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Vacuum polarization for compactified QED4+1 in a magnetic flux background
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We evaluate one-loop effects for QED4+1 compactified to R4 × S1 in a nontrivial vacuum for the gauge field
such that a nonvanishing magnetic flux is encircled along the extra dimension. We obtain the vacuum polarization
tensor and evaluate the exact parity-breaking term, presenting the results from the point of view of the effective
(3 + 1)-dimensional theory.
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I. INTRODUCTION

Quantum field theory models with compactified dimensions
have been used to describe different physical situations,
ranging from finite size effects in critical phenomena [1–3], to
the unification of fundamental interactions [4–6]. These ideas
have recently attracted renewed interest; for instance, results
about the electroweak phase transition has been presented in
Ref. [7] in the context of a (4 + 1)-dimensional theory with a
compactified dimension.

The presence of extra compactified dimensions may give
rise to effects at different scales, not just those in high-energy
physics realm; in particular on low-energy phenomena, like
atomic physics. Following this idea, we evaluate, within a
specific domain of physics, namely quantum electrodynamics
(QED), the effects that would follow if our world were five
dimensional. In particular, we investigate at one-loop order
some effects due to the assumption of a nontrivial vacuum
with a nonvanishing magnetic flux along the compactified
dimension.

Effects on the anomalous magnetic moment of the muon as-
sociated with extra-dimensional excitations of the photon and
of the W and Z bosons have been studied in Ref. [8] in a space
whose extra dimensions have large compactification radii.
Those authors have shown that when the extra-dimensional
corrections to the Fermi constant are included, their effects
on (gµ − 2) become too small to be observable. They discuss
a model which avoids the extra-dimensional corrections to
the muon decay µ → eν̄eνµ without suppression of their
effects on (gµ − 2). Eventual extra-dimensional effects on
(gµ − 2) would be very interesting. We know, since the g − 2
experiment at Brookhaven National Laboratory (U.S.) in 2004,
and subsequent experiments, that the expected value from stan-
dard theoretical calculations, that predict g = 2, could not be
confirmed, since both theoretical prediction and experimental
results have a large amount of uncertainty. Although a conclu-
sive response is not available, a value of g �= 2 is not excluded
by experimentalists [9]. Indeed, in the experimental framework
of QED a recent experiment for the electron magnetic moment,
gives a much more precise value for ge (the claimed uncertainty
is nearly 6 times lower than in the past). These authors still find
a deviation from the value g = 2 [10]. In atomic physics, very
accurate measurements of the asymptotic quantum effects on
Rydberg excitations have also been carried out [11].

Another interesting consequence of the possible existence
of extra dimensions is explored in Ref. [12]. This study
shows that they would imply that electric charge might
not be exactly conserved, which has been a subject of
discussion for a long time [13–15]. As mentioned in Ref. [12],
in four-dimensional theories, a tiny deviation from electric
charge conservation would lead to contradictions with low-
energy tests of QED. These could, in turn, be avoided by
the introduction of hyphotetical millicharged particles [15].
However, as argued in Ref. [12], if our world were considered
as a submanifold of a higher-dimensional space, this artifact
would not be necessary. Indeed in this case, particles initially
confined to our four-dimensional subspace could, under some
circumstances migrate to the extra dimensions. The idea
presented in Ref. [12] is that if they are electrically charged,
their migration from our world into extra dimensions would
appear for us as nonconservation of electric charge. Charge
nonconservation and other possible effects of extra dimensions
could perhaps be investigated in experiments similar to those in
Refs. [10,11].

In Refs. [16] a U(1) gauge field theory with fermion
or scalar fields defined on a space with extra compactified
dimensions has been considered. These authors compute the
fermion-induced quantum energy in the presence of a constant
magnetic field directed toward the z axis. They study the
effect of extra dimensions on the asymptotic behavior of the
quantum energy in the strong field limit and find that the weak
logarithmic growth of the quantum energy in four dimensions
is modified by a rapid power growth in a space-time with extra
dimensions.

