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In this work, the steady-state or quasiequilibrium resulting from periodically modulating the Liouvillian

of an open quantum system, ̂̂L (t), is investigated. It is shown that differences between the quasiequilibrium
and the instantaneous equilibrium occur due to nonadiabatic contributions from the gauge field connecting the

instantaneous eigenstates of ̂̂L (t) to a fixed basis. These nonadiabatic contributions are shown to result in an
additional rotation and/or depolarization for a single spin-1/2 in a time-dependent magnetic field and to affect
the thermal mixing of two coupled spins interacting with a time-dependent magnetic field.
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I. INTRODUCTION

Elucidating the quantum dynamics of open systems is
important for designing and implementing quantum com-
puting (QC) [1] and quantum information (QI) applications
[2,3] and for understanding the foundations of quantum
statistical mechanics [4–8]. In particular, since most appli-
cations use systems which are initially in thermal equilibrium,
understanding thermalization and the nature of the thermal
equilibrium for an open quantum system is very important
for optimizing QC and QI applications. Both thermalization
and thermal equilibrium depend upon the system, environ-
ment, and system-environment Hamiltonians, Ĥsys, Ĥenv, and
Ĥsys-env respectively, and these Hamiltonians can in principle
be controlled in order to guide the thermalization process.
For instance, recent work has demonstrated that directly
engineering [9] or coherently modulating [10–12] Ĥenv and/or
Ĥsys-env for environments consisting of only a few degrees of
freedom can effectively influence the system’s dynamics and
control the thermalization process [13].

For more complex environments, however, it is in general
easier to control the system’s dynamics by coherently modulat-
ing Ĥsys. By coherently controlling the energies and eigenstates
of Ĥsys, the incoherent dynamics and thermalization can also
be indirectly controlled since the transition and dephasing
rates depend parametrically on the spectrum of Ĥsys. This
indirect, parametric modulation of the “incoherent” dynamics
can significantly affect the thermalization process and the
resulting steady state or quasiequilibrium of the system. In this
work, I focus on calculating the quasiequilibria under periodic
modulations of Ĥsys in open quantum systems. A master
equation approach is employed where the environmentally
induced transition and dephasing rates depend only upon the
instantaneous eigenenergies of the system [14]. Theoretical
calculations of the quasiequilibrium for a single spin-1/2 and
for two coupled spin-1/2s interacting with a time-dependent
magnetic field are presented.

II. BASIC THEORY

In this section, the basic equations describing the evolution
of an open quantum system undergoing parametric modulation
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of its Liouvillian are reviewed [15], and a simple framework
is presented where the effects of periodic modulations of the
Liouvillian on the resulting quasiequilibrium can be explicitly
calculated. Consider the equation of motion for an N -state
quantum system, |ρ̂(t)〉〉, where the influence of Ĥsys-env and
Ĥenv on the dynamics of |ρ̂(t)〉〉 is described by an effective

Liouvillian operator, ̂̂L (t), acting on the quantum system.
In the limit where the modulations are slow compared to the
correlation time of the environment, τc, the equation of motion
can be written in Liouville space as [16,17]

d|ρ̂(t)〉〉
dt

= ̂̂L (t)|ρ̂(t)〉〉 = ̂̂L (t)[|ρ̂(t)〉〉 − |ρ̂eq(t)〉〉]. (1)

The form of Eq. (1) makes it explicit that there exists an
instantaneous equilibrium state, |ρ̂eq(t)〉〉, at each time t .
In the following, |ρ̂eq(t)〉〉 will be taken to be an instanta-
neous Boltzmann distribution at a temperature T , |ρ̂eq(t)〉〉 =
|Z(t)−1 exp[−βĤsys(t)]〉〉, with Z(t) = Tr{exp[−βĤsys(t)]}
and β = 1

kBT
.

If the instantaneous eigenvalues of ̂̂L (t), λn(t) for n = 1

to n = N2, are nondegenerate, then ̂̂L (t) can be expanded

in a set of instantaneous eigenstates of ̂̂L (t), |�̂R
n (t)〉〉, and

〈〈�̂L
n (t)|, such that ̂̂L (t) = ∑N2

n=1 λn(t)|�̂R
n (t)〉〉〈〈�̂L

n (t)| and

〈〈�̂L
n (t)| ̂̂L (t)|�̂R

k (t)〉〉 = λn(t)δnk (note that if λn(t) = λj (t)

for n �= j , ̂̂L (t) may not be diagonalizable but can always

be written in Jordan form [18]). If ̂̂L (t) conserves total
probability, the identity operator will be an eigenstate of ̂̂L (t)
with λ1(t) = 0, 〈〈�̂L

1 (t)| ≡ 1̂, and the corresponding right
eigenvector is |�̂R

1 (t)〉〉 ≡ |ρ̂eq(t)〉〉 [Eq. (1)], and |�̂R
n (t)〉〉 rep-

resent traceless operators for n �= 1, since 〈〈�̂L
1 (t)|�̂R

n (t)〉〉 =
δn1. Note in the following discussion, only one instantaneous

stationary state for ̂̂L (t) with λ(t) = 0 is assumed to exist,
and the presence of multiple stationary or decoherence-free
subspaces [19] will not be considered. Finally, Re[λj �=1(t)] <

0 will be assumed, thereby ensuring that the system will
relax to a fixed equilibrium state, |ρ̂qeq(t)〉〉, in the absence

of time-dependent modulations of ̂̂L (t). This assumption
will be important when discussing under which conditions
|ρ̂qeq(t)〉〉 ≈ |ρ̂eq(t)〉〉 [20].
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Defining the transformation ̂̂W (t, 0) =∑N2

k=1 |�̂R
k (t)〉〉〈〈�̂L

k (0)| which connects the fixed eigenbasis

of ̂̂L (0) to the instantaneous eigenbasis of ̂̂L (t),
the density matrix can be written as |ρ̂(t)〉〉 =∑N2

k=1 ρk(t)|�̂R
k (t)〉〉 = ̂̂W (t, 0)|ρ̂0(t)〉〉, where |ρ̂0(t)〉〉 =∑N2

k=1 ρk(t)|�̂R
k (0)〉〉. The equation of motion for |ρ̂0(t)〉〉

differs from Eq. (1) by the addition of a gauge field,

d|ρ̂0(t)〉〉
dt

=
[
− ̂̂W−1

(t, 0)
d ̂̂W (t, 0)

dt
+ ̂̂W−1

(t, 0) ̂̂L (t) ̂̂W (t, 0)

]
|ρ̂0(t)〉〉

= ̂̂L EFF(t)|ρ̂0(t)〉〉, (2)

where ̂̂L EFF(t) = ̂̂L 0(t) + ̂̂L gauge(t), with

̂̂L 0(t) = ̂̂W−1
(t, 0) ̂̂L (t) ̂̂W (t, 0) =

N2∑
k=1

λk(t)
∣∣�̂R

k (0)
〉〉〈〈

�̂L
k (0)

