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We perform numerical analysis of the first 20 and 14 coefficients for 1 1S and 2 3S states of the 1/Z expansion
of the energy of two-electron atoms, respectively. The radius of convergence and large-order behavior of the
coefficients are determined. The results obtained are in disagreement with those given so far in the literature.
We sum the terms of the series with known coefficients and the remainder of the series where we replace the
actual coefficients by their large-order values. We show that inclusion of the remainder improves agreement with
variational results by more than three orders of magnitude. We argue that the energy is at least three times and
most likely infinitely degenerate at the singularity. Numerical result for the effective characteristic polynomial
supports this conclusion.
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I. INTRODUCTION

The Schrödinger equation for two-electron atoms in atomic
units reads[
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]
ψ = E(Z)ψ. (1)

By scaling the coordinates of the electrons �x(i) → Z−1 �x(i),
i = 1, 2, we get an equivalent equation[
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ψ = E(z)ψ, (2)

where z = 1/Z and E(z) = E(Z)/Z2. Searching for the
solution in the form of a series in the inverse powers of the
nuclear charge one obtains the 1/Z expansion

E(z) =
∞∑

n=0

Knz
n, (3)

which is subject of this paper.
This expansion and its generalization is one of the key

tools in atomic physics calculations. It has been used, for
example, for determination of the energy levels of the highly
charged ions within the S-matrix approach [1], for calculation
of the Hartree-Fock and correlation energies [2], energy levels,
autoionization rates, and radiative transition probabilities for
autoionizing states [3], for determining accurate energies and
oscillator strengths for many-electron ions [4], for calculating
the double photoeffect [5], and for estimation of the negative
energy contributions to transitions amplitudes [6]. This list is
far from being complete.

There has long been confusion, described in [7], about
two points. First, what is the position z0 and nature of the
singularity closest to the point of expansion z = 0? Second,
what is the relation of z0 to the critical value zc for which there
is a bound state with zero binding energy? The importance of
these questions lies in the fact that the position and nature of
the singularity determine the radius and rate of convergence
of the series (3). This is of crucial importance for the practical
use of the 1/Z expansion. Identification of z0 with zc then
determines the nature of the resonances states (see, e.g., [8]).

This confusion seemed to be definitely settled in [7].
However, as we shall argue, part of the analysis made there is
not correct. Namely, we find that the position and nature of the
singularity are different than that given there.

To determine the position and nature of the singularity one
has to know a sufficient number of the perturbation coefficients
with sufficient accuracy. This problem has been only gradually
appreciated over the years (see the discussion in [7]). What is
especially disturbing is that one does not a priori know what
is meant by a “sufficient number” and “sufficient accuracy.”

We take the first 20 coefficients given in Table III of [7] for
the 1 1S state and the first 14 coefficients given in Table IV
of the same paper for the 2 3S state. For the coefficient K2

for the 1 1S state we take the value given in the main text
of the paper between Eqs. (45) and (46). These are the only
coefficients given so far in the literature that meet both criteria
of “sufficient number” and “sufficient accuracy.”

We determine the position and nature of the singularity by
the method developed in [9]. This yields precise knowledge
of the large-order behavior of the coefficients Kn. For the 1 1S

state we sum the first 20 coefficients and the remainder of
the series where the actual coefficients are replaced by their
large-order values. We show that inclusion of the remainder
improves the agreement with variational results by more than
three orders of magnitude. For the 2 3S state the results are
even more impressive. This is the most important result of this
paper. First, it shows how the performance of the perturbation
method can be improved. Second, it provides support for the
correctness of the analysis made here. Further, we analyze the
characteristic polynomial in the vicinity of the singularity. We
come to the conclusion that the energy is at the singularity at
least three times and most likely infinitely times degenerate.
We construct the effective characteristic polynomial [10] to
verify this conclusion numerically.

II. THE METHOD

First we describe the method given in [9] for determination
of the nature and position of the singularity closest to the point
of the expansion. Second, we show how this knowledge can
be used for improvement of the perturbation result.
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Let us assume that the function E(z) behaves at the
neighborhood of the singularity z0 as

E(z) = c1

(
1 − z

z0

)α1

+ c2

(
1 − z

z0

)α2

+ · · ·

+ d0 + d1

(
1 − z

z0

)
+ d2

(
1 − z

z0

)2

+ · · · , (4)

where αi are supposed to be rational and noninteger. The
integer powers do not influence the large-order behavior of
the series (3).

