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Parity violation in atomic ytterbium: Experimental sensitivity and systematics
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We present a detailed description of the observation of parity violation in the 1S0-3D1 408-nm forbidden
transition of ytterbium, a brief report of which appeared earlier. Linearly polarized 408-nm light interacts with
Yb atoms in crossed E and B fields. The probability of the 408-nm transition contains a parity-violating term,
proportional to (E · B)[(E × E) · B], arising from interference between the parity-violating amplitude and the
Stark amplitude due to the E field (E is the electric field of the light). The transition probability is detected by
measuring the population of the 3P0 state, to which 65% of the atoms excited to the 3D1 state spontaneously
decay. The population of the 3P0 state is determined by resonantly exciting the atoms with 649-nm light to the
6s7s 3S1 state and collecting the fluorescence resulting from its decay. Systematic corrections due to E-field
and B-field imperfections are determined in auxiliary experiments. The statistical uncertainty is dominated by
parasitic frequency excursions of the 408-nm excitation light due to the imperfect stabilization of the optical
reference with respect to the atomic resonance. The present uncertainties are 9% statistical and 8% systematic.
Methods of improving the accuracy for future experiments are discussed.
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I. INTRODUCTION

In an earlier paper [1], we reported on the observation of the
atomic parity-violation (PV) effect in the 6s2 1S0 → 5d6s 3D1

408-nm forbidden transition of 174Yb. We measured the PV-
induced transition matrix element to be 8.7 ± 1.4 × 10−10e a0,
which confirms the theoretically anticipated parity-violation
enhancement in Yb [2] and constitutes the largest atomic PV
effect observed so far. However, the measurement accuracy
is not yet sufficient for the observation of the isotopic and
hyperfine differences in the PV amplitude, the study of which is
the main goal of the present experiments. Here we describe the
impact of the apparatus imperfections and systematic effects
on the accuracy of the measurements and discuss ways of
improving it.

During the initial stage of the experiment, an effort
was invested into measuring various spectroscopic prop-
erties of the Yb system of direct relevance to the PV
measurement, including radiative lifetimes, Stark-induced
amplitudes, hyperfine structure, isotope shifts, and dc Stark
shifts of the 6s2 1S0 → 5d6s 3D1 transition [3]. In addition,
the 6s2 1S0 → 3D2 transition at 404 nm has been observed,
and the electric quadrupole transition amplitude and tensor
transition polarizability have been measured [4]. The forbidden
magnetic-dipole (M1) amplitude of the 408-nm transition
was measured to be 1.33 × 10−4µB using the M1-(Stark-
induced)E1 interference technique [5]. The ytterbium atomic
system, where transition amplitudes and interferences are well
understood, has proven useful for gaining insight into the
Jones-dichroism effects that have been studied in condensed-
matter systems at extreme conditions and whose origins
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have been a matter of debate (see Ref. [6] and references
therein).

An experimental and theoretical study of the dynamic
(ac) Stark effect on the 6s2 1S0 → 5d6s 3D1 forbidden transi-
tion was also undertaken [7]. A model was developed to cal-
culate spectral line shapes resulting from resonant excitation
of atoms in an intense standing light wave in the presence of
off-resonant ac Stark shifts. A by-product of this work was an
independent determination (from the saturation behavior of the
408-nm transition) of the Stark transition polarizability, which
was found to be in agreement with the earlier measurement [4].

The present Yb atomic parity violation (APV) experiment
involves a measurement using an atomic beam. An alternative
approach would involve working with a heat-pipe-like vapor
cell. Various aspects of such an experiment were investigated,
including measurements of collisional perturbations of rele-
vant Yb states [8], nonlinear optical processes in a dense Yb
vapor with pulsed UV-laser excitation [9], and an altogether
different scheme for measuring APV via optical rotation on a
transition between excited states [10].

The present paper addresses the issues of sensitivity and
systematics in the Yb APV experiment. In Secs. II and III
the experimental technique and its application in the present
experiment are discussed. In Sec. IV a method of analyzing
the impact of various apparatus imperfections is described
based on theoretical modeling of signals recorded by the
detection system in the presence of imperfections. In Sec. V
a detailed description of the experimental apparatus is given,
along with a discussion of the origins of the imperfections,
which is followed by an account of the measurements of
the imperfections in Sec. VI. In Secs. VII and VIII we
discuss measurements and analysis of the PV amplitude and
systematic effects, and ways of improving the accuracy of the
PV measurements to better than 1% in order to measure the
difference in the APV effects between different isotopes and
hyperfine components.
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FIG. 1. (Color online) Low-lying energy eigenstates of Yb and
transitions relevant to the APV experiment.

II. EXPERIMENTAL TECHNIQUE FOR THE
APV MEASUREMENT

As discussed in Ref. [1], the idea of the experiment is to
excite the forbidden 408-nm transition (Fig. 1) with resonant
laser light in the presence of a quasistatic electric field. The
PV amplitude of this transition arises due to PV mixing of the
5d6s 3D1 and 6s6p 1P1 states. The purpose of the electric
field is to provide a reference transition amplitude, which
is due to Stark mixing of the same states interfering with
the PV amplitude. In such an interference method [11,12],
one is measuring the part of the transition probability that is
linear in both the reference Stark-induced amplitude and the
PV amplitude. In addition to enhancing the PV dependent
signal, the Stark-PV interference technique provides for all-
important reversals that separate the PV effects from the
systematics.

Even though the APV effect in Yb is relatively large, and
the M1 transition is strongly suppressed, the M1 transition
amplitude is still three orders of magnitude larger than the
PV amplitude. As a result, the geometry of the experiment
was designed to suppress spurious M1-Stark interference. In
addition, this effect is minimized by the use of a power buildup
cavity to generate a standing light wave. Since a standing wave
has no net direction of propagation, any transition rate which
is linear in the M1 amplitude, will cancel out (see below).

The advantages of the present experimental configuration
can be demonstrated by considering Yb atoms in the presence
of static electric, E, and magnetic, B, fields interacting with
a standing monochromatic wave produced by two counter-
propagating coherent waves in an optical cavity. The electric
field in the standing wave, E , is a sum of the fields of the two
waves. For resonant atoms, the transition rate from the ground
state 1S0 to the excited state 3D1 is [see, e.g., [13], Eq. (3.127)]

RM = 4

h̄2�
|AM |2, (1)

where � is the natural linewidth of the transition, AM is the
transition amplitude, and M = 0,±1 is the magnetic quantum
number of the excited state. Here and in the rest of this section,

it is assumed that the individual magnetic sublevels of the
3D1 state are resolved. For convenience, we set h̄ = 1
henceforth and measure the transition rate in units of �.

The transition amplitude AM is the sum of the electric (E1)
and magnetic (M1) dipole transition amplitudes:

AM = A
(E1)
M + A

(M1)
M . (2)

The E1 amplitude has two contributions corresponding to the
Stark and PV mixing of the 3D1 and 1P1 states. That is,

A
(E1)
M = A

(Stark)
M + A

(APV)
M

= iβ(−1)M (E × E)−M + iζ (−1)ME−M, (3)

where β is the vector transition polarizability, ζ is related to
the reduced matrix element of the Hamiltonian describing the
weak interaction, and E0,±1 are the spherical components of
the vector E . Although Stark-induced transitions are generally
characterized by scalar, vector, and tensor polarizabilities
[4,11], for the case of a J = 0 → 1 transition, only the
vector polarizability contributes. Equation (3) is derived in
Appendix A.