∣∣
and

̂̂L gauge(t) = − ̂̂W−1
(t, 0)

d ̂̂W (t, 0)

dt

= −
N2∑
k=1

ckk(t)
∣∣�̂R

k (0)
〉〉〈〈

�̂L
k (0)

∣∣
−

N2∑
j<k

[
ckj (t)

∣∣�̂R
k (0)

〉〉〈〈
�̂L

j (0)
∣∣

+ cjk(t)
∣∣�̂R

j (0)
〉〉〈〈

�̂L
k (0)

∣∣],
with ckj (t) = 〈〈�̂L

k (t)| ∂
∂t

�̂R
j (t)〉〉. From the normalization con-

dition 〈〈�̂L
k (t)|�̂R

j (t)〉〉 = δjk ,〈〈
∂

∂t
�̂L

k (t)

∣∣∣∣ �̂R
j (t)

〉〉
+
〈〈

�̂L
k (t)

∣∣∣∣ ∂

∂t
�̂R

j (t)

〉〉
= 0. (3)

From Eq. (2), the ̂̂L gauge(t) term in ̂̂L EFF(t) can result
in a quasiequilibrium, |ρ̂qeq(t)〉〉, that is different than the
instantaneous equilibrium state given in Eq. (1); that is,

|ρ̂qeq(t)〉〉 = limt�1
̂̂W (t, 0)T̂ exp[

∫ t

0 dt ′ ̂̂L EFF(t ′)]|ρ̂0(0)〉〉 =
|�̂R

1 (t)〉〉 + ∑N2

k=2 cqeq,k(t)|�̂R
k (t)〉〉 �= |ρ̂eq(t)〉〉, where T̂ is the

Dyson time-ordering operator. In order to understand how
|ρ̂qeq(t)〉〉 relates to |ρ̂eq(t)〉〉 and under what conditions
|ρ̂qeq(t)〉〉 ≈ |ρ̂eq(t)〉〉 (adiabatic case), we must first un-
derstand how |ρ̂eq(t)〉〉 = |�̂R

1 (0)〉〉 couples to the other

states via ̂̂L gauge(t). While from Eq. (3), [ ̂̂L gauge(t)]1k ≡
〈〈�̂L

1 (0)| ̂̂L gauge(t)|�̂R
k (0)〉〉 = c1k(t) = 0 for k = 1 to k = N2

[simply a consequence of the conservation of probability and
the choice of normalization for |�̂R

1 (0)〉〉 and 〈〈�̂L
1 (0)|], in

general, [ ̂̂L gauge(t)]k1 = ck1(t) �= 0 for k = 2 to k = N2; these
matrix elements, which represent the incoherent portion of̂̂L gauge(t), are responsible for |ρ̂qeq(t)〉〉 �= |ρ̂eq(t)〉〉. I now
focus on determining the general conditions for adiabaticity,

that is, under what conditions is the quasiequilibrium given by
the instantaneous equilibrium state, |ρ̂qeq(t)〉〉 ≈ |ρ̂eq(t)〉〉. In
order to do this, we must consider the “nonidentity” portion
of |ρ̂eq(t)〉〉, |�̂ρeq(t)〉〉, where |ρ̂eq(t)〉〉 = 1

N
|̂1〉〉 + |�̂ρeq(t)〉〉

and |�̂ρeq(t)〉〉 = ∑N2

n=2 ρeq,n(t)|�̂R
n (t)〉〉, where ρeq,n(t) repre-

sents the contribution of |�̂R
n (t)〉 to the instantaneous equilib-

rium state. With this choice of expansion, 〈〈�̂L
n (t)| for n = 2

to n = N2 can be written as 〈〈�̂L
n (t)| = −ρeq,n(t)〈〈�̂L

1 (t)| +
〈〈�̃L

n (t)| with 〈〈�̃L
n (t)|�̂R

k (t)〉〉 = δnk . Using this expansion
for |ρ̂eq(t)〉〉, we can write the quasiequilibrium as

|ρ̂qeq(t)〉〉 = |ρ̂eq(t)〉〉 +
N2∑
n=2

cqeq,n(t)
∣∣�̂R

n (t)
〉〉

= 1

N
|̂1〉〉 +

N2∑
n=2

[ρeq,n(t) + cqeq,n(t)]
∣∣�̂R

n (t)
〉〉
. (4)

From Eq. (4), a variety of possible conditions for “adia-
batic” evolution suggest themselves. On a component-by-
component basis, a strict condition for adiabaticity would
be that |ρeq,n(t)| � |cqeq,n(t)| for n = 2 to n = N2 for all
times t . A less strict, and more useful, adiabaticity condition
would be to compare the magnitude of the quasiequilibrium
coefficients to the maximum coefficient in the expansion of
the instantaneous equilibrium state . In this case, adiabaticity
is achieved if |cqeq,n(t)| � χ (t) for all n, where χ (t) =
max{|ρeq,2(t)|, |ρeq,3(t)|, . . . , |ρeq,N2 (t)|}. In order to utilize
the adiabaticity condition |cqeq,n(t)| � χ (t), an expansion
of the quasiequilibrium coefficients, cqeq,n(t), in terms of̂̂L gauge(t) must be found. Since the present work focuses

on periodic modulation of ̂̂L (t), effective Liouvillian theory
and Floquet theory [21] can be utilized to understand the

effects of ̂̂L gauge(t) on |ρ̂qeq(t)〉〉. Defining the following
expansions in terms of the modulation frequency, ωr , λk(t) =∑

n λ
(n)
k exp(inωr t), and

ckj (t) exp

⎧⎨⎩∑
n�=0

[
λ

(n)
j − λ

(n)
k

]
[exp(inωr t) − 1]

inωr

⎫⎬⎭
=

∑
n

c̃
(n)
kj exp(inωr t),

the coefficients cqeq,k(t) can be calculated in a power series

expansion of ̂̂L gauge(t). To second-order in ̂̂L gauge(t), the
conditions for adiabaticity are of the form

|cqeq,k(t)| =
∣∣∣∣∣∑

n1

c̃
(n1)
k1 ein1ωr t

λ
(0)
k + in1ωr

+
∑

j

∑
n1,n2

c̃
(n2)
kj c̃

(n1)
j1 ei(n1+n2)ωr t[

λ
(0)
k + i(n1 + n2)ωr

](
λ

(0)
j + in1ωr

)
∣∣∣∣∣∣

� χ (t) (5)

for all k. The condition Re(λ(0)
k ) < 0 ensures that no resonant

“Rabi-like” oscillations can occur with λ
(0)
k = imωr where

m is an integer. The adiabaticity criteria in Eq. (5) are a

consequence of the fact that |[ ̂̂L gauge(t)]1k| = 0, which ensures
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that there will exist a |ρ̂qeq(t)〉〉 with λ1(t) = 0 for all times t .
For the case when the instantaneous equilibrium is close to
being a pure state [i.e., χ (t) ≈ 1], the adiabaticity condition
in Eq. (5) is similar to those found in previous works on
adiabatic theorem in open quantum systems [20,22], although
the results in Eq. (5) consider the true quasiequilibrium under

T̂ exp[
∫ t

0 dt ′ ̂̂L eff(t ′)] in the infinite time limit, t → ∞. In
the following work, we will be interested in studying the
quasiequilibria when Eq. (5) is not satisfied, that is, when

nonadiabatic corrections from ̂̂L gauge(t) lead to |ρ̂qeq(t)〉〉 =∑N2

k=1 cqeq,k|�̂R
k (t)〉〉 �= |ρ̂eq(t)〉〉.