We show how from this assumption the large-order behavior
of Kn coefficients can be deduced, or conversely, how we can
determine parameters in Eq. (4) from the large-order of Kn

coefficients. For this purpose, we use the generalized binomial
theorem and write(

1 − z

z0

)α

=
∞∑

n=0

�(α + 1)

�(n + 1)�(α − n + 1)

(−1)n

zn
0

zn. (5)

Considering only the first term in Eq. (4), substituting Eq. (5)
into Eq. (4), and then comparing terms of the same powers of
z with Eq. (3), we get for large n

Kn � c1
�(α1 + 1)

�(n + 1)�(α1 − n + 1)

(−1)n

zn
0

. (6)

The values of z0 and α1 can be found as follows. Taking the
ratio of two successive coefficients Kn, we obtain from Eq. (6)

Kn−1

Kn

� z0
n

n − α1 − 1
. (7)

Taking the limit of this ratio to infinity, we obtain an estimate
of z0. Inserting this estimate of z0 back into Eq. (7), we get the
following estimate for α1:

α1 � n

(
1 − z0Kn

Kn−1

)
− 1. (8)

Let us now describe how Eq. (4) can be used for very
accurate determination of z0 and the coefficients ci if the values
of the coefficients αi are known. Taking j terms in Eq. (4),
using Eq. (5), and comparing again terms with the same powers
of z in Eqs. (3) and (4), we obtain

Kn =
j∑

i=1

x(i)
n , (9)

where

x(i)
n = ci

�(αi + 1)

�(n + 1)�(αi − n + 1)

(−1)n

zn
0

. (10)

Considering Eq. (10) for successive n and taking the ratio of
such equations, we express x

(i)
n−k through x(i)

n as

x
(i)
n−k

x
(i)
n

= n(n − 1) · · · (n − k + 1)

(n − αi − 1)(n − αi − 2) · · · (n − αi − k)
zk

0. (11)

Inserting this into Eq. (9), we get a system of j + 1 equations:

Kn0−k

=
j∑

i=1

x(i)
n0

n0(n0 − 1) · · · (n0 − k + 1)

(n0 − αi − 1)(n0 − αi − 2) · · · (n0 − αi − k)
zk

0,

(12)

TABLE I. The position of the singularity z0 for the ground-state
energy of two-electron atoms determined from the series (3) by the
method described in Sec. II. n0 is equal to 19. j denotes the number of
terms taken in Eq. (9). The value of z0 taken in additional calculations
is that obtained for j = 5.

j z
(j )
0 z

(j )
0 − z

(j−1)
0

1 1.098 900 6
2 1.106 872 1 0.007 971
3 1.108 237 6 0.001 365
4 1.108 482 7 0.000 245
5 1.108 549 6 0.000 066
6 1.108 375 9 −0.000 173

for k going from 0 to j . We first solve j linear equations
for x(i)

n0
using the MAPLE procedure and then insert them into

the last nonlinear equation for z0. This equation is solved
by the Newton-Raphson method. The coefficients ci are then
determined from Eq. (10) for n = n0.

We can try to determine even the coefficients di by fitting
the low-order Kn coefficients to

Kn =
j∑

i=1

x(i)
n + yn, (13)

where

j∑
n=0

dn

(
1 − z

z0

)n

=
j∑

n=0

ynz
n. (14)

Since Kn and x(i)
n are known we can determine from the last

two equations the dn coefficients. In this way we obtain an
estimate of d0 (i.e., the value of the energy at the singularity)
at the border of the convergence of the series (3).

To get an estimate of the energy inside the radius of
convergence we sum the first n0 available terms of the
series (3):

E(Z) = Z2
n0∑

n=0

KnZ
−n. (15)

This estimate can be improved by replacing the unknown
coefficients Kn, for n from n0 + 1 to infinity, by their large

TABLE II. The coefficients ci defined by Eqs. (4), (17), and (18)
for the ground-state energy of two-electron atoms obtained by the
method described in Sec. II. j is the number of terms taken in
Eq. (9).

j c
(j )
1 c

(j )
2 c

(j )
3 c

(j )
4 c

(j )
5

1 −0.194 633
2 −0.248 210 −0.164 504
3 −0.262 686 −0.249 831 −0.109 421
4 −0.266 019 −0.277 330 −0.174 897 −0.041 795
5 −0.267 086 −0.288 189 −0.210 594 −0.083 429 −0.014 379
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TABLE III. Estimates of the energy in atomic units of the 1 1S state of two-electron atoms from
the perturbation series. The relative errors in parentheses are with respect to the variational values
E(Z = 1) = −0.527751016544377 and E(Z = 2) = −2.9037243770341195 given in [11].