Because of the reasons described above, we believe that the
study of effects due to extra dimensions in electromagnetic
phenomena is a subject of actual interest. We present here
new results about that topic; they correspond to quantum
effects in QED with an extra dimension, in a magnetic flux
background. In particular, we consider the modifications that
the extra dimension produces on the vacuum polarization
phenomenon.

This article is organized as follows: in Sec. II we introduce
the model and study its more important features, mostly related
to the realization of gauge invariance within the context of
a theory with a compactified dimension, having an extra
dimensional-like mode expansion in mind. Section III deals
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with the effective action, which is derived including both
parity-conserving and parity-violating parts. In Sec. IV, we
apply the general results of Sec. III to the exact calculation of
the parity-conserving part of the vacuum polarization tensor.
In Sec. V, we consider parity-breaking effects. Section VI
contains our conclusions.

II. THEORETICAL FRAMEWORK

From a general point of view, one can consider a simply
or non simply connected D-dimensional manifold with a
topology RD

d = RD−d × Sl1 × Sl2×, . . . ,×Sld , with l1 cor-
responding to the inverse temperature and l2 , . . . ld to the
compactification of d − 1 spatial dimensions (this case has
been considered, within the context of spontaneous symmetry
breaking, in Ref. [17]). An interesting yet simple example of
this, corresponds to the compactification of one dimension
in an RD Euclidean space-time, such that the topology
of the resulting manifold M is that of RD−1 × S1, i.e.,
“circular compactification.” Although the compelling features
that emerge in this situation have been studied using several
different techniques in the literature, one can take advantage of
a (formal) common feature; indeed, they share many properties
with the imaginary-time formulation of quantum field theory
at finite temperature [18,19]. This allows one, for example, to
take advantage of the many well-known methods and results
developed in this context, such as Feynman diagrams and
renormalization techniques, to import them to the case under
consideration.

For just one compactified dimension (imaginary time or a
spatial dimension) the Feynman rules are modified, the most
characteristic new feature is the Matsubara prescription for
momentum integrals,∫

dks

2π
→ 1

ξ

+∞∑
n=−∞

; ks → 2nπ

ξ
, (1)

where ks amounts to the momentum component corresponding
to the compactified dimension, while ξ equals β or L, for the
finite temperature and compactified spatial dimension cases,
respectively.

Within the previous general framework, we here investigate
one-loop effects for QED3+1 with an extra compactified
dimension, in a nontrivial vacuum for the gauge field, defined
by a nonvanishing component along the extra dimension.

The system we shall deal with may be conveniently defined
in terms of an Euclidean action, S, which has the structure:

S(A; �̄,�) = Sg(A) + Sf (A; �̄,�), (2)

where Sg and Sf denote the U(1) gauge field and fermionic
actions, respectively. The former is assumed to have a standard
Maxwell form, namely:

Sg(A) = 1

4

∫
d5x FαβFαβ, (3)

with Fαβ ≡ ∂αAβ − ∂βAα , where we adopted the convention
that indices from the beginning of the Greek alphabet (α,
β, . . .) label all the coordinates of the spacetime manifold and
therefore run from 0 to 4. Since we will be specially interested
in the model as it is seen from a (3 + 1)-dimensional point

of view, we shall also use another convention: indices from
the middle of the Greek alphabet (µ, ν, . . .) are reserved for
the (3 + 1)-dimensional space-time coordinates while, when
this notation is used, the extra-dimension coordinate shall be
denoted by s. Then:

α = 0, 1, 2, 3, 4, µ = 0, 1, 2, 3,
(4)

d5x ≡ d3+1x dx4 = d3+1x ds,

and x will be assumed to denote the (3 + 1)-dimensional
coordinates xµ, unless explicit indication on the contrary. The
extra dimension is assumed to be compactified with a radius
R, so s ∼ s + L, L = 2πR.

On the other hand, the Dirac action, Sf , is given by

Sf (�̄,�;A) =
∫

d3+1x ds �̄(x, s)(D + m)�(x, s), (5)

where D is the (4 + 1)-dimensional Dirac operator, D =
γαDα . The covariant derivative Dα ≡ ∂α + igAα includes a
coupling constant g with the dimensions of (mass)−

1
2 . For

Dirac’s γ matrices, we assume that γs ≡ γ5, where the latter
is the γ5 matrix for the 3 + 1 world.