Similarly, the M1 transition amplitude has two components:
one for each of the two counter-propagating laser beams. Let
E+ = E+ Ê and E− = E− Ê denote the electric fields of the
beams traveling in the k and −k directions, respectively. Then
E = E+ + E− and the M1 amplitude is given by

A
(M1)
M = M(−1)M (k × E+)−M + M(−1)M (−k × E−)−M

= M(−1)M (δk × E)−M , (4)

where M is the reduced matrix element of the M1 transition
and k is a unit vector in the direction of the wave vector.
Here we have introduced δk = δk k with δk = (E+ − E−)/E .
For a perfect standing wave, E+ = E− and hence δk = 0 and
the M1 transition is completely suppressed. In practice, E− =
E+ − δE due to the small but nonzero transmission of the
back mirror in the cavity. Since |δE | � E , |δk| ≈ |δE/E | � 1.
Thus, although the M1 transition amplitude is not strictly zero,
it is highly suppressed.

Without loss of generality, the quantities β, ζ , and M are
assumed to be real. In general, the rate RM given by Eq. (1)
includes terms proportional to βM (Stark-M1 interference)
and βζ (Stark-PV interference).

A careful choice of field geometry allows for additional
suppression of undesirable Stark-M1 interference. From
Eq. (3), it is evident that the Stark-PV interference is
proportional to the rotational invariant

( E︸︷︷︸
PV

·B)[(E × E)︸ ︷︷ ︸
Stark

·B]. (5)

In the present experimental apparatus, the electric field E is
applied orthogonally to the magnetic field B and collinearly
with the axis of the linearly polarized standing light wave, as
shown in Fig. 2.

This geometry is such that the M1 and Stark-induced
amplitudes are out of phase. Thus, they do not interfere and
therefore do not produce spurious PV-mimicking effects (see
Sec. IV).
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FIG. 2. (Color online) Orientation of fields for PV-Stark interfer-
ence experiment and schematic of the present APV apparatus. Not
shown is the vacuum chamber containing all the depicted elements,
except the photomultiplier (PMT) and the photodiode (PD). PBC is
the power buildup cavity. Light is applied collinearly with x.

III. PV SIGNATURE: IDEAL CASE

In the ideal case where we neglect the apparatus imper-
fections, the static magnetic and electric fields are B = B ẑ
and E = E x̂, respectively, and the light standing wave has an
electric field

E = E(sin θ ŷ + cos θ ẑ). (6)

With this field orientation (see Fig. 2), Eqs. (1)–(4) yield

R0 = 4E2(β2E2 sin2 θ + 2ζ βE sin θ cos θ ), (7)

R±1 = 2E2(β2E2 cos2 θ − 2ζ βE sin θ cos θ ), (8)

where terms of order ζ 2 and higher are neglected, and δk = 0
is assumed.

To isolate the Stark-PV interference term from the dominant
Stark-induced transition rate, we modulate the electric field:
E = Edc + Ẽ0 cos(ωt), where Ẽ0 is the modulation amplitude,
ω is the modulation frequency, and Edc provides a dc bias. Then
Eqs. (7) and (8) become

RM = R[0]
M + R[1]

M cos(ωt) + R[2]
M cos(2ωt), (9)

where R[n]
M is the amplitude of the nth harmonic of the

transition rate RM . The dominant Stark-induced contribution,
which oscillates at twice the modulation frequency, is

R[2]
0 = 2β2Ẽ2

0E2 sin2 θ, (10)

R[2]
±1 = β2Ẽ2

0E2 cos2 θ. (11)

On the other hand, the amplitude R[1]
M contains the Stark-PV

interference term:

R[1]
0 = 8E2(β2Ẽ0Edc sin2 θ + ζβẼ0 sin θ cos θ ), (12)

R[1]
±1 = 4E2(β2Ẽ0Edc cos2 θ − ζβẼ0 sin θ cos θ ). (13)

The term R[0]
M is a constant “background”:

R[0]
0 = 4E2

[
β2

(
Ẽ2

0 + E2
dc

)
sin2 θ + 4ζβEdc sin θ cos θ

]
,

R[0]
±1 = 2E2

[
β2

(
Ẽ2

0 + E2
dc

)
cos2 θ − 4ζβEdc sin θ cos θ

]
.

FIG. 3. Discrimination of the PV effect by E-field modulation
under static magnetic field. The Zeeman pattern is shown for the
polarization angle θ = π/4.

For an arbitrary polarization angle θ , all three Zeeman
components of the transition, as shown in Fig. 3(a), are present
while scanning over the spectral profile of the transition.
The first-harmonic signal due to Stark-PV interference has
a characteristic signature: the sign of the oscillating terms for
the two extreme components of the transition is opposite to
that of the central component. The second-harmonic signal
provides a reference for the line shape since it is free from
interference effects linear in E [Fig. 3(b)]. With a nonzero
dc component present in the applied electric field, a signature
identical to that in the second harmonic will also appear in
the first harmonic, Fig. 3(c). The latter can be used to increase
the first-harmonic signal above the noise, which makes the
profile analysis more reliable.

To obtain the PV term from the measured first- and second-
harmonic transition rates, we first normalize the first-harmonic
signals R[1]

M by their second-harmonic counterparts R[2]
M and

combine the results in the following way:

K = R[1]
−1

R[2]
−1

+ R[1]
+1

R[2]
+1

− 2
R[1]

0

R[2]
0

= ∓ 16ζ

βẼ0
. (14)

Here we take θ = ±π/4, which are optimal polarization angles
for the PV measurements (see next section). This method has
the advantage that K is independent of Edc, so that the E-field
bias may be chosen based on technical requirements of the
experimental apparatus.

IV. PV SIGNATURE: IMPACT OF APPARATUS
IMPERFECTIONS

While the current Yb-APV apparatus has been designed to
minimize systematic effects, the PV mimicking systematics
may be a result of a combination of multiple apparatus
imperfections. To understand the importance of these effects,
the electric and magnetic field misalignments and stray
fields were included in a theoretical model of the transition
rates as well as the excitation light’s deviations from linear
polarization. In addition, we relax the assumption that δk = 0
and include the effects of the residual M1 transition.

The quantization axis is defined along ẑ, and following the
ideal case model, the axis of the standing light wave is collinear
with x̂. We added a small ellipticity to the light polarization by
taking

E = E(ŷ sin θ + ẑ eiφ cos θ ), (15)

where φ is a small phase. For |φ| � 1, the ellipticity of the light
is 2φ sin(2θ ). The electric field imperfections are included by
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taking

E = Ẽ + E′,

where

Ẽ = (Ẽ0x̂ + ẽy ŷ + ẽzẑ) cos(ωt),

E′ = Edcx̂ + ey ŷ + ezẑ,

are the ac and dc components of the electric field. It is assumed
that the y and z components of the ac field are in phase with
the leading oscillating E field. The impact of the out-of-phase
ac components was analyzed within a complete model of the
systematics and found to be negligible. The ac components
are due to misalignments of the applied E field with respect to
the light wave axis as well as to the quantization axis ẑ. The
dc components arise due to a misalignment of the dc-bias field
and also due to stray electric fields in the interaction region.