Z E(Z), Eq. (15) E(Z), Eq. (16)

1 −0.527 709 300 401 615 (0.79 10−4) −0.527 751 008 531 809 318 (0.15 10−7)
2 −2.903 724 376 985 056 696 (0.16 10−10) −2.903 724 377 034 051 942 (0.23 10−13)

order values (9),

E(Z) = Z2

⎛
⎝ n0∑

n=0

KnZ
−n +

∞∑
n=n0+1

j∑
i=1

x(i)
n Z−n

⎞
⎠ . (16)

III. RESULTS AND DISCUSSION

For the ground state we plotted the ratios of Kn−1/Kn for n

from 13 to 19 with respect to 1/n and we observed the straight
line. Thus, we made a Thiele extrapolation of these ratios
with respect to 1/n. We obtained z0 = 1.108354. Further we
extrapolated Eq. (8) from the same interval. We arrived at the
value α1 = 1.515. This suggests that the exact value is

α1 = 3/2. (17)

For i > 1 the simplest possibility is to take

αi = αi−1 + 1. (18)

This choice is justified a posteriori. If αi are not correct,
then the procedure described in the previous section for
determination of z0 and ci does not work. The results given
in Tables I and II show that the stabilization is actually very
good, up to j = 5. Therefore, we believe that our choice of αi

is correct.
The radius of convergence z0 = 1.1085 found here differs

from that found in [7] (z0 = 1.09766). Also, the nature of
the singularity found there is of a much more complicated
type than that found here. The reason for the discrepancy lies
in the fact that in [7] the numerical analysis was performed
on the coefficients Kn from the interval n = 25 to n = 401,
while here we used the interval from n = 13 to n = 19. One
has to keep in mind that high coefficients of the convergent
series are very difficult to determine. Certainly, the coefficients
from the interval n = 13 to n = 19 are much more accurate
than the coefficients from the interval n = 25 to n = 401.
Consequently, any analysis made on low coefficients is much
more reliable than that made on high coefficients. Further,
the leading large-order behavior of the coefficients Kn is
determined by Eq. (6) for α1 = 3/2. That means that one needs
just the two parameters z0 and c1 to fix it precisely. On the other
hand Eq. (84) of [7] contains as many as four parameters.

To appreciate the point made in the previous paragraph,
take z0 and ci from Tables I and II for j = 5; our prediction
for K20 based on Eq. (9) is then −0.768616348 × 10−5,
whereas the actual coefficient K20 given in Table III of [7]
is −0.768616263 × 10−5, the relative difference being 10−7.
The relative error of the asymptotic formula given in [7] for
K20 is 0.6 × 10−2. Our prediction for K200 is −0.222 × 10−15,
while the value given in [7] is −0.301 × 10−15.

Further we summed the series (3) by means of Eqs. (15)
and (16) and compared the result with a variational calculation
[11]. The results are given in Table III and confirm our analysis.
Now we turn our attention to the 2 3S state. Studying the ratios
Kn−1/Kn and Eq. (8) for n from 9 to 19 we observed that
starting with n = 14 the values of α1 oscillate. Therefore we
consider only the coefficients up to n = 13. We take the same
values of αi as for the ground state. Estimates of z0 and ci are
given in Tables IV and V. The stabilization is even better than
for the ground state, up to j = 6. Also, as seen from Table VI,
inclusion of the remainder improves the agreement with the
variational result even more than for the ground state. We note
that contrary to the expectation made in [7] the value of z0

is larger than 1, though for Z equal to 1 the state lies above
the ionization threshold (see Table VI), in agreement with the
theorem given in [12].

We also tried to determine the coefficients dn from Eqs. (13)
and (14). The results for the singlet and triplet states are given
in Tables VII and VIII, respectively. The stabilization is worse
than for the ci coefficients. Nevertheless, the results suggest
that the exact value of d0 is −1/2. This means that z0 = zc. The
same conclusion was obtained in [7]. We would like to note
that with this identification our choice of α1 is consistent with
the rigorous theorem given in [13] that the energy approaches
the value E(zc) = −1/2 linearly.

