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Mathematical structure of relativistic Coulomb integrals
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We show that the diagonal matrix elements 〈Orp〉, where O= {1, β, iαnβ} are the standard Dirac matrix
operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem,
may be considered as difference analogs of the radial wave functions. Such structure provides an independent way
of obtaining closed forms of these matrix elements by elementary methods of the theory of difference equations
without explicit evaluation of the integrals. Three-term recurrence relations for each of these expectation values
are derived as a by-product. Transformation formulas for the corresponding generalized hypergeometric series
are discussed.
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I. INTRODUCTION

Recent experimental and theoretical progress has renewed
interest in quantum electrodynamics of atomic hydrogenlike
systems (see, for example, Refs. [9,10,13,14,16,23,25] and
references therein). In the past decade, the two-time Green’s
function method of deriving formal expressions for the energy
shift of a bound-state level of high-Z few-electron systems
was developed [23] and numerical calculations of QED effects
in heavy ions were performed with excellent agreement to
current experimental data [9,10,25]. These advances motivate
detailed study of the expectation values of the Dirac matrix
operators between the bound-state relativistic Coulomb wave
functions. Special cases appear in calculations of the magnetic
dipole hyperfine splitting, the electric quadrupole hyperfine
splitting, the anomalous Zeeman effect, and the relativistic
recoil corrections in hydrogenlike ions (see, for example,
Refs. [1,22,24,26] and references therein). These expectation
values can be used in calculations with hydrogenlike wave
functions when a high precision is required.

In the previous article [26], we have evaluated the relativis-
tic Coulomb integrals of the radial functions,

Ap =
∫ ∞

0
rp+2[F 2(r) + G2(r)] dr, (1)

Bp =
∫ ∞

0
rp+2[F 2(r) − G2(r)] dr, (2)

Cp =
∫ ∞

0
rp+2F (r)G(r) dr, (3)

for all admissible powers p, in terms of three special gen-
eralized hypergeometric 3F2 series related to the Chebyshev
polynomials of a discrete variable [17] (we concentrate on
the radial integrals since, for problems involving spherical
symmetry, one can reduce all expectation values to radial
integrals by use of the properties of angular momentum). These
integrals are linearly dependent:

[2κ + ε(p + 1)]Ap − (2εκ + p + 1)Bp = 4µCp (4)
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(see, for example, Refs. [1,20,21,26] for more details). Thus,
eliminating, say Cp, one can deal with Ap and Bp only. The
corresponding representations in terms of only two linearly
independent generalized hypergeometric series are given in
this article [see (43)–(45) and (46)–(48)].

The integrals (1)–(3) satisfy numerous recurrence relations
in p, which provide an effective way of their evaluation for
small p (see Refs. [1,20,21,26] and references therein). The
two-term recurrence relations were derived by Shabaev [20,21]
on the basis of a hypervirial theorem and by a different method
using relativistic versions of the Kramers-Pasternack three-
term recurrence relations in Ref. [27]. In our notations,

Ap+1 = −(p + 1)
4ν2ε + 2κ(p+2)+ε(p+1)(2κε+p+2)

4(1 − ε2)(p + 2)βµ
Ap

+ 4µ2(p+2)+(p+1)(2κε+p+1)(2κε+p + 2)

4(1 − ε2)(p + 2)βµ
Bp,

(5)

Bp+1 = −(p + 1)
4ν2+2κε(2p + 3) + ε2(p + 1)(p + 2)

4(1 − ε2)(p + 2)βµ
Ap

+ 4µ2ε(p+2)+(p+1)(2κε+p+1)[2κ+ε(p+2)]

4(1−ε2)(p + 2)βµ
Bp

(6)

and

Ap−1 = β
4µ2ε(p + 1) + p(2κε + p)[2κ + ε(p + 1)]

µ(4ν2 − p2)p
Ap

−β
4µ2(p + 1) + p(2κε + p)(2κε + p + 1)

µ(4ν2 − p2)p
Bp,

(7)

Bp−1 = β
4ν2 + 2κε(2p + 1) + ε2p(p + 1)

µ(4ν2 − p2)
Ap

−β
4ν2ε + 2κ(p + 1) + εp(2κε + p + 1)

µ(4ν2 − p2)
Bp,

(8)
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respectively. Throughout this article,

κ = ±(j + 1/2), ν =
√

κ2 − µ2,

µ = αZ = Ze2/h̄c, a = √
1 − ε2, (9)

ε = E/mc2, β = mc/h̄

with the total angular momentum j = 1/2, 3/2, 5/2, . . . (see
Refs. [26,28] for more details).

These recurrence relations are complemented by the sym-
metries of the integrals Ap, Bp, and Cp under reflections
p → −p − 1 and p → −p − 3 found in Ref. [26] (see also
Ref. [2]). For example,

A−p−3 = (2aβ)2p+3 �(2ν − p − 2)

�(2ν + p + 3)

×
[
−(p + 1)

4ν2 + 2εκ(2p + 3) − (p + 2)2

p + 2
Ap

+ 2κ(2εκ − 1)
2p + 3

p + 2
Bp

]
, (10)

B−p−3 = (2aβ)2p+3 �(2ν − p − 2)

�(2ν + p + 3)
{ε(p + 1)(2p + 3) Ap

+ [4ν2 − 2εκ(2p + 3) − (p + 1)2] Bp}, (11)

for independent convergent integrals Ap and Bp.