A. Quasiequilibrium for a single spin-1/2

For an explicit example of the preceding theory, consider
the quintessential spin-1/2 particle in the presence of a
time-dependent magnetic field, �B(t) = | �B(t)|( cos[θ (t)]̂z +
sin[θ (t)]{cos[φ(t)]̂x + sin[φ(t)]̂y}), where θ (t) and φ(t)
give the instantaneous orientation of the magnetic field,
and | �B(t)| is the instantaneous magnitude of the ap-
plied field. In this case, the time-dependent eigenstates

of Ĥsys(t)
h̄

= −γ �B(t) · �S are

| ± (t)〉 = exp[−iφ(t)ŜZ] exp[−iθ (t)ŜY ]|±〉
= Û (t)|±〉, (6)

where Ŝ = 1
2 σ̂ , σ̂ are the Pauli spin matrices, and ŜZ|±〉 =

± 1
2 |±〉. The instantaneous eigenenergies of Ĥsys(t) are

E±(t) = ∓ h̄ω(t)
2 with h̄ω(t) = γ | �B(t)| and γ denoting the

spin’s gyromagnetic ratio. Ĥsys(t) can be written in the time-
dependent eigenbasis as Ĥsys(t) = Û (t)Ĥ0(t)Û−1(t) with

Ĥ0(t) = E+(t)| + (0)〉〈+(0)| + E−(t)| − (0)〉〈−(0)|
≡ E+(t)|+̂,+, 0〉〉 + E−(t)|−̂,−, 0〉〉,

where the notation |â, b, t〉〉 ≡ |a(t)〉〈b(t)| is used. With
regards to relaxation, the only processes that will be con-
sidered are the dephasing of the coherence between the
simultaneous eigenstates (i.e., T2 relaxation) and population
transfer between | + (t)〉 and | − (t)〉 (i.e., T1 relaxation). If
|E+(t) − E−(t)| = |h̄ω(t)| � |Ĥsys-env|, then one can utilize
the “secular” approximation and consider the relaxation of
coherences and populations separately [23]. For the processes

under consideration, ̂̂L (t) can be written in the basis of
{|+̂,+, t〉〉, |−̂,−, t〉〉, |+̂,−, t〉〉, |−̂,+, t〉〉} as

̂̂L (t) =

⎛⎜⎜⎜⎜⎝
−W+−(t) W−+(t) 0 0

W+−(t) −W−+(t) 0 0

0 0 i|ω(t)| − 1
T2(t) 0

0 0 0 −i|ω(t)| − 1
T2(t)

⎞⎟⎟⎟⎟⎠ , (7)

where W±∓(t) = 1∓Peq(t)
2T1(t) are the time-dependent transition

rates, Peq(t) = tanh[ h̄|ω(t)|
2kBT

] is equal to the instantaneous
equilibrium polarization for a given magnitude of the magnetic
field, and T1(t) and T2(t) are the instantaneous longitudinal and
transverse relaxation times, respectively. The time-dependent

eigenvalues of ̂̂L (t) are

λ1(t) = 0,

λ2(t) = −[W+−(t) + W−+(t)] = − 1

T1(t)
,

λ3(t) = i|ω(t)| − 1

T2(t)
,

and

λ4(t) = −i|ω(t)| − 1

T2(t)
.

The corresponding right eigenvectors are

|�̂R
1 (t)〉〉 = T1(t)[W−+(t)|+̂,+, t〉〉 + W+−(t)|−̂,−, t〉〉]

= |ρ̂eq(t)〉〉,
|�̂R

2 (t)〉〉 = |+̂,+, t〉〉 − |−̂,−, t〉〉,
|�̂R

3 (t)〉〉 = |+̂,−, t〉〉,

and

∣∣�̂R
4 (t)

〉〉 = |−̂,+, t〉〉,

and the left eigenvectors are

〈〈
�̂L

1 (t)
∣∣ = 〈〈+̂,+, t | + 〈〈−̂,−, t | ≡ 1̂,〈〈

�̂L
2 (t)

∣∣ = T1(t)[W+−(t)〈〈+̂,+, t | − W−+(t)〈〈−̂,−, t |],〈〈
�̂L

3 (t)
∣∣ = 〈〈+̂,−, t |,

and

〈〈
�̂R

4 (t)
∣∣ = 〈〈−̂,+, t |.

As in Eq. (4), |ρeq(t)〉〉 = 1
2 |̂1〉〉 + Peq(t)

2 |�̂R
2 (t)〉〉 and

〈〈�̂L
2 (t)| = −Peq(t)

2 〈〈̂1| + 〈〈+̂,+, t | − 〈〈−̂,−, t |, so that

χ (t) = Peq(t)
2 .

As described previously, we can write ̂̂L (t) in a
fixed basis, {|�̂R

1 (0)〉〉, |�̂R
2 (0)〉〉, |�̂R

3 (0)〉〉, |�̂R
4 (0)〉〉}

as ̂̂L EFF(t) = ̂̂L gauge(t) + ̂̂L 0(t), where ̂̂L0(t) =∑4
k=1 λk(t)|�̂R

k (0)〉〉〈〈�̂L
k (0)| and
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̂̂L gauge(t) =

⎛⎜⎜⎜⎜⎝
0 0 0 0

− 1
2

dPeq(t)
dt

0 −G−+(t) G+−(t)

−Peq(t)G+−(t) −2G+−(t) G++(t) − G−−(t) 0

Peq(t)G−+(t) 2G−+(t) 0 G−−(t) − G++(t)

⎞⎟⎟⎟⎟⎠ , (8)

where

Gab(t) =
〈
a

∣∣∣∣ dÛ †(t)

dt
Û (t)

∣∣∣∣b〉
= 〈a|iθ̇ (t)ŜY + iφ̇(t){cos[θ (t)]ŜZ − sin[θ (t)]ŜX}|b〉.