To proceed, we discuss now the mode expansion and its
relation to gauge invariance. To that end, we follow [2], where
this issue is discussed at length, albeit in the finite temperature
theory context, in the Matsubara formulation of thermal field
theory. Due to the formal analogy with this situation, a quite
straightforward procedure allows us to adapt the results derived
there to our case. The necessary changes that follow from
the fact that our compactified dimension is spatial rather
than temporal are taken into account by using (1). In that
analogy, the length L plays the same role of the inverse
temperature in Ref. [2]: L ∼ β, β = T −1.

What follows is a brief review of some of those properties
(the ones which are relevant to our study), adapted to our case
and conventions. To begin with, the gauge field configuration
Aα(x, s) may be decomposed into its zero (Aα) and nonzero
(Qα) mode components:

Aα(x, s) = L− 1
2 Aα(x) + Qα(x, s), (6)

where the two terms in this decomposition may be defined by:

Aα(x) = L− 1
2

∫ L

0
ds Aα(x, s), (7)

and

Qα(x, s) = Aα(x, s) − L− 1
2 Aα(x), (8)

so
∫ L

0 ds Qα(x, s) = 0. An L− 1
2 factor has been included

in the zero mode term in order to make this field have the
usual mass dimensions in (3 + 1) space-time dimensions; this
property will become useful after dimensional reduction.

The decomposition above finds a natural interpretation
when one considers the Fourier expansion of the gauge field
along the extra dimension:

Aα(x, s) = L− 1
2

∞∑
n=−∞

eiωns Ãα(x, n), (9)
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with ωn ≡ 2πn
L

, where one identifies:

Aα(x) = Ãα(x, 0), Qα(x, s) = L− 1
2

∑
n�=0

eiωnsÃα(x, n).

(10)

Then we dimensionally reduce the theory, what, for the
gauge field action, amounts to keeping just the zero mode
component of the gauge field. Thus:

Sg(A) → Sg(A) = Sg(Aµ, As), (11)

where:

Sg(Aµ,As) =
∫

d3+1x

[
1

2
∂µAs∂µAs + 1

4
Fµν(A)Fµν(A)

]
,

(12)

with Fµν(A) ≡ ∂νAν − ∂νAµ.
Regarding the fermionic action Sf , the reduction amounts

to:

Sf (A; �̄,�) → Sf (Aµ,As ; �̄,�). (13)

The fermionic field is not dimensionally reduced for the simple
reason that, in the calculation of the effective gauge field action,
its only contribution comes from the fermion loop. That loop
may be represented as a series of (3 + 1)-dimensional loops,
each one with a different mass. Although the contributions of
heavier modes may be relatively suppressed, the very fact that
there is an infinite number of them forbids us to truncate that
series (even if there were a zero mode).

Thus, the following explicit expression for the fermionic
action shall be used after dimensional reduction:

Sf =
∫

d3+1x

∫ L

0
ds �̄(x, s)

( �D + γsDs + m
)
�(x, s),

(14)

where

�D = γµ(∂µ + ieAµ) Ds = ∂s + ieAs. (15)

We have introduced a new, dimensionless coupling constant
e ≡ gL− 1

2 , which shall play the role of the electric charge in
(3 + 1) dimensions.

As explained in Ref. [2], when considering the form of
the gauge transformations in terms of the decomposition into
zero and nonzero modes, one finds that it Aµ transforms as a
standard gauge field [in (3 + 1) dimensions]:

δAµ(x) = ∂µα(x) (16)

while its extra-dimensional component As , a scalar from
the (3 + 1)-dimensional point of view, is shifted by a
constant:

δAs(x) = �. (17)

The constant � has to be of the form � = 2πk
Le

,
where k is an integer, since the gauge field is cou-
pled to a (charged) fermionic field, whose transforma-
tion law under simultaneous action of the previous gauge
transformations is:

�(x, s) → e−ie[α(x)+�s] �(x, s)
(18)

�̄(x, s) → eie[α(x)+�s] �̄(x, s).