To better understand what is going on at the singularity, we
recall that the eigenvalues are determined variationally as the
roots of the characteristic polynomial of the N th order in E,

PN (E(z), z) = 0. (19)

Our choice of αi implies that the energy can be at the vicinity
of the singularity expanded in integer powers of u = (1 −
z/z0)1/2. Thus, we make the substitution

z = z0(1 − u2) (20)

TABLE IV. The same as in Table I, but for the 2 3S state of two-
electron atoms. n0 is equal to 13. The value of z0 taken in additional
calculations is that obtained for j = 6.

j z
(j )
0 z

(j )
0 − z

(j−1)
0

1 1.009 616 7
2 1.027 127 3 0.017 510
3 1.032 620 4 0.005 493
4 1.035 207 8 0.002 587
5 1.036 486 9 0.001 279
6 1.036 737 7 0.000 250
7 1.035 981 8 −0.000 755

032118-3



J. ZAMASTIL et al. PHYSICAL REVIEW A 81, 032118 (2010)

TABLE V. The same as in Table II, but for the 2 3S state of two-electron atoms.

j c
(j )
1 c

(j )
2 c

(j )
3 c

(j )
4 c

(j )
5 c

(j )
6

1 −0.234 356
2 −0.340 525 −0.199 347
3 −0.395 411 −0.391 928 −0.136 894
4 −0.429 077 −0.550 596 −0.333 952 −0.060 020
5 −0.448 341 −0.656 284 −0.501 178 −0.143 542 −0.010 598
6 −0.452 350 −0.679 623 −0.541 524 −0.167 070 −0.014 865 −0.000 163

and expand the energy in the series

E(z) =
∞∑

n=0

bnu
n. (21)

Comparing this expansion with that in Eq. (4) with αi given by
Eqs. (17) and (18) we see that b0 = d0, b1 = 0, b2=d1, b3 = c1,
and so on. By inserting the last two equations into Eq. (19)
and comparing the terms of the same powers of u we obtain
successively

PN (E = b0, u
2 = 0) = 0, (22)

∂PN

∂E
b1 = 0, (23)

∂PN

∂E
b2 + ∂2PN

∂E2
b2

1 + ∂PN

∂u2
= 0, (24)

∂PN

∂E
b3 + b1

(
∂3PN

∂E3
b2 + ∂2PN

∂E∂u2

)
= 0, (25)

∂PN

∂E
b4 + 1

2

∂2PN

∂E2

(
b2

2 + 2b3b1
)+ b2

∂2PN

∂E∂u2
+ 1

2

∂2PN

∂(u2)2
= 0,

(26)

∂PN

∂E
b5 + b3

(
∂2PN

∂E2
b2 + ∂2PN

∂E∂u2

)

+ b1

(
∂2PN

∂E2
b4 + ∂3PN

∂E2∂u2
b2 + ∂3PN

∂E∂(u2)2

)
= 0, (27)

and so on. It is understood that derivatives are evaluated at
the point E = b0 and u = 0. Equation (22) is just an equation
for the particular eigenvalue b0 for the particular value of the
coupling constant z0. For b1 �= 0, Eq. (23) is a condition for
the particular eigenvalue b0 to be twofold degenerate [14]. If
z0 is the closest singularity to the origin, then for this value
of the coupling constant the ground and first excited state of
the same symmetry intersect [9,14,15]. Equation (24) is then
a quadratic equation for b1. The two roots correspond to the
fact that one can approach the point z0 either from the ground
state or from the first excited state [9]. Equation (24) is then a

linear equation for b2, Eq. (25) is a linear equation for b3, and
so on.

However, one can see that if

∂PN (E, u2)

∂E

∣∣∣∣
E=b0,u=0

= 0 (28)

and b1 = 0, Eq. (24) implies

∂PN (E, u2)

∂u2

∣∣∣∣
E=b0,u=0

= 0. (29)

Equation (25) is then identically zero, but Eqs. (26) and (27)
are very hard to fulfill. In fact, there are only two possibilities:
Either b2 = 0 or

∂2PN (E, u2)

∂E2

∣∣∣∣
E=b0,u=0

= 0; (30)

that is, the energy is at least three times degenerate at the
singularity. In either case Eqs. (26) and (27) imply

∂2PN (E, u2)

∂E∂u2

∣∣∣∣
E=b0,u=0

= 0 (31)

and

∂2PN (E, u2)

∂(u2)2

∣∣∣∣
E=b0,u=0

= 0, (32)

respectively. The latter possibility, Eq. (30), is much more
natural. It is very unlikely that Eq. (30) is not satisfied, while
Eqs. (31) and (32) are. Moreover, the result in Table VII for
b2 = d1 is consistent only with the latter possibility. Further, it
is unlikely that equations obtained from Eq. (19) by comparing
the higher orders of u will be fulfilled unless

∂nPN (E, u2)

∂En

∣∣∣∣
E=b0,u=0

= 0 (33)

for all n. This means that the energy is at the point z0 infinitely
degenerate.