The magnetic-field imperfections are defined within the
same frame of reference by taking analogously

B = B̃ + B′,

where

B̃ = b̃x x̂ + b̃y ŷ + B ẑ,

B′ = b′
x x̂ + b′

y ŷ + b′
zẑ,

where B̃ and B′ are reversing and stray nonreversing magnetic
fields, respectively.

Equations (1)–(4) apply when the quantization axis is along
the magnetic field, thus a rotation D is applied to each of the
vectors E, B, E , and k such that DB ∝ ẑ. That is, we take

B → DB, E → DE, E → DE, and k → Dk, (16)

where

D = D(−αy, ŷ)D(αx, x̂). (17)

Here the matrix D(α, n̂) represents a rotation about an axis n̂
through angle α. The angles αx and αy are given by

αx,y = (B − b′
z)(b

′
y,x + b̃y,x)/B2. (18)

Thus, the electric field E and the polarization vector E acquire
additional components after the rotation (besides, for example,
ey and ẽy).

Due to the imperfections, the normalized-rate modulation
amplitudes now include additional terms besides the Stark and
the PV effects:

R[1]
M

R[2]
M

≡ rM = r
(Stark)
M + r

(APV)
M + r

(M1)
M + r

(φ)
M , (19)

where r
(Stark)
M is the Stark contribution due to the dc bias and the

field imperfections, r
(APV)
M is the PV-Stark-interference term,

r
(M1)
M is the M1-Stark-interference contribution, and r

(φ)
M is

a contribution due to the distorted linear polarization of the
light (which is a Stark contribution, but we explicitly separate
the contribution linear in φ). Expressions for the lowest-order
terms are summarized in Table I.

The normalized-amplitude combination (14) has been
chosen to determine the PV asymmetry. Since the M1

TABLE I. Lowest-order terms contributing to the normalized
transition-rate modulation amplitudes rM .

r
(APV)
M r

(M1)
M r

(φ)
M

M = 0 +4 ζ cot θ

βẼ0
0 0

M = −1 −4 ζ tan θ

βẼ0
+4 δkM(ẽy − ẽz tan θ )

βẼ2
0

+4 ezφ tan θ

Ẽ0

M = +1 −4 ζ tan θ

βẼ0
−4 δkM(ẽy − ẽz tan θ )

βẼ2
0

−4 ezφ tan θ

Ẽ0

and ellipticity terms have opposite signs for M = ±1, their
contributions to K cancel, while the contributions from r

(APV)
M

add.
The Stark contribution, r

(Stark)
M , has several terms that are

produced due to different imperfections, and it impacts all
three Zeeman components, M = 0,±1. To determine which
terms could potentially mimic the PV asymmetry in K, we
discriminate the PV contribution to K with respect to the
B-field reversal and flip of the polarization angle θ . Switching
to a different Zeeman component of the transition is also
a reversal, which is incorporated in the expression for the
asymmetry, K. Analysis of the noise affecting the accuracy
of PV-asymmetry measurements demonstrate that the highest
signal-to-noise ratio is achieved when θ = ±π/4, and
therefore, the polarization flip is a change of the polarization
angle by π/2. Thus, the normalized-amplitude combination
(14) must be determined for four different combinations of the
B-field directions and light-polarization angles:
K(+B,+π/4), K(−B,+π/4), K(+B,−π/4), and
K(−B,−π/4), so that terms having different symmetries
with respect to the reversals can be isolated:

⎡
⎢⎢⎢⎣
K1

K2

K3

K4

⎤
⎥⎥⎥⎦ = 1

4

⎡
⎢⎢⎢⎣

−1 −1 +1 +1

−1 +1 +1 −1

+1 −1 +1 −1

+1 +1 +1 +1

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣
K(+B,+θ )

K(−B,+θ )

K(+B,−θ )

K(−B,−θ )

⎤
⎥⎥⎥⎦ . (20)

The result of this procedure is summarized in Table II.
The PV asymmetry contributing to K1 is B-field even,

θ -flip odd. It competes with the second-order terms that
are a combination of the E-field and B-field alignment
imperfections and stray fields. Using the theoretical value
of ζ � 10−9e a0 [14,15] combined with the measured |β| =
2.24+0.07

−0.12 × 10−8e a0/(V/cm) [4,7], the expected PV asymme-
try, 16ζ/βẼ, is ∼ 4 × 10−4, for θ = π/4 and Ẽ0 = 2 kV/cm.
For a typical value of misalignments and “parasitic” fields,

TABLE II. Lowest-order terms contributing to the asymmetry K
for |θ | = π/4 sorted with respect to their response to the reversals.
K4 corresponding to a rather long list of terms that are invariant with
respect to all reversals is not shown.

K1 K2 K3

8(ẽyez + ẽzey)

Ẽ2
0

+ 16b̃xey

BẼ0
+ 16ζ

βẼ0

16b′
xey

BẼ0

16b′
xez

BẼ0
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ey,z/Ẽ0 and b̃x/B (on the order of 10−3 in the present
apparatus), the contribution of the “parasitic” terms may be up
to a few percent of the total value of K1. Ways of measuring
the contribution of these imperfections are discussed in the
following sections.

V. EXPERIMENTAL APPARATUS

The forbidden 408-nm transition is excited by resonant laser
light coupled into the power-buildup cavity in the presence
of the magnetic and electric fields. The transition rates are
detected by measuring the population of the 3P0 state, where
65% of the atoms excited to the 3D1 state decay spontaneously
(Fig. 1). This is done by resonantly exciting the atoms with
649-nm light to the 6s7s 3S1 state downstream from the main
interaction region, and by collecting the fluorescence resulting
from the decay of this state to the 3P1 and 3P2 states and
subsequently, from the decay of the 3P1 state to the ground state
1S0 (556-nm transition). As long as the 408-nm transition is
not saturated, the fluorescence intensity measured in the probe
region is proportional to the rate of that transition.

A schematic of the Yb-APV apparatus is shown in
Fig. 2. A beam of Yb atoms is produced (inside of a vacuum
chamber with a residual pressure of ≈ 3 × 10−6 Torr) with an
effusive source: a stainless-steel oven loaded with Yb metal,
operating at 500◦–600◦C. The oven is outfitted with a multislit
nozzle, and an external vane collimator reduces the spread
of the atomic beam in the horizontal direction. The resulting
Doppler width of the 408-nm transition is ≈12 MHz [7].

Downstream from the collimator, the atoms enter the main
interaction region where the Stark- and PV-induced transitions
take place. Up to 80 mW of light at the transition wavelength
of 408.345 nm in vacuum is produced by frequency doubling
the output of a Ti:sapphire laser (Coherent 899) using the
WaveTrain cw ring-resonator doubler. After shaping and
linearly polarizing the laser beam, ≈10 mW of the 408-nm
radiation is coupled into a power buildup cavity (PBC) inside
the vacuum chamber.