III. EFFECTIVE ACTION

We now define the part of the effective action that only
depends on the (dimensionally reduced) gauge field, �(A),

�(A) ≡ �(A; �̄,�)|�̄=�=0, (19)

where �(A; �̄,�) is the full effective action. The functional
�(A) allows one to derive one-particle irreducible (1PI)
functions containing only Aµ, As external lines. The former
have an immediate (3 + 1)-dimensional interpretation, while
the latter shall be assumed to have a constant (but otherwise
arbitrary) value, which is determined by a condition which is
external to the model.

On the other hand, at the one-loop order, the only nontrivial
term comes from the fermionic loop:

�(A) = �(0)(A) + �(1)(A) + · · · , (20)

where �(0)(A) = Sg(A) and

e−�(1)(A) =
∫

D�D�̄e−Sf (A;�̄,�). (21)

We shall focus on the effective action for the gauge field
components Aµ that have a direct physical interpretation
from a (3 + 1)-dimensional perspective. Regarding the scalar
component, As , as we have said above, it will be assumed to
yield a nonvanishing flux:

e

∫ L

0
dsAs = θ, (22)

where θ is a constant. This condition may be conveniently
solved by means of a constant As :

As = θ

eL
, (23)

which is the gauge fixing that we shall assume. Note that, since
the gauge transformations shift As by an integer multiple of
2π
eL

, we may fix the value of θ to the fundamental region:

0 � θ < 2π, (24)

which we shall assume in what follows.
It is worth noting that this kind of gauge field configuration

may be interpreted as “topological,” in the sense that it
corresponds locally (althougth not globally) to a “pure gauge”
field configuration. Indeed, it cannot be gauged away, since
the corresponding gauge transformation would be multivalued
(when the extra dimension is encircled). Charged fields
feel this kind of configuration when they encircle the extra
coordinate, in a fashion that resembles the Aharonov-Bohm
effect. The field configuration may be realized in a similar
way to this effect: a singular field strength pointing in a
direction orthogonal to the plane of the circle. Besides, as
in the Aharonov-Bohm effect, the region of space where
the field strength is nonvanishing cannot be reached by
the charged fields. The situation can be easily visualized
in a lower dimensional example, namely the case of a
(2 + 1)-dimensional theory, if one assumes x2 to be the extra,
compactified dimension. Here, space is a cylinder, and the
gauge field configuration corresponding to the vacuum field
would be a singular flux string along the cylinder axis. This
means that it is outside of the assumed cylindrical space, since
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it needs a third coordinate to be realized. In a similar way,
the kind of configuration we consider could be realized by
singular, monopolelike field strengths in a higher [more than
(4 + 1)] dimensional manifold.

We then proceed to Fourier expand the fermionic fields
along the s coordinate:

�(x, s) = L− 1
2

∞∑
n=−∞

eiωnsψn(x)

(25)

�̄(x, s) = L− 1
2

∞∑
n=−∞

e−iωnsψ̄n(x)

and insert this into the functional expression for �(1)(A), to
obtain:

Sf =
n=+∞∑
n=−∞

∫
d3+1x ψ̄n(x)

[
�D + iγs

(
ωn+ θ

L

)
+ m

]
ψn(x).

(26)

Under the same expansion, the fermionic measure factorizes:

D�D�̄ =
n=+∞∏
n=−∞

Dψn(x)Dψ̄n(x), (27)

and, finally, the Euclidean action corresponding to each mode
n may be equivalently written as follows:∫

d3+1x ψ̄n(x)

[
�D + iγs

(
ωn + θ

L

)
+ m

]
ψn(x)

=
∫

d3+1x ψ̄n(x)( �D + Mn e−iϕnγ5 )ψn(x) (28)

with

Mn ≡
√

m2 + (ωn + θ/L)2, ϕn = arctan

(
ωn + θ/L

m

)
.

