smaller than for
31P@C60.

Compared to the electron spin resonance frequencies, the
nuclear Larmor frequencies are smaller by 3–4 orders of
magnitude. In the field gradient considered here, this would
correspond to frequency differences of the order of only 5 kHz
for 15N and 20 kHz for 31P for the parameters used above.
Selective addressing of the nuclear spins thus requires that the
duration of the selective RF pulses should be at least several
hundred µs, which may be undesirable for fast gate operations.
A good solution could be the use of hard (short) RF pulses that
excite all nuclear spins. As described in the previous sections,
each SWAP operation between the electron and nuclear spins
includes an even number of π pulses acting on the nuclear
spins. For the nuclear spins of the passive qubits, the SWAP

operations result in a NOP, as required.

B. Experimental challenges

Although the quantum architecture discussed here appears
attractive and physically feasible, its implementation faces
several formidable challenges. Several proposals have been
put forward for injecting and moving polarized electrons
on SWCNT [26–28]. Turning those into useful devices for
quantum computing will require precise control by electrodes
that allow one to move the mobile electrons between the
required positions without affecting the quantum mechan-
ical superposition states of their spin degrees of freedom.
Currently, there are no data available about the relevant
decoherence times for the spins of these mobile electrons.
The closest references are from electrons in SWCNT-based
single-electron devices [12]. Since the relevant decoherence
mechanism is not yet fully understood, it is difficult to
extrapolate. Depending on the mechanism and parameters, it
may be possible to use dynamic decoupling techniques [29,30]
to reduce the decoherence.

In the main part of the article, we have considered
exchange of information between different parts of the
quantum register by direct dipolar interactions or with the
help of a mobile electron spin acting as a bus qubit. If
these approaches prove too difficult to scale to many-qubit
quantum registers, it might be worth considering a distributed
quantum computer based on many small peapod quantum
registers. They could be connected via the Bell-state analyzer
discussed in Ref. [31], which is designed to entangle two
electron spins. As shown in Ref. [32], passing the mobile
electrons from different C60@SWCNTs through the Bell-
state analyzers could entangle the caged electron spins in
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different C60@SWCNTs, as required for building a quantum
network [33]. To build the Bell-state analyzers, however,
we have to develop beam splitters for the electrons and
suitable charge detectors. Although there has been some
progress in these aspects [34,35], these devices are not yet
available [35].

Additional challenges are associated with the peapod itself:
Depending on the system parameters, the distances between
the molecules may vary, and the molecules may be arranged in
zig-zag form rather than in a straight line [28]. In natural
abundance, the 1% fraction of carbon nuclei that carry a
nuclear spin (13C) will contribute to the decoherence in the
system. Clearly, this effect can be reduced by using isotopically
pure material, as has been demonstrated, for example, in
diamond [36]. Clearly, these challenges are difficult but may
be overcome eventually. It will be interesting to watch progress
in this area.

V. CONCLUSION

In summary, we have proposed a scheme for performing
universal quantum computation in a C60@SWCNT (peapod)
system. We have discussed how to efficiently implement
the quantum logical gate operations required for universal
quantum computation. Transfer of information between qubits
was considered by direct dipole-dipole couplings or by using
a mobile electron spin as a bus qubit. Although our scheme
cannot be realized with today’s technology, it appears possible
that the currently existing obstacles can be overcome as
nanotechnology makes further progress.
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