The cavity was designed to operate as an asymmetric cavity
with a flat input mirror and a curved back mirror with a 25-cm
radius of curvature and 22-cm separation between the mirrors.
The atomic beam intersects the cavity mode in the middle
of the cavity, where the 1/e2 radius of the mode in intensity
is 172 µm. The asymmetric configuration has the advantage
of a larger mode radius at the interaction position compared
to a symmetric cavity. A larger mode allows us to reduce the
ac Stark shifts, consequently reducing the width of the 408-nm
transition. Alternatively, the cavity can be modified to operate
in the symmetric confocal condition, where multiple transverse
modes can be excited, thereby increasing the effective “mode”
size. However, we were unable to obtain high power and stable
lock for the confocal configuration.

The cavity mirrors were purchased from Research Electro
Optics, Inc. For the flat input mirror, the transmission is
350 ppm with the absorption and scattering losses of 150 ppm
total at 408 nm. The curved back mirror is designed to have
a lower transmission of 50 ppm in order to additionally
suppress the net light wave vector and, therefore, the M1
transition amplitude. The absorption and scattering losses
in the curved mirror are 120 ppm. The finesse and the

FIG. 4. (Color online) Schematic of the power buildup cavity.

circulating power of the PBC are up to F = 9000 and P = 8
W. These parameters were routinely monitored during the PV
measurements. Details of the characterization of the PBC are
addressed in Appendix B.

We found that the use of the 408-nm PBC in vacuum is
accompanied by substantial degradation of the mirrors. Typi-
cally after 6 h of operation, the finesse drops by a factor of 2.
This is a limiting factor for the duration of the measurement
run. The degradation of the finesse is due to the increased
absorption and scattering losses. This effect is reversible: the
mirror parameters can be restored by operating the PBC for
several minutes in air, which makes performing a number of
runs possible without replacing the mirrors. However, it takes
several hours with the present apparatus to reach the desired
vacuum after exposing the PBC to air. Presently, this effect
is under investigation, aiming for longer duration experiments
and shorter breaks in between.

A schematic of the PBC setup is presented in Fig. 4.
The mirrors are mounted on precision optical mounts (Lees
mounts) with micrometer adjustments for the horizontal and
vertical angles and the pivot point of the mirror face. The mirror
mounts are attached to an Invar rod supported by an adjustable
table resting on lead blocks. The input mirror is mounted on a
piezo-ceramic transducer allowing cavity scanning.

The laser is locked to the PBC using the FM-sideband
technique [16]. To remove frequency excursions of the PBC
in the acoustic frequency range, the cavity is locked to a
more stable confocal Fabry-Pérot étalon, once again using the
FM-sideband technique. This stable scannable cavity provides
the master frequency, with the power buildup cavity serving as
the secondary master for the laser. A schematic of the optical
system is presented in Fig. 5.

The magnetic field is generated by a pair of rectangular
coils designed to produce a magnetic field up to 100 G with
a 1% nonuniformity over the volume with the dimensions
of 1 × 1 × 1 cm3 in the interaction region. Additional coils
placed outside of the vacuum chamber compensate for the
external magnetic fields down to 10 mG at the interaction
region. The residual B field of this magnitude does not have
an impact on the PV measurements, since its contribution is
discriminated using the field reversals.

The electric field is generated with two wire-frame elec-
trodes separated by 2.1 cm (see Fig. 6). The copper electrode
frames support arrays of 0.2-mm-diameter gold-plated wires.
This design allows us to reduce the stray charges accumulated
on the electrodes by minimizing the surface area facing the
atomic beam, thereby minimizing stray electric fields. An
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FIG. 5. (Color online) Schematic of the optical setup. Light at 408 nm is produced by frequency doubling the output of a Ti:sapphire laser
(Coherent 899) using the WaveTrain cw ring-resonator doubler. The laser is locked to the PBC using the FM-sideband technique. The PBC
is locked to a confocal Fabry-Pérot étalon. This scannable étalon provides the master frequency. The 649-nm excitation light is derived from
a single-frequency diode laser (New Focus Vortex). The diode laser is locked to a frequency-stabilized He-Ne laser using another scanning
Fabry-Pérot étalon.

ac voltage of up to 10 kV at a frequency of 76.2 Hz is supplied
to the electrodes via a high-voltage amplifier. An additional
dc-bias voltage of up to 100 V can be added.

The result of the electric field nonuniformity calculations
is shown in Fig. 6. These calculations demonstrate that
errors in the centering of the light beam with respect to the
E-field plates may induce substantial parasitic components as
large as, for example, |ez| ∼ 5 × 10−3Ẽ0, producing parasitic
effects comparable to the PV asymmetry. To measure and/or
compensate for the impact of the parasitic fields, additional
electrodes designed to simulate stray E-field components were
added to the interaction region. By applying high voltage
to these electrodes (“correction electrodes” in Fig. 6), the
parasitic-field components may be exaggerated and accurately
measured as described in the following sections.

Light at 556 nm emitted from the interaction region is
collected with a light guide and detected with a photomultiplier
tube. This signal is used for initial selection of the atomic
resonance and for monitoring purposes. Fluorescent light from
the probe region is collected onto a light guide using two
optically polished curved aluminum reflectors and registered
with a cooled photodetector (PD). The PD consists of a
large-area (1 × 1 cm2) Hamamatsu photodiode connected to a
1-G
 transimpedance preamplifier, both contained in a cooled
housing (temperatures down to −15◦C). The preamplifier’s
bandwidth is 1 kHz and the output noise is ∼1 mV (rms). The
649-nm excitation light is derived from a single-frequency
diode laser (New Focus Vortex) producing ≈ 1.2 mW of
cw output, high enough to saturate the 6s6p 3P0 → 6s7s 3S1

transition. Due to the saturation of this transition, ∼3 fluores-
cence photons per atom exited to the 3P0 state are emitted at

the probe region. The natural width of the 649-nm transition
is 70 MHz, thus, its profile covers all transverse velocity
groups (vx) in the atomic beam (≈8 MHz Doppler width at
649 nm). A drift of the laser frequency (∼100 MHz min−1) is
eliminated by locking the diode laser to a frequency-stabilized
He-Ne laser using a scanning Fabry-Pérot étalon with the
scanning rate of 25 Hz. The spectral distance between the
étalon transmission peaks from the two lasers is measured
during each scan and maintained constant within an accuracy
of ±3 MHz, good enough to eliminate any degradation of the
probe-region signal.

The signals from the PMT and PD are fed into lock-in
amplifiers for frequency discrimination and averaging. A
typical time of a single spectral-profile acquisition is 20 s. The
signals at the first and second harmonic of the electric-field
modulation frequency are registered simultaneously, which
reduces the influence of slow drifts, such as instabilities of
the atomic-beam flux. The modulation frequency is limited
by several factors. Thermal distribution of atomic velocities
in the beam causes a spread (of ≈2 ms) in the time of flight
between the interaction region and the probe region. This,
along with the finite bandwidth of the PD, leads to a reduction
of the signal-modulation contrast (see below). The choice of
the modulation frequency of 76.2 Hz is a tradeoff between this
contrast degradation and the frequent E-field reversal.