TABLE VI. Estimates of the energy in atomic units of the 2 3S state of two-electron atoms from the
perturbation series. The relative error in parentheses is with respect to the variational value E(Z = 2) =
−2.17522937823679130 given in [11].

Z E(Z), Eq. (15) E(Z), Eq. (16)

1 −0.499 991 582 046 787
2 −2.175 229 321 840 030 517 (0.25 10−7) −2.175 229 378 229 568 174 (0.33 10−11)

032118-4



CONVERGENCE STUDY OF THE 1/Z EXPANSION FOR . . . PHYSICAL REVIEW A 81, 032118 (2010)

TABLE VII. The coefficients di defined by Eqs. (4), (17), and
(18) for the ground-state energy of two-electron atoms obtained by
the method described in Sec. II. j is the number of terms taken in
Eq. (9).

j d
(j )
0 d

(j )
1 d

(j )
2 d

(j )
3 d

(j )
4 d

(j )
5

1 −0.410 5 −0.394 8
2 −0.470 7 −0.324 9 0.208 3
3 −0.524 1 −0.127 5 −0.015 5 0.289 1
4 −0.489 7 −0.274 6 0.243 5 0.136 1 0.144 7
5 −0.499 7 −0.221 2 0.132 2 0.288 8 0.107 9 0.055 6

To check this conclusion numerically we need a charac-
teristic polynomial for Eq. (2). To obtain it one has to do the
variational calculation in some basis. The most advantageous
is the basis built up from the explicitly correlated functions as
that used in [7,11]. However, the convergence of the conditions
for the singularity, Eqs. (22) and (28), is likely to be slow with
increasing N . But then the numerical solution of Eqs. (22) and
(28) is rather difficult for large N .

This obstacle can be circumvented by considering an
effective characteristic polynomial [10]. This polynomial can
be constructed directly from known coefficients Kn without
actually doing any variational calculation at all. It is based
on the observation that the characteristic polynomial for
eigenvalues (19) has the generic form

PN =
N∑

k=0

Ek

n−k∑
j=0

f k
j zj , (34)

where f k
j are parameters determined by the matrix elements

of the Hamilton operator. We can determine them from
the perturbation coefficients as follows. Setting f N

0 = 1 and
inserting expansion (3) into the last equation and expanding it
in the series in z up to the N (N + 3)/2 − 1 order we obtain
N (N + 3)/2 equations (where we consider also the zeroth
order) for the same number of unknowns f k

j . For example, to
construct P4 we need coefficients Kn from 0 to 13, for P5 we
need Kn up to 19, and for P6 up to 26.

Thus we have enough coefficients to construct P4 for
the triplet state and P5 for the singlet state. We search for
the roots of these polynomials first at the physical values of
Z = 1, 2, . . . and then at the singularity z0. For the singlet
and triplet states we take the values of z0 given in Tables
VII and VIII for j = 5 and j = 6, respectively. The results
are displayed in Tables IX and X. First, it is seen from
the tables that for the physical values of Z the effective
characteristic polynomial represents an alternative way to

TABLE IX. Roots of the effective characteristic polynomial P4 for
the 2 3S state of two-electron atoms. The polynomial was obtained
from 14 coefficients of the series (3) by the method described in
Sec. III.