Both T1(t) and T2(t) are assumed to depend only upon the
instantaneous energy difference, h̄ω(t). Possible modifications
of the environment’s coupling with the spin system due to
changing field direction [24] and any non-Markovian effects
of the environment are not considered. It should be noted that
for a two-state system, the normalization of the right and left

eigenstates of ̂̂L (t) can always be chosen such that the only

terms in ̂̂L gauge(t) that survive in the adiabatic limit are simply
the geometric phases for the coherences [25] in Eq. (8). For
an N -state system with N � 3, however, it is possible for
〈〈�̂k(0)|�̂k(t)〉〉 exp[

∫ t

0 〈〈�̂k(t ′)| d|�̂k(t ′)
dt ′ 〉〉dt ′] �= 1.

1. Case I: Quasiequilibrium for a rotating magnetic field

First consider the case of a magnetic field rotating
about a cone of angle θ with respect to the ẑ axis at a
frequency of ωr , γ �B(t) = h̄ω{cos(θ )̂z + sin(θ )[cos(ωrt )̂x +
sin(ωrt )̂y]}. In this case, θ̇(t) = 0, φ̇(t) = ωr , and |γ �B(t)| =
constant, which giveŝ̂L gauge(t)

= i
ωr sin(θ )

2

⎛⎜⎜⎜⎝
0 0 0 0

0 0 1 −1

Peq 2 2 cot(θ ) 0

−Peq −2 0 −2 cot(θ )

⎞⎟⎟⎟⎠ .

(9)

In the adiabatic limit, if ωr sin(θ)Peq

| 1
T2

±iω| � Peq

2 in Eq. (5), the

quasiequilibrium spin polarization will follow and point along
the instantaneous direction of the �B(t). For ωr � | 1

T2
± iω|,

deviations from adiabaticity will occur, and the spin polariza-
tion will no longer be aligned with the applied magnetic field.

For arbitrary ωr and for time-independent T1 and T2,
|ρ̂qeq(t)〉〉 is given by

|ρ̂qeq(t)〉〉 = ∣∣�̂R
1 (t)

〉〉−T1ωr sin(θ )ζ
Peq

2

∣∣�̂R
2 (t)

〉〉
− iζ

Peq

2

[∣∣�̂R
3 (t)

〉〉 − ∣∣�̂R
4 (t)

〉〉]
+ [ω + ωr cos(θ )]T2ζ

Peq

2

[∣∣�̂R
3 (t)

〉〉 + ∣∣�̂R
4 (t)

〉〉]
= 1

2
|̂1〉〉 + Peq{[1 − T1ωr sin(θ )ζ ]|ŜZ′(t)〉〉

+ [ω+ωr cos(θ )]T2ζ |ŜX′(t)〉〉+ζ |ŜY ′(t)〉〉}, (10)

where

ζ = T2ωr sin(θ )

1 + [ω + ωr cos(θ )]2T 2
2 + T1T2ω2

r sin2(θ )

and |Ŝj ′(t)〉〉 = 1
2 Û (t )̂σj Û

†(t) is j th spin operator that is

quantized along the instantaneous field direction,
�B(t)

| �B(t)| . In
this case, |ρ̂qeq(t)〉〉 represents a spin polarization vector that
follows, but is slightly rotated away from, the applied magnetic
field when ωrT2 sin(θ ) � 1. For the case where the applied
field is rotating in the x-y plane (θ = π/2), the magnetization
generates a component perpendicular to the plane of rotation.
The tilting of the magnetization due to rotation of the applied
field has been previously observed in electron paramagnetic
resonance experiments [26] and recently in nuclear magnetic
resonance using a SQUID magnetometer [27]. The results
from Eq. (10) will remain valid as long as ωrτc � 1, where τc

is the environment’s correlation time.

2. Case II: Quasiequilibrium for a magnetic field whose
magnitude is periodically modulated

Next, consider the case where the direction of the
magnetic field is fixed, but the magnitude of the magnetic
field varies periodically in time between ω and δω,
ω(t) = ω+δω

2 + cos(ωrt)ω−δω
2 . From Eq. (8), the coherences

and populations are completely decoupled, and the only

nonzero matrix element of ̂̂L gauge(t) arises from the time-
dependence of the instantaneous equilibrium polarization,
Peq(t) = tanh[ h̄ω(t)

2kBT
] = ∑∞

m=−∞ P (m)
eq exp(imωrt). In

this case, ̂̂L gauge(t) = − 1
2

dPeq(t)
dt

|�̂R
2 (0)〉〉〈〈�̂L

1 (0)| =
− iωr

2 [
∑

m mP (m)
eq exp(imωrt)]|�̂R

2 (0)〉〉〈〈�̂L
1 (0)|. From

Eq. (5), when ωrT1
2 |∑m

mP
(m)
eq eimωr t

1+imωrT1
| � Peq(t)

2 , ̂̂L gauge(t)
can be neglected, and the quasiequilibrium is given
by the instantaneous equilibrium state, |�̂R

1 (t)〉〉 =
1
2 |̂1〉〉 + Peq(t)|ŜZ〉〉, where the polarization is given by
the instantaneous equilibrium polarization, Peq(t).

For arbitrary ωr , |ρ̂qeq(t)〉〉 is given by (assuming T1 is
time-independent)

|ρ̂qeq(t)〉〉 = |�̂R
1 (t)〉〉− 1

2

[∫ t�1

0
dt ′

dPeq(t ′)
dt ′

f (t, t ′)
] ∣∣�̂R

2 (t)
〉〉

≈ 1

2
|̂1〉〉 + 1

2
Peff(t)[|+̂,+, (0)〉〉 − |−̂,−, (0)〉〉],

Peff(t) = P (0)
eq +

∑
m�=0

P (m)
eq exp(imωrt)

(
1 − imωrT1

imωrT1 + 1

)
,

(11)

where f (t, t ′) = exp[− ∫ t

t ′
dt ′′

T1(t ′′) ]. The effective polarization,

Peff(t), oscillates about P (0)
eq with a frequency of ωr but
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with a slight phase lag that can be approximated by φlag =
atan(ωrT1). For ωrT1 � 1, imωrT1

1+imωrT1
≈ 1, and the sum in

Eq. (11) vanishes. In this case, Peff(t) is effectively time-
independent and is given by the time-averaged polarization,
P (0)

eq . For ωrT1 � 1, the evolution is adiabatic, and Peff(t) ≈
Peq(t). We see from Eq. (11) that the effect of the ̂̂L gauge(t)
term is to cause Peff(t) → P (0)

eq �= Peq(t) for ωr � 2π
T1

. Without
the gauge term, Peff(t) = Peq(t) for all ωr ; that is, without the
gauge term, the spin’s polarization would instantaneously relax
to or follow Peq(t) as previously mentioned. Remember that the

gauge term can be neglected if ωrT1
2 |∑m

mP
(m)
eq eimωr t

1+imωrT1
| � Peq(t)

2
[Eq. (5)], so neglect of the gauge term is equivalent to taking
1
T1

to be very large, which is another way of saying that
the system relaxes quickly to the instantaneous equilibrium
state. A similar result is found in the case of a driven damped
oscillator.