VI. RESULTS AND ANALYSIS

In Fig. 7 a profile of the B-field-split 408-nm spectral line
of the 174Yb is shown. The 649-nm-light-induced fluorescence
was recorded during a single profile scan. Statistical error bars
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FIG. 6. (Color online) Schematic of the E-field electrodes assem-
bly, and a result of the E-field modeling showing an X-Z slice of the
amplitude of the E-field z component ez in a midplane (Y = 0) of
the assembly normalized by the total E-field amplitude E. The voltage
is applied to electrode 1, and electrode 2 and the correction electrodes
are grounded.

determined directly from the spread of data are smaller than
the points in the figure. The peculiar asymmetric line shape
of the Zeeman components is a result of the dynamic Stark
effect [7]. During a typical experimental run, 100 profiles are
recorded for each combination of the magnetic field and the

FIG. 7. (Color online) Profile of the B-field-split 408-nm spectral
line of 174Yb recorded at first and second harmonic of the modulation.
Also shown is a simulated PV contribution in the first-harmonic
signal. Ẽ = 5 kV/cm; dc offset = 40 V/cm; θ = π/4; the effective
integration time is 200 ms per point.

TABLE III. Results of measurements of the electric-field imper-
fections using artificially exaggerated ac and dc components, ẽex

y,z and
eex
y,z. These fields were generated by use of the correction electrodes,

see Fig. 6. Ẽ0 = 2000(2) V/cm.

dc set ac set

Exaggerated imperfections (V/cm)
eex
y = −140(2) ẽex

y = −120(2)
eex
z = 20(2) ẽex

z = 30(2)

Measurements (mV/cm)

ẽy

eex
z

2Ẽ0
= 16(10) ey

ẽex
z

2Ẽ0
= 4(5)

(2Ẽ0
b̃x

B
+ ẽz)

eex
y

2Ẽ0
= 442(10) ez

ẽex
y

2Ẽ0
= 40(5)

Parasitic fields (V/cm)
ẽy = 3.2(2) ey = 0.5(0.6)

(2Ẽ0
b̃x

B
+ ẽz) = −12.6(0.3) ez = −1.3(0.2)

polarization angle (400 profile scans in total). To compute the
normalized amplitude rq of a selected Zeeman component, the
actual first-harmonic signal near the Zeeman peak is divided
by the respective second-harmonic signal and then averaged
over a number of the data points.1 Then, the combination
K of Eq. (14) is computed for each profile scan followed
by averaging the result over all the scans at a given B-θ
configuration. This procedure is repeated for all four reversals,
and all B-θ symmetrical contributions, K1−4, are determined.
In the present experiment, the values of K2,3,4 terms are found
to be consistent with zero within the statistical uncertainty,
which is the same as that of the PV asymmetry (see below).

As can be seen from Table II, terms in K1 associated with
the field imperfections are of crucial importance:

16

Ẽ0

[
ey

(
ẽz

2Ẽ0
+ b̃x

B

)
+ ez

ẽy

2Ẽ0

]
.

To measure the contribution of these terms, artificially exagger-
ated E-field imperfections both static and oscillating, eex

z , eex
y ,

ẽex
y , and ẽex

z , were imposed by use of the “correction electrodes”
(see Fig. 6), and two sets of the experiments were performed.
In the first one, a dc voltage was applied to the correction
electrodes, and the measurements were done reversing eex

y and
eex
z . These experiments yielded values of ẽy and ẽz + 2Ẽ0b̃x/B.

In the second set, an ac voltage modulated synchronously with
the main E field was applied to the correction electrodes. To
reverse the sign of the parasitic terms, a π phase shift of ẽex

y

and ẽex
z with respect to the modulation signal was employed

by switching the wiring of the correction electrodes. Thus,
values of the dc imperfections, ey and ez, were determined. The
magnitudes of the applied electric fields and their distributions
were calculated using a three-dimensional numerical model
of the interaction region. The results of the experiments are
presented in Table III.

1In the normalized-rate calculations, only data points having
intensity higher that 1/3 of the respective Zeeman peak are used to
avoid excessive noise from spectral regions with low signal intensity.
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The net contribution of these imperfections to K1 in the
absence of the exaggerated fields is found to be2

ey

(
ẽz

2Ẽ0
+ b̃x

B

)
+ ez

ẽy

2Ẽ0

= −2.6(1.6)stat.(1.5)syst. mV/cm. (21)

The systematic uncertainty comes from a sensitivity of the
numerical model of the E field, which is used for calcu-
lating the exaggerated fields in the interaction region, to an
imperfect approximation of the electrode-system geometry.
These experiments suggest that this field’s imperfection cannot
mimic the PV effect entirely; nevertheless, it appears to
be a major source of systematic uncertainty impacting the
accuracy of the PV-asymmetry measurements. The most
prominent contribution is given by a combined effect of the
parasitic components of the electric field and the nonzero
projection of the leading magnetic field on the direction
of the electric field: ey(ẽz/2Ẽ0 + b̃x/B). The PV-asymmetry
parameter, ζ/β is obtained from the measured value of K1

by compensating for the influence of these magnetic- and
electric-field imperfections, Eq. (21).

There is another effect that cannot, by itself, mimic the
PV asymmetry but needs to be taken into account for proper
calibration. This effect is related to the E-field modulation
implemented in the present experiment. The atoms are excited
to the metastable state, 6s6p 3P0, by the light beam in
the interaction region and then travel ∼20 cm until they
are detected downstream in the probe region. Due to the
spread in the time of flight between the interaction and probe
regions, the phase mixing leads to a reduction of the signal
modulation contrast at the probe region, and it depends on
the signal-modulation frequency. Since the signal comprises
two time scales of interest, first- and second-harmonic of the
E-field modulation, the contrast reduction is different for the
two. Therefore, the ratio of the signal-modulation amplitudes
rM , on which we base the PV-asymmetry observation, appears
altered in the probe region compared to what it would be
at the interaction region. The amplitude combination K and,
therefore, the PV parameter ζ/β are similarly affected. In our
data analysis, a correction coefficient C0 is introduced, which
has been calculated theoretically as[

ζ

β

]
probe reg.

= C0

[
ζ

β

]
real

.

Under present experimental conditions, coefficient C0 is
found to be 1.028(3), and the measured PV parameter is
corrected accordingly. Principles of its derivation are given in
Appendix C.

In Fig. 8, the PV interference parameter ζ/β is shown
as determined in 19 separate runs (∼60 h of integration in
total). Its mean value is 39(4)stat.(3)syst. mV/cm, which is
in agreement with the theoretical predictions [14,15]. The
value of the PV parameter was extracted using the expression
given in the first column of Table II, taking into account the
calibration correction C0. Thus, |ζ | = 8.7 ± 1.4 × 10−10e a0,

2Compare with the PV-asymmetry parameter ζ/β ≈ 40 mV/cm.