4P4(1/2) −2.923 60 −2.373 49 −2.175 229 378 199 119.614

P4(z0) −0.622 682 −0.520 806 −0.500 662 30.6371
∂P4(z0)

∂E
−0.585 846 −0.510 286 22.8408

∂2P4(z0)
∂E2 −0.548 096 15.0445

∂P4(z0)
∂z

−0.560 437 −0.495 788 6.40283
∂2P4(z0)

∂E∂z
−0.528 188 4.09259

∂2P4(z0)
∂z2 −5.73418 −0.518 597

improve the perturbation result. Second, if we search for the
roots of the characteristic polynomial and its derivatives at the
singularity z0, at least one of the roots is always very close
to b0 = −1/2. Thus, Eqs. (22) and (28)–(32) are satisfied
within numerical errors. This is an independent check that the
value of z0 is correct and that the conclusion we arrived at,
namely that the energy is at the singularity at least three times
degenerate, is also correct. For the singlet state the results are
less convincing. Therefore, we took another seven coefficients
from Table III of [7] and constructed P6. It is seen from Table X
that Eqs. (28)–(32) are for this polynomial well satisfied.

IV. CONCLUSIONS

In this paper we analyzed the perturbation coefficients for
the two lowest energy levels E(Z) of two-electron atoms. The
results of this paper clearly show that to get maximum infor-
mation about the expanded function it is not necessary to know
an exceedingly large number of the perturbation coefficients.
Rather, it is necessary to know only a moderate number of
them, but with great accuracy. We showed that in such a case
one can deduce the large-order behavior of the perturbation co-
efficients. This information can be further used for significant
improvement of the perturbation estimate of the exact energy.

Further, we investigated the nature of the singularity. The
conclusion drawn from this discussion is the following. The
behavior of the energy E(Z) near the singularity is given by
Eq. (4) with αi given by Eqs. (17) and (18). The singularity
is a branching point between the two sheets of the Riemann
surface. At the same time the degree of degeneracy of the
energy is definitely greater than two and most likely infinite.
This is different from what was found for the singularities
of simpler quantum mechanical systems [9,15]. There, the

TABLE VIII. The same as in Table VII but for the 2 3S state of two-electron atoms.

j d
(j )
0 d

(j )
1 d

(j )
2 d

(j )
3 d

(j )
4 d

(j )
5 d

(j )
6

1 −0.552 4 0.161 7
2 −0.449 8 −0.086 7 0.451 4
3 −0.529 8 0.202 7 0.223 7 0.402 5
4 −0.491 1 0.042 9 0.592 6 0.380 6 0.223 5
5 −0.502 1 0.103 0 0.529 5 0.658 3 0.290 9 0.055 1
6 −0.500 9 0.096 9 0.558 2 0.670 4 0.343 7 0.059 8 0.002 2
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TABLE X. Roots of the effective characteristic polynomials for the ground state of two-electron atoms. The polynomials P5 and P6 were
obtained from 19 and 26 coefficients of the series (3), respectively.

4P5(1/2) −5.102 58 −2.903 724 377 034 035 −1.267 53 − 0.657i −1.26753 + 0.657i 5104.36
P5(1) −1.491 08 −0.527 751 081 978 668 −0.511 932 −0.071 028 1280.24
P5(z0) −1.564 16 −0.498 260 −0.497 298 −0.049 439 1281.15
∂P5(z0)

∂E
−1.270 67 −0.497 779 −0.188 477 1024.79

∂2P5(z0)
∂E2 −0.974 182 −0.330 505 768.433

∂P5(z0)
∂z

−21.1025 −0.497 806 −0.217 767 5.041 76
∂2P5(z0)

∂E∂z
−15.5528 −0.359 129 3.329 69

∂2P5(z0)
∂z2 −0.429 434 0.229 047 − 0.998i 0.229 047 + 0.998i

4P6(1/2) −16.7773 −2.994 90 −2.903 724 377 034 330 −2.454 62 11.2643 5690.54

P6(1) −4.246 18 −0.549 727 −0.528 385 −0.527 750 677 3.029 57 1426.74

P6(z0) −4.264 44 −0.515 610 −0.500 411 −0.497 377 3.080 34 1427.65
∂P6(z0)

∂E
−3.419 60 −0.510 107 −0.498 826 2.269 78 1189.62

∂2P6(z0)
∂E2 −2.569 32 −0.504 466 1.453 88 951.591

∂P6(z0)
∂z

−4.989 058 −0.509 500 −0.498 637 1.695 91 170.611
∂2P6(z0)

∂E∂z
−3.748 229 −0.504 072 1.017 83 136.282

∂2P6(z0)
∂z2 −1.336 64 − 2.065i −1.33664 + 2.065i −0.503 725 2.434 59

number of branches of the Riemann surface was always equal
to the degree of degeneracy of the energy.

It would be desirable to extend the analysis made here to
many-body perturbation theory.
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