B. Quasiequilibrium for a two-spin system

Consider the case of two coupled, spin-1/2s, I and
S, where the single-spin energies of either the S spin or
both the S and the I spins are periodically modulated
in time. In this case, the Hamiltonian for the IS system
is given by Ĥsys = −h̄ωS(t)ŜZ − h̄ωI (t)ÎZ + h̄ωZ,IS ŜZÎZ +
h̄ωT,IS(ŜXÎX + ŜY ÎY ), where the coupling has been taken to be
symmetric with respect to X and Y directions. In the following
discussion, I will consider the case where ωS � ωI , which, for
example, could represent a system where S is an electron spin
and I is a nuclear spin.

The relaxation contribution to the Liouvillian is given bŷ̂L relax = − 1

T S
2 (t)

[∣∣�̂R
3 (0)

〉〉〈〈
�̂L

3 (0)
∣∣ + ∣∣�̂R

4 (0)
〉〉〈〈

�̂L
4 (0)

∣∣] ⊗ 1̂I

− 1

T I
2 (t)

1̂S ⊗ (|+̂,−, t〉〉〈〈+̂,−, t | + |−̂,+, t〉〉

× 〈〈−̂,+, t |) − 1

T S
1 (t)

∣∣�̂R
2 (0)

〉〉〈〈
�̂L

2 (0)
∣∣ ⊗ 1̂I

+ 1̂S ⊗ W I
+−(t)(|−̂,−, t〉〉〈〈+̂,+, t |

− |+̂,+, t〉〉〈〈+̂,+, t |) + 1̂S ⊗ W I
−+(t)(|+̂,+, t〉〉

× 〈〈−̂,−, t | − |−̂,−, t〉〉〈〈−̂,−, t |), (12)

where W I
±∓(t) = 1∓Peq,I (t)

2T I
1 (t)

, T
S(I )

1 (t), and T
S(I )

2 (t) are the S(I )
spin longitudinal and transverse relaxation times respectively,
Peq,I (t) = tanh[ h̄ωI (t)

2kBT
], and 1̂S and 1̂I are the identity Li-

ouvillian superoperators [28] in the S and I spaces, re-
spectively. In the absence of coupling between the I and
the S spins and for fixed ωI and ωS , the equilibrium for
the combined system is |ρ̂eq,IS〉〉 = |ρ̂eq,S〉〉|ρ̂eq,I 〉〉, where
|ρ̂eq,S(I )〉〉 = 1

2 |̂1〉〉 + Peq,S(I )|Ŝ(I )Z〉〉.
Consider the case where the IS coupling is nonzero

but is much weaker than the individual spin energies; that

is, ωS � ωI � |ωZ(T ),IS |. If the relaxation rates of the S

spin are assumed to be much larger than those for the
I spin, that is, T S

1 , T S
2 � T I

1 , T I
2 , then the equilibrium of

the combined system can be approximated by |ρ̂eq,IS〉〉 ≈
|ρ̂eq,S〉〉|ρ̂eq′,I 〉〉 where |ρ̂eq,S〉〉 + 1

2 |̂1〉〉 + Peq,S |ŜZ〉〉. Peq,S is
relatively unchanged by the coupling to the I spin. However,
|ρ̂eq′,I 〉〉 ≡ 1

2 |̂1〉〉 + Peq′,I |ÎZ〉〉, where Peq′,I is the equilibrium
I spin polarization that, under the preceding assumptions, is
given to second order in ωT,IS as

Peq′,I = T IS
1 Peq,I + T I

1 Peq,S

T IS
1 + T I

1

. (13)

In Eq. (13), 1
T IS

1
= ω2

T ,IST IS
2

2{1+[T IS
2 (ωS−ωI )]2} and T IS

2 = T I
2 T S

2

T I
2 +T S

2
. The

time scale in which the I spin relaxes to |ρ̂eq′,I 〉〉 is given
by T I

1 + T IS
1 . When T IS

1 � T I
1 , Peq′,I → Peq,S � Peq,I . Note

that the polarization transfer between the I and the S

spins is more efficient when |T IS
2 (ωS − ωI )| � 1 and when

|ωT,IST
IS

2 | � 1 since T IS
1 is small under these conditions.

Note also that Peq′,I is maximal when T IS
2 = 1

ωS−ωI
; having

a short relaxation time T IS
2 can actually help increase Peq′,I

since this reduces the importance of the energy mismatch,
h̄|ωS − ωI |.

C. Quasiequilibrum I spin polarization under periodic
modulations of ωS

Consider the case when the S spin’s energy, h̄ωS(t),
is periodically modulated in time between the values h̄ωS

and h̄δωS , ωS(t) = cos(ωrt)
ωS−δωS

2 + ωS , where ωS = ωS+δωS

2 .

In this case, the effects of ̂̂L gauge(t) upon the resulting
quasiequilibrium I spin polarization, Pqeq,I , must be con-
sidered. Since only the S spin’s energy is time-dependent,̂̂L gauge(t) = − 1

2
dPeq,S (t)

dt
|�̂R

2 (0)〉〉〈〈�̂L
1 (0)| ⊗ 1̂I . In terms of the

quasiequilibrium I spin polarization, ̂̂L gauge(t) will affect
Pqeq,I by affecting the available S spin polarization that can
be transferred to the I spin. As discussed in Case II, for
modulation frequencies such that ωrT

S
1 � 1, the available S

spin polarization is time dependent and is given by P
(0)
eq,S , the

time-averaged S spin polarization. For ωrT
S

1 � 1, the S spin
polarization is given by the instantaneous S spin polarization,
Peq,S(t). As discussed later in this article, the time dependence
and size of the S spin polarization dramatically affects the
resulting Pqeq,I .