FIG. 8. (Color online) PV interference parameter ζ/β. Mean
value: 39(4)stat.(3)syst. mV/cm, |ζ | = 8.7 ± 1.4 × 10−10e a0.

which is the largest APV amplitude observed so far; here we
used |β| = 2.24+0.07

−0.12 × 10−8e a0/(V/cm) [4,7].
The sign of the PV interference parameter ζ/β is found by

comparing the measurements with the theoretical model of the
transition rates employing the field geometry shown in Fig. 2.
The direction and, thus, the signs of the electric and magnetic
fields as well as the polarization angle θ were calibrated prior
to the PV measurements. Special care was taken of detecting
parasitic phase shifts in the lock-in amplifier. A signal from
an arbitrary function direct digital synthesis (DDS) generator
simulating the output of the probe region photodetector was
fed into the amplifier. The signal is comprised of a sum of two
sinusoidal waveforms, one frequency doubled, attenuated,
and phase shifted with respect to the other. Results of the
signal parameters measurement from the lock-in, such as
the first-to-second harmonic amplitude ratio, relative phase
shift, and its sign, are compared with those used in the
DDS generator to simulate the signal. The difference in the
measured and generated amplitude ratio is found to be below
0.01%, and the relative phase shift is detected within ±1.5◦.
No relative sign flips between the first- and second-harmonic
amplitudes were detected.

VII. ERROR BUDGET

The present measurement accuracy is not yet sufficient
to observe the isotopic and hyperfine differences in the
PV amplitude, which requires an accuracy better than ≈1%
for PV amplitude in a single transition [17–19]. In the present
apparatus, the signal levels achieved values high enough to
reach the signal-to-noise ratio (SNR) of 2/

√
τ (s) for the

PV asymmetry if the noise were dominated by the
fluorescence-photon shot noise (τ is the integration time).
This is good enough to reach the sub-percent accuracy in a
few hours of integration. However, a number of additional
factors limit the accuracy.

One of the most important noise sources is the fluctua-
tions of the modulating- and dc-field parameters during the
experiment. The first- and the second-harmonic signals depend
differently on the modulating electric-field amplitude Ẽ0 and
the dc bias; thus, a noise in the electronics controlling the
fields contaminates the first-to-second harmonic ratio directly.
A substantial effort was made to cope with this problem: a
home-built high-voltage amplifier used in the first 13 runs
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FIG. 9. (Color online) Impact of the frequency excursions of the
Fabry-Pérot étalon on the noise level in the harmonics ratio. A change
in the noise level when the optical system was tuned from the wing
of the atomic resonance to its peak is shown. In the inserts above the
excitation light spectral position is shown schematically with respect
to the atomic resonance. Arrows denote the fluctuations.

was replaced by a commercial Trek 609B amplifier, and a
circuit controlling the dc bias was upgraded. This allowed us
to control the dc bias and Ẽ0 with mV-scale accuracy that
would make the SNR to approach the shot-noise limit if this
were the only source of the noise. As seen in Fig. 8, the last six
measurements exhibit higher accuracy than the rest. These are
the runs after the high-voltage-system upgrade. However, the
present SNR of ≈ 0.03/

√
τ (s) is worse by almost two orders

of magnitude than the shot-noise limit.
There are other fluctuations in the system parameters, such

as light intensity fluctuations in the PBC, fluctuations of
the spectral position of the PBC resonance with respect to
the frequency reference, and noise in the detection system.
All of them contribute to the noise in the first- and the
second-harmonic signals, but we found that such noise largely
canceled in the ratio rM .

However, there is a noise source, which is not canceled
in the ratio. The following experiments demonstrated that
this noise source is related to frequency excursions of the
Fabry-Pérot étalon serving as the frequency reference for
the optical system. In these experiments the excitation light
was frequency-tuned to a wing of the atomic resonance,
and the first- and second-harmonic signals were recorded
without scanning over the resonance. Then, the same was
done when the spectral position was set at the peak of the
resonance, and a change of the SNR for the harmonics ratio
was determined. These experiments were performed using the
upgraded high-voltage system. Results of the measurements
are presented in Fig. 9. For a shot-noise-limited signal, the
SNR at the peak of the resonance is expected to be a factor
of about

√
2 higher than at the wing due to the larger signal.

It was found, however, that the SNR went up by a factor
of 4 by tuning from the wing to the peak of the resonance.
This demonstrates that the main source of noise is not photon
statistics but fluctuations in the spectral reference. Indeed, the
frequency excursions at the wing of the spectral line produces

TABLE IV. Factors contributing to the systematic uncertainty of
the PV parameter ζ/β.

Factor Uncertainty (%)

Ẽ value:
Geometry 5
Numerical modeling 3

E-field imperfections 5
Phase mixing 0.5
Other 1
Total (in quadrature) 8

substantially more intensity noise due to a steeper spectral
slope than that at the peak, where the slope is nominally zero.
It must be emphasized that in the case of slow frequency
excursions (compared to the E-field modulation period), the
noise in the first- and second-harmonic channels would be
canceled in the ratio. However, fast excursions can generate
noise in the signal ratio.

The factors affecting the measurement accuracy mentioned
above have an impact on the statistical error of the result. The
present systematic errors (summarized in Table IV) has nearly
the same significance as the statistical one and also comprises
a number of factors.

One of the most significant factors is the uncertainty in
the field-imperfection contributions, Eq. (21). This uncertainty
is mostly due to statistical factors such as laser drifts,
nevertheless, it provides an offset to the PV parameter. Since
the measurement of this contribution is actually the same
measurement as the PV effect, any improvements of the
stability reduces the overall systematic uncertainty. We would
like to emphasize also that Eq. (21) represents a mean value
of the imperfection contribution over numerous experiments
averaging over possible fluctuations of the field-imperfection
contribution. These fluctuations may be partially responsible
for the variance in the PV parameter and, thus, the statistical
uncertainty of its value. This fact demonstrates that the elim-
ination of the field imperfections is an essential requirement
for improving the overall accuracy of the experiments.

Another significant source of the systematic uncertainty
is the uncertainty in the value of the electric field in the
interaction region. While the voltage applied to the E-field
plates and the correction electrodes is controlled precisely, the
actual E-field value used in the PV parameter determination
depends on the accuracy of the numerical modeling of the
electric-field distribution in the particular geometry. There
are two factors in the model contributing to the uncertainty:
the finite accuracy of measurements of the interaction region
geometrical parameters, and the imperfect approximation of
the geometry in the numerical simulation.

However, while this systematic uncertainty plays a signif-
icant role for measurements of the PV parameter of a single
isotope, for the isotope ratios this uncertainty will cancel (or
will be substantially reduced) if the measurements observing
different isotopes are performed without changing the E-field
geometry. The same is true for the calibration parameter C0,
which also cancels in the isotope ratios.

There are other, rather minor, factors contributing to the
systematic uncertainty, for example, a finite accuracy of the
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polarization angle flip, errors in the lock-in amplifiers, a finite
dynamic range of the lock-ins, etc. The net contribution of
these factors is found to be �1%.

VIII. TOWARD MEASUREMENT OF THE
ISOTOPE RATIOS

As pointed out above, a goal of future measurements
of the parity-violation effects in ytterbium is to observe a
difference in the PV effect between different isotopes. The net
uncertainty of the PV parameter of a single isotope must be
better than 1% based on the theoretical predictions. To this
end, a program of the apparatus upgrades and improvements
is developed. Besides general improvements of the stability
of the system parameters, increase of the signal levels,
suppression of the electronics noise, etc., the main focus is
on elimination of the frequency excursions of the frequency
reference, which is a major source of the statistical noise.
Improving the statistical uncertainty will contribute to more
precise measurement and control of the E-field-imperfection
contribution to the systematic part of the uncertainty. The latter
is another high-priority improvement essential for reaching the
goal.