(29)

The existence of a γ5 term means that parity symmetry will
generally be broken; to study that phenomenon more clearly,
we perform a change in the fermionic variables that gets rid of
the dependence in γ5,

ψn(x) → e−iγ5ϕn/2ψn(x), ψ̄n(x) → ψ̄n(x)e−iγ5ϕn/2, (30)

after which the mode labeled by n has the action:∫
d3+1x ψ̄n(x)( �D + Mn e−iϕnγ5 )ψn(x). (31)

This chiral rotation in the (3 + 1) Euclidean fermionic vari-
ables induces, however, an anomalous Jacobian Jn for each
mode. Then, �(1) may be written as follows:

e−�(1)(A) =
+∞∏

n=−∞

[
Jn e−�

(1)
3+1(A,Mn)

]
, (32)

where

Jn = exp

(
ie2

16π2
ϕn

∫
d3+1xF̃µνFµν

)
, (33)

with F̃µν = 1
2εµνρλFρλ, and �

(1)
3+1(A,Mn) is the one-loop

fermionic contribution to the effective action, for a fermion

whose mass is Mn, in (3 + 1) dimensions. Of course, it may
be expressed as a fermionic determinant:

e−�
(1)
3+1(A,Mn) = det( �D + Mn). (34)

Then, we arrive to a general expression for the one loop
effective action,

�(1)(A) = �(1)
e (A) + �(1)

o (A) (35)

where the e and o subscripts stand for the even an odd
components (regarding parity transformations) and are given
by

�(1)
e (A) =

∞∑
n=−∞

�
(1)
3+1(A,Mn) (36)

and

�(1)
o (A) = −

∞∑
n=−∞

lnJn, (37)

respectively.

IV. PARITY-CONSERVING TERM

The parity-conserving part of the effective action may be
obtained by performing the sum of the required QED3+1

object, with an n-dependent mass, Mn. We shall focus on that
part of �(1)

e that contributes to the vacuum polarization tensor
for the Aµ gauge field components. Since we are not interested
in response functions which involve the s component of the
currents, it is useful to define:

�(1)
e (Aµ) ≡ �(1)

e (Aµ,As) − �(1)
e (0, As). (38)

Note that �(1)
e (0, As) ≡ �s(As) does not contribute to response

functions involving Aµ, although it can be used to study the
fermion-loop corrections to an As effective potential. The
explicit form of this function is [2]:

�s(As) = −2L

∫
d3+1x

∫
d4k

(2π )4
ln[cosh(Lk) + cos θ ].

(39)

The vacuum polarization tensor �µν is obtained from the
quadratic term in a functional expansion in the gauge field:

�(1)
e (Aµ) = 1

2

∫
d3+1x

∫
d3+1yAµ(x)�µν(x, y)Aν(y) + · · · .

(40)

It is then sufficient to resort to the analogous expansion for
the (3 + 1)-dimensional effective action,

�
(1)
3+1(A,Mn) = 1

2

∫
d3+1x

∫
d3+1y

×[
Aµ(x)�(n)

µν(x, y)Aν(y)
] + · · · (41)

(which is even) so the vacuum polarization receives contribu-
tions from all the modes:

�e
µν =

∑
n

�(n)
µν, (42)
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where �(n)
µν = �(n)(k2)δT

µν(k), with:

�(n)(k2) = 2 e2

π

∫ 1

0
dβ β(1 − β) ln

[
1 + β(1 − β)

k2

M2
n

]
,

(43)

which is formally identical to the renormalized scalar part
of the vacuum polarization tensor for a (3 + 1)-dimensional
theory, and the transverse projector is defined by δT

µν(k) ≡
δµν − kµkν/k2. Note that the renormalization performed for
�(n)(k2) should in fact be interpreted as a subtraction for
the (4 + 1)-dimensional theory, which (see below) yields a
logarithmically divergent vacuum polarization, as in (3 + 1)
dimensions, once all the symmetries have been taken into
account. The subtraction already performed in (3 + 1) dimen-
sions does not yet fulfill the renormalization conditions for the
(4 + 1)-dimensional theory: the zero of �(n) is at k2 = 0 for
each term, but the limit k2 → 0 does not necessarily commute
with the (infinite) sum over modes. Indeed, that commutativity
is not guaranteed, since the series in (42) does not converge
uniformly.