If T S
1 and T S

2 are taken to be time-independent, the
quasiequilibrium density matrix for the IS system can
be approximated as |ρ̂qeq,IS(t)〉〉 ≈ |ρ̂qeq,S(t)〉〉|ρ̂qeq,I 〉〉, where
|ρ̂qeq,S(t)〉〉 = 1

2 |̂1〉〉 + Peff(t)|ŜZ〉〉, Peff(t) is given in Eq. (11),
and |ρ̂qeq,I 〉〉 = 1

2 |̂1〉〉 + Pqeq,I |ÎZ〉〉. Pqeq,I can be approxi-
mated to second order in ωT,IS using Floquet theory [29,30]
as

Pqeq,I =
T

IS,0
1 Peq,I + T I

1 P
(0)
eq,S + T I

1

∑
m�=0 P

(m)
eq,S

T
IS,0

1

T
IS,m

1

(
1 − ηimωrT

S
1

1+imωrT
S

1

)
T I

1 + T
IS,0

1

, (14)
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where

1

T
IS,0

1

= ω2
T ,IST

IS
2

2

∞∑
k=−∞

[Jk(ζ )]2

1 + [
T IS

2 (�ωIS − kωr )
]2

1

T
IS,m

1

= ω2
T ,IST

IS
2

4

∞∑
k=−∞

[
Jk(ζ )Jk−m(ζ )

1 + iT IS
2 (�ωIS + kωr )

+ (−1)mJk(ζ )Jk−m(ζ )

1 − iT IS
2 (�ωIS − kωr )

]
, (15)

ζ = ωS−δωS

2ωr
, �ωIS = ωS − ωI , Jn(ζ ) is a Bessel function of

order n, and Peq,S(t) = tanh( h̄ωS (t)
2kBT

) = ∑
n P

(n)
eq,S exp(inωr t). In

Eq. (14), η simply labels those terms in Pqeq,I that arise from
the noncommutivity of the S spin’s relaxation rates, W S

±,∓(t),

that is, from the gauge term − 1
2

dPeq,S (t)
dt

|�̂R
2 (0)〉〉〈〈�̂L

1 (0)| in
Eq. (8); η is set to η = 1 in the full calculations of Pqeq,I . The
“cross-relaxation times” that are responsible for polarization
transfer between the S and I spins, T

IS,n
1 in Eq. (15), depend

upon ωr , and for n �= 0, T
IS,n

1 can be negative and result in
a decrease in Pqeq,I . Calculations of Pqeq,I using Eq. (14)
are valid for ωr > 1

T I
1 +T

IS,0
1

, where the quasiequilibrium I

polarization saturates to a steady-state value given by Pqeq,I .
For ωr � 1

T I
1 +T

IS,0
1

, the quasiequilibrium spin polarization will

not saturate to a fixed value and will become periodic. In
this case, the I spin relaxes to Pqeq,I (t) = Peq′,I [ωS(t)], where
Peq′,I [ωS(t)] from Eq. (13) is evaluated at the instantaneous S

spin energy, h̄ωS(t).
Using Eq. (14), Pqeq,I is plotted as a function of the

modulation frequency, ωr , in Fig. 1(A) (the exact parameters
are given in the figure caption). It should be noted that over the
range of ωr shown in Fig. 1, Pqeq,I calculated using Eq. (14) is
to within 0.1% of calculations of Pqeq,I using the numerically

calculated propagator, T̂ exp[
∫ t

0
̂̂L (t ′)dt ′]. In Fig. 1(A), Pqeq,I

exhibits maxima at �ωIS = nωr , where n is an integer. With
the parameters used in Fig. 1(A), �ωIS = 49.67ωI , and no
additional peaks in Pqeq,I are observed for ωr > 49.67ωI .
For ωr > 49.67ωI , Pqeq,I = Peq′,I = 0.0067, where ωS was
used in evaluating Peq′,I in Eq. (13). For ωr > 2π

T S
1

, the S spin

polarization is given by Peff,S = P
(0)
eq,S = 0.2412 [see Eq. (11)].

Thus Pqeq,I � Peff,S = 0.2412; in Fig. 1(A), the maximum
Pqeq,I occurs at ωr = �ωIS with Pqeq,I = 0.2394, which is
close to Peff,S .

In order to understand the effects of the gauge term
[− dPeq,S (t)

2dt
|�̂R

2 (0)〉〉〈〈�̂L
1 (0)| in Eq. (8)] upon the I spin’s

quasiequilibrium polarization, calculations of Pqeq,I with (η =
1, solid blue line) and without (η = 0, dotted red line) the
gauge term are shown in Figs. 1(B) and 1(C). As can be
seen from Fig. 1(B), Pqeq,I does not significantly increase
from Peq′,I in Eq. (13) in the absence of the gauge term
(η = 0, dotted red line), indicating that the gauge term has
an important effect on Pqeq,I for ωr > 2π × 10−2 1

T S
1

≈ 1
16T S

1

with the parameters used in the calculation. This can be
understood by examining Eq. (14); the conditions under which
the gauge term can be neglected occur when |mωrT

S
1 | � 1,

where m is a nonzero integer related to the Fourier expansion of
Peq,S(t) = tanh[ h̄ωS (t)

2kBT
] = ∑

m P
(m)
eq,S exp(imωrt). As expected

(A)

(B)
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FIG. 1. (Color online) The calculated quasiequilibrium I spin
polarization, Pqeq,I in Eq. (14), in an IS spin system under-
going periodic modulation of the S spin’s energy, h̄ωS(t), as
a function of the modulation frequency, ωr . In all simulations,
ωS(t) = ωS+δωS

2 + cos(ωrt)
ωS−δωS

2 , h̄ωS

kBT
= 1, δωS

ωS
= 1

75 , ωI

ωS
= 1

100 ,

ωT,IS = ωZ,IS = 0.03ωI , T S
1 = T S

2 = 2π

ωI
, and T I

1 = T I
2 = 2π 4×104

ωI
.

In (A), peaks in Pqeq,I are observed at modulation frequencies
that satisfy the resonance condition nωr = ωS − ωI for integer
n, where ωS = ωS+δω

2 = 50.67ωI for the preceding parameters. In
(B) and (C), Pqeq,I calculated using Eq. (14) with (η = 1, solid
blue curve) and without (η = 0, dotted red curve) the gauge term
− 1

2
dPeq,S (t)

dt
|�̂R

2 (0)〉〉〈〈�̂L
1 (0)|, included in the calculation. As can be

seen, the gauge term has a significant impact on the resulting Pqeq,I

for ωr � 1
16T1

since Peff,S(t) = P
(0)
eq,S = 0.2412. This ensures that

there is substantial S spin polarization throughout the modulation
period, thereby enabling the I spin to develop a substantial spin
polarization at the resonance conditions, nωr = �ωIS . For ωr � 1

T S
1

,

Peff,S(t) ≈ Peq,S(t), so there is little S spin polarization available for
transfer to the I spin at times tmin,n = π

ωr
(2n + 1) where polarization

transfer is most efficient.

from Eq. (14), if |mωrT
S

1 | � 1, the gauge term’s contribution
to Pqeq,I can be safely neglected, which for the simulation in
Fig. 1(C) corresponds to ωr � 1

16T S
1

.