In the future apparatus, the referencing of the optical system
to the Fabry-Pérot étalon will be replaced by locking the
system to a femtosecond frequency comb that will be available
shortly. The impact of the E-field imperfection is planned
to be substantially suppressed by redesigning the interaction
region to provide more uniform and controlled electric-field
distribution. Until now, no scientific or technical obstacles have
been discovered preventing us from improving the apparatus
to the desired level of sensitivity.
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APPENDIX A: DERIVATION OF TRANSITION
AMPLITUDES

The total Hamiltonian (before including light-atom inter-
actions and assuming B is along ẑ) can be written as

H = HAtomic + HZeeman + HStark + HAPV, (A1)

where HAtomic is the atomic Hamiltonian and HZeeman, HStark,
and HAPV represent the contributions from the static magnetic
field B, the static electric field E, and the parity nonconserving
weak interaction, respectively. Here

HZeeman = −µ · B = gµBJ · B = gµBJzB, (A2)

where µ = −gµBJ is the magnetic dipole moment of the atom,
g is the Landé factor, µB is the Bohr magneton, and J is the
angular-momentum operator. Similarly,

HStark = −d · E = −diEi, (A3)

where d is the atomic electric dipole operator. Finally,

HAPV = iH 0
0 , (A4)

where H 0
0 is a scalar operator. Summation over repeated

indices is assumed.
In the presence of a strong magnetic field, that is, when

Zeeman splitting dominates Stark shifts, it is useful to think
of H1 ≡ HStark + HAPV as a perturbation to H0 ≡ HAtomic +
HZeeman. In this case, the LS-coupled states |2S+1LJ ; M〉, such
as |3D1; M〉 and |1S0; 0〉, are eigenstates of the unperturbed
Hamiltonian H0. Then the first-order perturbation theory can
be used to determine the eigenstates of the total Hamiltonian:

|a〉 = |a〉 +
∑
a′

|a′〉〈a′|H1|a〉
ω(a) − ω(a′)

, (A5)

where ω(a) is the energy of state |a〉. (Perturbed eigenstates
are denoted using an overbar.)

The electric dipole amplitude for the optical transition of
interest is

A
(E1)
M = 〈

3D1; M
∣∣(−d · E)

∣∣1S0
〉 ≡ A

(Stark)
M + A

(APV)
M , (A6)

where

A
(Stark)
M =

∑
a′

〈
3D1; M

∣∣d · E|a′〉〈a′|d · E
∣∣1S0

〉
ω

(
3D1

) − ω(a′)

+
∑
a′

〈
3D1; M

∣∣d · E|a′〉〈a′|d · E
∣∣1S0

〉
ω

(
1S0

) − ω(a′)
, (A7)

and

A
(APV)
M =

∑
a′

〈
3D1; M

∣∣iH 0
0 |a′〉〈a′|d · E

∣∣1S0
〉

ω
(

3D1
) − ω(a′)

−
∑
a′

〈
3D1; M

∣∣d · E|a′〉〈a′|iH 0
0

∣∣1S0
〉

ω
(

1S0
) − ω(a′)

. (A8)

The Stark amplitude can be written as

A
(Stark)
M = Tij

〈3D1; M
∣∣Uij

∣∣1S0
〉
, (A9)

where Tij = EiEj and

Uij =
∑
a′

di |a′〉〈a′|dj

ω
(

3D1
) − ω(a′)

+ dj |a′〉〈a′|di

ω
(

1S0
) − ω(a′)

. (A10)

Let T k
q and Uk

q represent the irreducible spherical components
of the tensors Tij and Uij . Then TijUij = (−1)qT k

−qU
k
q and

Eq. (A7) becomes

A
(Stark)
M = (−1)qT k

−q

〈
3D1; M

∣∣Uk
q

∣∣1S0
〉

= (−1)qT k
−q

(
3D1||Uk||1S0

)
√

3
〈0, 0; k, q|1,M〉

= iβ(−1)q(E × E)−q〈0, 0; 1, q|1,M〉. (A11)

Here β is the vector Stark transition polarizability and defined
by

β ≡ 1√
6

(
1S0||U 1||3D1

)
. (A12)

To derive Eq. (A11), we used 〈0, 0; k, q|1,M〉 = δk1δqM and
T 1

−q = ∑
q1,q2

〈1, q1; 1, q2|1,−q〉Eq1Eq2 = (i/
√

2)(E × E)−q .
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For the parity-violating contribution to the E1 transition
amplitude, we can likewise write

A
(APV)
M = iEi

〈3D1; M
∣∣Wi

∣∣1S0
〉
, (A13)

where

Wi =
∑
a′

H 0
0 |a′〉〈a′|di

ω
(

3D1
) − ω(a′)

−
∑
a′

di |a′〉〈a′|H 0
0

ω
(

1S0
) − ω(a′)

. (A14)

Let E1
q and W 1

q represent the spherical components of the
vectors Ei and Wi , respectively. Then EiWi = (−1)qE1

−qW
1
q

and we have

A
(APV)
M = i(−1)qE1

−q

〈
3D1; M

∣∣W 1
q

∣∣1S0
〉

= i(−1)qE1
−q

(
3D1||W 1||1S0

)
√

3
〈0, 0; 1, q|1,M〉

= iζ (−1)qE1
−q〈0, 0; 1, q|1,M〉. (A15)

Here ζ is given by

ζ ≡ 1√
3

(
3D1||W 1||1S0

)
. (A16)

APPENDIX B: CHARACTERIZATION OF THE
PBC MIRRORS

The finesse of the cavity is measured using the cavity-
ring-down method [20]. The laser beam is sent through a
Pockels cell (Cleveland Crystals Inc. QX 1020 Q-Switch) and
a polarizer before entering the cavity. The polarizer is aligned
with the laser polarization so that the light is transmitted when
there is no voltage applied to the Pockels cell. A high-voltage
pulse generator is used to send a fast step signal (30-ns
wavefront) to the Pockels cell which rotates the polarization
of the light so that it is not transmitted through the polarizer.
The laser frequency is locked to the resonance frequency
of the cavity, and then the Pockels cell is switched into the
nontransmitting state, causing a fast interruption of the laser
power. The subsequent decay of the light inside the cavity
is monitored with a fast photodiode (50-MHz bandwidth)
measuring the power transmitted through the back mirror of
the cavity. The signal is fit to an exponential decay. The decay
time is related to the finesse of the cavity F by

F = πc

L
τ,

where c is the speed of light, L is the cavity length, and τ is
the intensity decay time. An example of the PBC transmission
signal and its fit are shown in Fig. 10.