To do have the proper pole in the propagator, we shall
need to perform also a finite renormalization. Indeed, the sum
in (42) may be explicitly evaluated using ζ function regular-
ization techniques [20]; we can write �(k2) = ∑

n �(n)(k2),
with

�(k2) = 2 e2

π

∫ 1

0
dβ β(1 − β)�(k2, β), (44)

and

�(k2, β) =
+∞∑

n=−∞
ln

[(
bn + θ

L

)2 + m2 + β(1 − β)k2(
bn + θ

L

)2 + m2

]
,

(45)

where b = 2π/L. Then it can be readily seen that,

�(k2, β) = lim
s→0−

{
d

ds

[
Zm2

1

(
s, b2,

θ

L

)]}
− lim

s→0−

{
d

ds

[
Z

m2+β(1−β)k2

1

(
s, b2,

θ

L

)]}
,

(46)

where Z1(s, . . .) are generalized inhomogeneous ζ functions,

ZM2

1

(
s, b2,

θ

L

)
=

∞∑
n=−∞

[(
bn + θ

L

)2

+ m2

]−s

, (47)

with M2 = m2 or M2 = m2 + β(1 − β)k2.

Using explicit formulas for K± 1
2
(z) =

√
π
2z

e−z and∑∞
n=1

e−a

n
= − ln

(
1 − e−a

)
, we get after some manipulations,

remembering b = 2π/L,

�(k2, β) − �(0, β)

= ln

⎧⎪⎪⎨⎪⎪⎩
cosh

[
mL

√
1 + β(1−β)k2

m2

]
− cos θ

cosh(mL) − cos θ

⎫⎪⎪⎬⎪⎪⎭ . (48)

This leads directly to the result

�e
R(k2) = �e(k2) − �e(0)

= 2 e2

π

∫ 1

0
dβ β(1 − β) ln[1 + F (k2)], (49)

with

F (k2) =
cosh

[
mL

√
1 + β(1 − β) k2

m2

]
− cosh(mL)

cosh(mL) − cos(θ )
.

(50)

It is interesting to note that, even though the theory is
five dimensional, the vacuum polarization tensor requires, to
be renormalized, just fixing the position and residue of one
pole, as in four dimensions. Indeed, the superficial degree of
divergence, δ(γ ), for 1PI Feynman graph γ in QED5 is

δ(γ ) = 5 − 3
2EG − 2EF + 1

2V, (51)

where EG and EF are the number of external gauge and
fermion lines, respectively, and V is the number of vertices.
For the one-loop vacuum polarization tensor, we then have
δ(γ ) = 3, which, taking into account gauge invariance is
reduced to 1. Moreover, since the divergent terms can only
be even polynomials in the momentum, we are left with a zero
degree divergence: this is the logarithmic divergence already
tamed in (44).

Let us now study some immediate properties and conse-
quences that follow from expressions (49) and (50) above.
The natural approach is perhaps to look at its predictions for
different momentum regimes. Let us thus begin by considering
the low-momentum regime, namely k2 � m2. The leading
term, k2/m2 → 0, has already been considered to impose the
renormalization condition �e

R → 0, which is not actually a
prediction but rather is used to demonstrate the fact that the
model contains Coulomb’s law at long distances.

The next-to-leading term already contains a nontrivial
effect. Indeed, a simple effect that will be sensible to the
presence of the flux can be seen by expanding the renormalized
tensor to ( k

m
)2 order in a momentum expansion:

�R(k2) ∼ − e2

30π

[
mL sinh(mL)

cos(θ ) − cosh(mL)

]
k2

m2
, k2 ∼ 0.

(52)

The corresponding modification in the photon’s effective
action produces, for example, a correction in the electrostatic
potential due to a point charge. For the hydrogen atom, the
corrected potential energy becomes:

Veff(r) = − e2

4πr
− e4

120π2m2

[
mL sinh(mL)

cosh(mL) − cos θ

]
δ(3)(r).

(53)

The usual correction is obtained when θ → 0 and mL → 0:

Veff(r) → − e2

4πr
− e4

60π2m2
δ(3)(r). (54)
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It is interesting to study the shape of the ratio between the
corrected and usual strengths of the respective terms:

ξ (mL, θ ) ≡
mL
2 sinh(mL)

cosh(mL) − cos θ
. (55)

The case of a vanishing flux yields simply

ξ (mL, 0) =
mL
2

tanh
(

mL
2

) ,

which for small values of mL approaches 1 and grows linearly
with mL when mL � 1.