A physical picture that helps to explain the results in
Fig. 1 is as follows: in the absence of any modulations to
the S spin’s energy, h̄ωS , the ratio of the I spin’s equilibrium
polarization with and without coupling to the S spin,

Peq′,I
Peq,I

,
is generally on the order of one, indicating that there is little
enhancement of the I spin’s polarization (for parameters used
in Fig. 1,

Peq′,I
Peq,I

= 1.168). This is due to the fact that the
energy mismatch, h̄|ωS − ωI |, for the “flip-flop” transitions
that are responsible for polarization transfer between the S
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and the I spins, |±〉S |∓〉I ↔ |∓〉S |±〉I , is much larger than
the coupling generating these transitions; that is, |ωS − ωI | �
|ωT,IS |. However, when the S spin’s energy is periodically
modulated between ωS and δωS � ωS with a time averaged
value of ωS , the periodic modulation can provide the “flip-flop”
transitions with additional energy in integer multiples of the
modulation frequency, ±nh̄ωr , to make up for the energy
deficit during the “flip-flop” transitions. Therefore, at the
resonance conditions ωS − ωI = �ωIS = nωr for integer n,
efficient polarization transfer between the S and the I spin
occurs. The peaks in Pqeq,I observed in Fig. 1 correspond to
values of ωr satisfying the preceding resonance conditions.
For those resonance conditions that occur when ωr > 2π

T S
1

, the

maximum I spin polarization possible is given by the time-
averaged S spin polarization, Peff,S = P

(0)
eq,S = 0.2412. When

ωr > �ωIS , no additional resonance conditions exist, and the
I spin polarization is given by Pqeq,I = Peq′,I (ωS) = 0.0067,
where Peq′,I in Eq. (13) is evaluated using the time-averaged
S frequency, ωS .

While the resonance condition, �ωIS = nωr , explains
the appearance of the peaks in Pqeq,I observed in Fig. 1, it
does not explain the decrease in Pqeq,I for ωr < 2π

T S
1

. This

decrease can be understood by examining the dynamics of
polarization transfer during a modulation period of ωS(t).
As previously stated, polarization transfer is most efficient
when h̄|ωS(t) − ωI | � h̄ωT,IS . While ωS(t) is periodically
modulated between ωS and δωS , the most efficient polarization
transfer therefore occurs when |ωS(t) − ωI | achieves its lowest
value, |δωS − ωI |, which occurs at times tmin,n = (2n + 1) π

ωr
.

At these times, the I spin polarization can increase up to the S

spin polarization at time tmin,n, Peff,S(tmin,n). For ωr > 2π

T S
1

, the S

spin’s polarization is simply given by Peff,S = P
(0)
eq,S ≈ 0.2412

independent of ωr and time t ; thus, the I spin can build up
a polarization close to P

(0)
eq,S over a time scale of 1

T
(0)

1,IS

+ 1
T I

1
.

However, for ωr � 1
T S

1
, Peff,S(t) ≈ Peq,S(t), so at the times

tmin,n when the polarization transfer is most efficient,
Peff,S(tn) ≈ tanh( h̄δωS

2kBT
) = 6.67 × 10−3, and so there is very

little polarization available to be transferred to the I spin even
at the resonance conditions, �ωIS = nωr . This explains the
importance of the gauge term on developing substantial I

spin polarization that is clearly illustrated in Figs. 1(B) and
1(C). In the absence of the gauge term, Peff,S(t) ≈ Peq,S(t) for
all ωr , so that at times tmin,n, there is little S spin polarization
available for transfer to the I spin. With the gauge term,
Peff,S → P

(0)
eq,S = 0.2412 for ωr � 2π

T S
1

, which ensures that

there is substantial S spin polarization transfer from the S

spin to the I spin at the resonance conditions, �ωIS = nωr .
It should be noted that for actual spin systems, it would

be experimentally difficult to modulate the S spin’s energy
and relaxation rates while keeping the I spin’s energy fixed.
However, this situation can be experimentally realized in many
nonspin, effective two-state systems. For example, recent
experiments [31] in closed lateral double quantum dots have
demonstrated that the energy splitting between the singlet
and one of the triplet states can be periodically modulated
using time-dependent gate voltages while the energy of the
nuclear spins in the quantum dot remain fixed. Such systems
could be used to illustrate the theory presented in this section,

although in these systems, the effective S spin (the singlet
and a triplet state) is coupled to many I spins. In fact, it
was shown that the nuclear spin polarization increased when
the modulation frequency between singlet and triplet states
was equal to a multiple of ωI [31]. Since the electronic state
is periodically shuttled between the singlet and triplet states
(analogous to the S spin being periodically “shuttled” between
spin up and spin down), ωS = 0 so that the theory presented
previously would predict efficient polarization transfer at
one of the experimentally observed resonance conditions,
ωr = ωI . However, there are two important caveats before one
applies the theory presented in this work to those experiments.
First of all, the theory presented here was for a single IS spin
system, whereas in the double quantum dot system, there are
on the order of 106–107 nuclei [32]. In fact, experimentally
observed resonance conditions at multiples of the I spin
Larmour frequency, ωr = nωI , could possibly be related to
transitions where n I spins flip. The second caveat is that
in the preceding theory, δω was assumed to be greater than
|Ĥsys-env| so that the evolution of coherences and populations
could be treated separately. If |ωS(t)| � |Ĥsys-env|, then this
secular approximation could not be used, and a more detailed
theory would be needed. Extensions of the theory to larger
spin systems and a more accurate characterization of the
breakdown of the secular approximation are left for future
study.

D. Periodic modulations of both ωS and ωI

For the case of actual spin systems, it is easier experimen-
tally to modulate both ωS and ωI and their relaxation rates by
using a time-dependent magnetic field that affects both spins
such that ωS(t) = ωS + ωS−δωS

2 cos(ωrt) and ωI (t) = ωI +
ωI −δωI

2 cos(ωrt), where δωI

ωI
= δωS

ωS
. In this case, using similar

arguments as above, efficient polarization transfer can occur
when an integer multiple of the modulation frequency equals
the time-averaged frequency difference between the I and
the S spins, nωr ≈ |ωS − ωI |. To verify this, a calculation of
Pqeq,I as a function of ωr , was performed using the numerically

calculated propagator, T̂ exp[
∫ t

0 dt ′ ̂̂L (t ′)]. The result is shown
in Fig. 2(A) (solid, blue curve), where, for comparison, Pqeq,I

generated from periodic modulations of ωS (t) alone [Fig. 1(A)]
is also shown (dotted red curve). The differences between
modulating both ωI and ωS versus modulating only ωS are
slight and mainly due to the difference in resonance conditions,
nωr = ωS − ωI versus nωr = ωS − ωI , which can be seen
in the slight shift in the peaks of Pqeq,I for the solid blue
curve (both ωS and ωI ) and the dotted red curve (ωS only)
in Fig. 2(A). Since the I spin’s relaxation rates, W I

±,∓(t), are
now time dependent, there will also be an additional gauge
term proportional to dPeq,I (t)

dt
, which will simply result in Pqeq,I

being equal to Peq′,I away from the resonance conditions,
nωr = |ωS − ωI |, where Peq′,I in Eq. (13) is evaluated using
the time-averaged I and S spin polarizations.