Following the analysis discussed in [21], if we denote the
transmission of mirrors 1 and 2 by T1 and T2, respectively, and
the absorption+scatter loss per mirror as l1,2 = (A + S)1,2,
then the total cavity losses L = T1 + T2 + l1 + l2 determine
the finesse F :

F = 2π

T1 + T2 + l1 + l2
. (B1)

Information on the transmission of the mirrors discriminated
from the A + S losses can be obtained using the measured

FIG. 10. (Color online) Application of the cavity-ring-down
method for the determination of the finesse of PBC.

value of the finesse and the power transmitted trough PBC, Ptr:
Ptr

εPin
= 4T1T2

( F
2π

)2

, (B2)

where Pin is the input power, and ε is a mode-matching
factor. For two arbitrary mirrors, for which neither T1,2 nor
l1,2 are known, Eqs. (B1) and (B2) do not provide a solution,
since a number of variables exceeds the number of equations.
Nevertheless, for two mirrors from the same coating run when
one can assume that T1 = T2 = T and l1 = l2 = l, Eqs. (B1)
and (B2) become

F = π

T + l
,

Ptr

εPin
= 4T 2

( F
2π

)2

,

and for known mode-matching factor ε, the parameters of the
mirrors (T and l) can be determined. The factor ε depends
on the geometry of the cavity and is assumed to stay constant
upon replacement of the mirrors if the geometry of the input
laser beam and the configuration of the PBC are unchanged.
This gives the possibility of calibrating this factor by using
a mirror set for which the transmission is known. We used
for this purpose a mirror set purchased from Advanced Thin
Films, Inc., for which reliable data on the transmission of
the mirrors is provided by the supplier. By measuring the
finesse of the PBC comprised of these mirrors and the ratio
of the transmitted-to-input power, the mode-matching factor
and the A + S mirror losses l are found. This set is not
an actual mirror set that was used in the PV experiment;
nevertheless, the parameters of other mirrors were determined
by replacing one mirror in the “reference” set by the “test”
mirror, parameters of which are sought. The geometry of the
cavity was unchanged during the replacement.

APPENDIX C: IMPACT OF THE PHASE MIXING EFFECT
ON THE HARMONICS RATIO

Atoms undergo the 6s2 1S0 → 5d6s 3D1 transition in the
interaction region where they are illuminated by 408-nm light
and are exposed to the static magnetic field and the oscillating
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electric field E(t). Excited atoms then spontaneously decay
from the 5d6s 3D1 state to the metastable 6s6p 3P0 state. The
population of 6s6p 3P0 is proportional to the transition rate
RM for M = 0,±1.

The probe region where the 6s6p 3P0 population was
measured, is located a distance d ≈ 20 cm away from the
interaction region. Therefore, an atom that arrives at the
detection region at a time t has experienced an electric field
with magnitude E(t − d/vz) in the interaction region, where
vz is the atom’s speed.

Because the beam is not monokinetic, the detection region
contains atoms that have experienced different electric fields
while in the interaction region. Each atom contributes to the
total rate, and hence the observed rate RM is the thermal
average of every contribution:

RM (t ; ω, d, v0) =
∫ ∞

0
RM (t − d/vz)f (vz; v0) dvz, (C1)

where

f (vz; v0) dvz = 2(vz/v0)3e−(vz/v0)2
dvz/v0 (C2)

is the probability for an atom to have speed between vz

and vz + dvz. Here v0 = √
2kBT /m = 2.9 × 104 cm/s is the

thermal speed, T ≈ 873 K is the oven temperature, and
m ≈ 161GeV/c2 is the atomic mass of Yb.

It is convenient to introduce the dimensionless variables
x = vz/v0 and τ = ωt , and the dimensionless parameter α =
ωd/v0. Then the average rate RM (t ; ω, d, v0) → RM (τ ; α)
depends only on the dimensionless quantities α and τ , and
Eq. (C1) becomes

RM (τ ; α) = R[0]
M + R[1]

M |I (α)| cos{τ + Arg[I (α)]}
+R[2]

M |I (2α)| cos{2τ + Arg[I (2α)]}, (C3)

with

I (α) ≡
∫ ∞

0
e−iα/xf (x; 1) dx. (C4)

Note that |I (α)| → 0 as α → ∞, whereas |I (α)| ≈ 1 when
α < 1. This places a limit on the modulation frequency: We
require that ω < v0/d = 2π × 230 Hz in order to avoid a
significant decrease in signal.

The lock-in amplifier receives an input signal proportional
to RM and returns two output signals S

[1]
M and S

[2]
M cor-

responding to the first- and second-harmonic components,
respectively. This can be modeled as

S
[n]
M (φn; α) = 1

π

∫ 2π

0
RM (τ ; α) cos(nτ + φn) dτ

= R[n]
M |I (nα)| cos{Arg[I (nα)] + φn}, (C5)

where the phases φ1,2 of the lock-in amplifier are chosen to
maximize the signals S

[1,2]
M . That is,

φn = φn(α) ≡ −Arg[I (nα)]. (C6)

Our measurement sM is the ratio of the first- and second-
harmonic signals:

sM = S
[1]
M (φ1; α)

S
[2]
M (φ2; α)

= R[1]
M |I (α)|

R[2]
M |I (2α)| = rM × C(α), (C7)

where C(α) ≡ |I (α)|/|I (2α)| is the correction factor. There-
fore, we must further divide the ratio sM of observed output
signals by C(α) to measure the ratio rM .

The correction factor C(α) and the optimal lock-in phases
φ1,2(α) inherit dependence on the modulation frequency (ω =
2π × 76.2 Hz), the distance between interaction and detection
regions (d ≈ 20 cm), and the oven temperature (T ≈ 873 K)
through the parameter α:

α = ω d√
2kBT /m

= 0.33(2), (C8)

where the uncertainty in α is dominated by

δα = α
√

(δT /2T )2 + (δd/d)2, (C9)

for δT ≈ 50 K and δd ≈ 1 cm. The correction factor can be
computed numerically and has a value

C0 = C(α) = 1.028(3), (C10)

with uncertainty given by δC0 = |C ′(α)| δα. Likewise, the
lock-in phases have the following values

φ10 = φ1(α) = 16(1)◦, φ20 = φ2(α) = 33(2)◦, (C11)

where δφn0 = |φ′
n(α)| δα.

To understand the impact of imperfect phase selections, we
include the effects of slight deviations from the optimal phase
φn(α) by taking

φn → φn(α) + ϕn, (C12)

where ϕn represents a small deviation. Then the correction
factor becomes

C(α) → C̃(α, ϕ1, ϕ2) = C(α)
cos(ϕ1)

cos(ϕ2)
, (C13)

and hence C̃0 = C̃(α, 0, 0) = C(α) = C0. The uncertainty in
the correction factor becomes

δC0 → δC̃0 =
√

δC2
0 + δϕ4

1 + δϕ4
2 , (C14)

where δϕn is the uncertainty in the deviation ϕn. To derive this
expression, we estimated the partial uncertainty in C̃0 due to
ϕn by ∂2

ϕn
C̃(α, ϕ1, ϕ2) δϕ2

n.
To estimate the uncertainty δϕn, we assume that we are

within about 1◦ of the optimal phase. This choice is consistent
with the magnitude of the uncertainty in the optimal phases φ10

and φ20. Therefore, we will take δϕn = δφn0 to be the accuracy
with which we can select the lock-in phases. Then δϕ1 = 0.02,
δϕ2 = 0.03, and

δC̃0 = 0.0031 ≈ 0.0029 = δC0. (C15)

Hence small deviations (on the order of 1◦) have a negligible
effect on the uncertainty in the correction factor.
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