The opposite regime, when the effect of the flux is
maximum, corresponds to θ = π/2:

ξ
(
mL,

π

2

)
= mL

2
tanh(mL). (56)

The behavior in this case is quite different; it tends to zero
quadratically for small mL and also grows linearly in the
opposite case, albeit with a different slope.

It is noteworthy that, from Eq. (55), one can obtain
a crude estimate for the length L. To that end, we need
some assumptions. First, we consider that we are within
the vanishing flux approximation. Second, as the typical
contribution of the vacuum polarization term for the energy
shift in muonic atoms is of the order of 0.5 % [21], we may
then take ξ (mL, 0) <∼ 1.0001; such a choice implies that a
correction due to an extra dimension does not significantly
change the values from the present data. Having this in mind,
we obtain through this simple reasoning that L <∼ 0.03[m]−1

which in natural units can be translated to L <∼ 10−14 m. In
order to get a more stringent bound, one should take into
account other effects, which may show other dependencies
on the physics of the extra dimensions. That investigation is,
however, outside the scope of the present article.

Let us now consider the would-be large-momentum region
for the vacuum polarization. This regime will be defined by the
condition that k2 � m2, although k (and m) will be assumed
to be much smaller than L−1. The latter is enforced in order
to say that the mass of the Kaluza-Klein modes is much
larger than the photon momentum. Under this assumption, one
gets the expression:

�e
R(k2) ∼ 2 e2

π

∫ 1

0
dβ β(1 − β) ln

[
1 + β(1 − β)

k2

m2
eff

]
,

(57)

where

meff ≡ 2
∣∣sin θ

2

∣∣
L

. (58)

We conclude that, as a consequence of the existence of the
nonvanishing flux, the large-momentum behavior differs from
the one that one has in standard QED, by the emergence of an
effective mass meff . This mass should, in order not to spoil the
known antiscreening effect at short distances, be very small.
Since L is assumed to be very small, that can only be achieved
with an extremely small θ , namely θ � 1. Hence,

meff ≡ 2
∣∣sin θ

2

∣∣
L

∼ |θ |
L

� 1

L
. (59)

In natural units, if L−1 ≡ � is the large-momentum scale set
by the Kaluza-Klein modes, and we want meff to be much
smaller than the electron mass, since only in that situation we
recover the expected behavior for the effective charge at small
distances. Then we should have:

|θ | � m

�
. (60)

V. PARITY-BREAKING TERM

The parity-breaking term, �o is simply obtained by taking
into account (37) and (33):

�o = − ie2

16π2
�

∫
d3+1xF̃µνFµν, (61)

where we introduced the factor:

� =
∞∑

n=−∞
ϕn; (62)

the sum of this series is well-known [22], the result being:

� = arctan

[
tanh

(
mL

2

)
tan(θ/2)

]
. (63)

The possible effects due to this term are more difficult to
elucidate, since they would require the existence of nontrivial
Abelian gauge field background to manifest themselves.
Within the present model, there is no room to accommodate
them, except if singular configurations were included by
hand.

VI. CONCLUSIONS

To conclude, we summarize the main points we have
explored this article: The vacuum polarization function ex-
hibits physical effects due to the extra dimension and flux.
Among those, the strongest one is due to the nonvanishing
flux, parametrized by θ , and manifests itself in the large-
momentum behavior of the effective charge. Indeed, θ should
be much smaller than the ratio between the electron mass
and the (momentum) scale induced by the inverse of the
compactification radius for this effect to be supressed. Besides,
the effect of the nonvanishing flux is maximum when it reaches
π . This is to be expected, since in that case there is no massless
mode, and hence there is no natural way to dimensionally
reduce the theory at the level of the fermionic field. That is, on
the other hand, the case when θ = 0, since it means that the
n = 0 mode finds a natural (3 + 1)-dimensional interpretation
and there is a smooth limit when L → 0. We find that, finally,
parity-breaking effects might be expected only if there were
a compelling reason to know that the gauge field itself adopts
a topologically nontrivial configuration; this cannot be done
within the context of the present model.
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