E. Case where T S
1 (t) and T S

2 (t) are time dependent

In the previous discussion, the relaxation times T S
1 and T S

2
were taken to be time independent even though the S spin
energy difference was time dependent. In general, however,
both T S

1 and T S
2 will depend upon ωS(t). Although the
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FIG. 2. (Color online) (A) A plot of the resulting quasiequi-
librium I spin polarization, Pqeq,I (solid blue curve), in a coupled
IS spin system where both the I and the S spin’s energies are
periodically modulated in time, versus the modulation frequency, ωr ,
where ωS(I )(t) = ωS(I ) + ωS(I )−δωS(I )

2 cos(ωrt). The results are similar
to those found in Fig. 1(A), where only the S spin’s energy was
periodically modulated [Pqeq,I for that case is also shown in Fig. 2(A)
for reference (dotted red curve)]. The major difference between the
two cases is that maxima in Pqeq,I occur at nωr = ωS − ωI (solid blue
curve) when both ωI and ωS are modulated, as opposed to occurring
at nωr = ωS − ωI (dotted red curve), when only ωS is modulated.
Pqeq,I for the case where both ωI and ωS are periodically modulated
was determined by using the numerically calculated propagator,

T̂ exp[
∫ t

0 dt ′ ̂̂L (t ′)]. The same parameters as in Fig. 1 were used
in addition to δωI

ωI
= δωS

ωS
= 1

75 . In (B), Pqeq,I is calculated using
the numerically calculated propagator with (solid blue curve) and
without (dotted red curve) the gauge term for periodic modulations
of ωS(t) and where the relaxation times of the S spin were modeled
as arising from the S spin coupling to a collection of harmonic
oscillators with frequency uniformly distributed between ωS and δωS ,
T S

1 (t) = T S
2 (t) = 2π

ωI
coth[ h̄ωS (0)

2kBT
] tanh[ h̄ωS (t)

2kBT
]. For the preceding time

dependence, Pqeq,I � max[Peff,S(t)] = 0.0575.

time dependence of T S
1 (t) and T S

2 (t) does not enter into the

gauge term for the single and two-spin cases, ̂̂L gauge(t),
the time-dependence of the relaxation times will affect the
spin dynamics of the S spin and the resulting Pqeq,I for the
two-spin case. As an example, consider the case where T S

1
and T S

2 result from the coupling of the S spin to a collection
of harmonic oscillators with frequency uniformly distributed
between ωS and δωS . In this case [33], T S

2 (t) and T S
1 (t) can be

taken as T S
1 (t) = T S

2 (t) = λ−2 tanh[ h̄ωS (t)
2kBT

], where λ is related

to the frequency-independent coupling constant between the
oscillators and the S spin. Furthermore, it is also assumed that
there are no ”memory effects” in the oscillators so that T S

1 (t)
and T S

2 (t) depend only upon the instantaneous S spin energy,
h̄ωS(t).

In Fig. 2(B), calculations of Pqeq,I obtained from the

numerically calculated propagator T̂ exp[
∫ t

0 dt ′ ̂̂L (t ′)] with

T S
1 (t) = T S

2 (t) = 2π
ωI

coth[ h̄ωS (0)
2kBT

] tanh[ h̄ωS (t)
2kBT

] used in ̂̂L relax

[Eq. (12)] are shown with (solid blue curve) and without
(dotted red curve) the gauge term. The parameters used in the
simulation are given in the figure caption. The time dependence
of T S

1 (t) and T S
2 (t) does have a significant effect on Pqeq,I ,

as can be seen by comparing Fig. 1(B) to Fig. 2(B). The
resonance conditions again occur at nωr = �ωIS , although the
maximum Pqeq,I is less than that observed in Fig. 1. This is due
to the time dependence of T S

1 (t); at times tmin,n = π
ωr

(2n + 1),

T S
1 (tmin,n) = 0.0144T S

1 (0); that is, the relaxation rate has in-
creased by a factor of 70 relative to the unmodulated relaxation
rate. For ωr � 2π

T
S(0)

1

≈ 2π
8ωI

[where T
S(0)

1 is the time average of

T S
1 ], Peff,S(t) ≈ 0.0575 < P

(0)
eq,S ; the time-dependence of T S

1 (t)

results in a smaller average S spin polarization. For ωr > 2π
8ωI

,
Pqeq,I � 0.0575. Thus, the smaller Pqeq,I observed in Fig. 2(B)
is a result of the smaller Peff,S . As in Fig. 1, the gauge term
has a significant effect on Pqeq,I , although, in this case, the
time dependence of T S

1 (t) and T S
2 (t) results in larger Pqeq,I in

the absence of the gauge term compared the to results shown
in Fig. 1. This is due to the fact that a smaller T S

2 can help
lessen the impact of energy mismatch, h̄|ωS − ωI | and increase
the efficacy of polarization transfer between the S and the
I spins.

III. CONCLUSIONS

In summary, I have shown that periodically modulating
the Hamiltonian and thereby indirectly modulating the inco-
herent dynamics in an open quantum system can result in
a quasiequilibrium state, |ρ̂qeq(t)〉〉, that significantly differs
from the instantaneous equilibrium state when the modulations
are nonadiabatic. For a spin-1/2 system, modulations of the
Hamiltonian resulted in a small rotation of the magnetization
for the case of a rotating magnetic field. For an amplitude
modulated magnetic field, the gauge term resulted in the
polarization decreasing to its time-averaged polarization as
opposed to being given by the instantaneous polarization,
Peq,S(t) = tanh[ h̄ωS (t)

2kBT
]. For the case of a two-spin system

where the instantaneous equilibrium polarization of one of
the spins was modulated in time, the nonadiabatic corrections

from ̂̂L gauge(t) had a significant effect on the quasiequilib-
rium polarization of the unmodulated spin (Figs. 1 and 2).

The ̂̂L gauge(t) term prevents the effective polarization on
the S spin from following the instantaneous polarization,
Peff,S(t) �= Peq,S(t). This results in increased I polarization
at the resonance conditions, nωr = ωS − ωI (if only the
S spin’s frequency is modulated) or at nωr = ωS − ωI (if
both the I and the S spins’ frequencies are modulated),
where ωS(I ) is the time-averaged frequency of the S(I )
spin.
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The results in this work should have applications in a variety
of condensed-matter systems, such as for increasing nuclear
spin polarization in quantum dots [31] and for designing
algorithmic cooling procedures [34], and chemical systems
[35,36] where the chemical rate constants could be experi-
mentally controlled by temperature or pressure modulations
[37]. Extensions of this work to polarization transfer in
larger numbers of spins and to cases where both the energy

levels and the eigenstates are modulated in time are currently
under way.
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