In this article, we would like to draw the reader’s attention
to an interesting analogy between the explicit solutions of
the first-order system of difference equations (5)–(6) and the
standard method of dealing with the system of differential
equations for the radial relativistic Coulomb wave functions
F and G (see, for example, Refs. [5,6,11,18,19,28] regarding
solution of the Dirac equation in Coulomb field). En route,
we derive the three-term recurrence relations for each of the
single integrals (1)–(3) that seem to be new and convenient
for their evaluation. Our observation provides an independent
method of obtaining closed forms of these matrix elements but,
this time, from the theory of difference equations and without
explicit evaluation of the integrals. Some transformation
formulas for the corresponding generalized hypergeometric
series are derived as a by-product.

II. THREE-TERM RECURRENCE RELATIONS

Several relativistic Kramers-Pasternack three-term vector
recurrence relations for the integrals Ap, Bp, Cp have been
obtained in Ref. [27]. A more general setting is as follows. Let
us rewrite (5)–(6) and (7)–(8) in the matrix form(

Ap

Bp

)
= Sp

(
Ap−1

Bp−1

)
,

(
Ap−1

Bp−1

)
= S−1

p

(
Ap

Bp

)
(12)

and denote

Sp =
(

ap bp

cp dp

)
, S−1

p = 1

�p

(
dp −bp

−cp ap

)
(13)

with

ap = −p
4ν2ε + 2κ(p + 1) + εp(2κε + p + 1)

4(1 − ε2)(p + 1)βµ
, (14)

bp = 4µ2(p + 1) + p(2κε + p)(2κε + p + 1)

4(1 − ε2)(p + 1)βµ
, (15)

cp = −p
4ν2 + 2κε(2p + 1) + ε2p(p + 1)

4(1 − ε2)(p + 1)βµ
, (16)

dp = 4µ2ε(p + 1) + p(2κε + p)[2κ + ε(p + 1)]

4(1 − ε2)(p + 1)βµ
(17)

and

�p = det Sp = (4ν2 − p2)p

(2aβ)2(p + 1)
. (18)

Eliminating Ap and Bp, respectively, from the system (12),
we arrive at the following three-term recurrence equations for
the independent integrals

Ap+1 =
(

ap+1 + bp+1

bp

dp

)
Ap − bp+1

bp

�p Ap−1, (19)

Bp+1 =
(

dp+1 + cp+1

cp

ap

)
Bp − cp+1

cp

�p Bp−1, (20)

which seem are missing in the available literature.
In general, one can easily verify that the following vector

three-term recurrence relation holds:(
Ap+1

Bp+1

)
= Mp

(
Ap

Bp

)
+ Np

(
Ap−1

Bp−1

)
(21)

for two matrices Mp and Np provided that

Sp+1 = Mp + NpS−1
p . (22)

Our equations (19)–(20) provide a diagonal matrix solution.
According to (12), (21), and (22), a simple identity(

Ap+1

Bp+1

)
= (

Sp+1 − NpS−1
p

) (
Ap

Bp

)
+ Np

(
Ap−1

Bp−1

)
(23)

holds for any matrix Np. The known three-term recurrence
relations for the relativistic Coulomb integrals can be obtained
by choosing different forms of the matrix Np. The case Np = 0
goes back to the two-term recurrence relation (12) and two
more explicit solutions have been found in Ref. [27]. Here we
analyze another possibility and take

Np =
(

λp 0

0 µp

)
and Np =

(
0 λp

µp 0

)
for suitable parameters λp and µp. A new convenient relations
are as follows

(
Ap+1

Bp+1

)
=

⎛⎜⎝ ap+1 + bp+1
dp

bp

0

0 dp+1 + cp+1
ap

cp

⎞⎟⎠ (
Ap

Bp

)

−�p

(
bp+1/bp 0

0 cp+1/cp

)(
Ap−1

Bp−1

)
, (24)

(
Ap+1

Bp+1

)
=

⎛⎜⎝ ap+1 + bp+1
cp

ap

0

0 dp+1 + cp+1
bp

dp

⎞⎟⎠ (
Ap

Bp

)

+�p

(
0 bp+1/ap

cp+1/dp 0

)(
Ap−1

Bp−1

)
, (25)
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(
Ap+1

Bp+1

)
=

⎛⎜⎝ 0 bp+1 + ap+1
bp

dp

cp+1 + dp+1
cp

ap

0

⎞⎟⎠ (
Ap

Bp

)

+�p

(
ap+1/dp 0

0 dp+1/ap

) (
Ap−1

Bp−1

)
, (26)

(
Ap+1

Bp+1

)
=

⎛⎜⎝ 0 bp+1 + ap+1
ap

cp

cp+1 + dp+1
dp

bp

0

⎞⎟⎠ (
Ap

Bp

)

−�p

(
0 ap+1/cp

dp+1/bp 0

)(
Ap−1

Bp−1

)
. (27)

Explicit diagonal form, when the equations are separated, is
given by

Ap+1 = µP (p)

a2β[4µ2(p + 1) + p(2εκ + p)(2εκ + p + 1)](p + 2)
Ap

− (4ν2 − p2)[4µ2(p + 2) + (p + 1)(2εκ + p + 1)(2εκ + p + 2)]p

(2aβ)2[4µ2(p + 1) + p(2εκ + p)(2εκ + p + 1)](p + 2)
Ap−1, (28)

Bp+1 = εµQ(p)

a2β[4ν2 + 2εκ(2p + 1) + ε2p(p + 1)](p + 2)
Bp

− (4ν2 − p2)[4ν2 + 2εκ(2p + 3) + ε2(p + 1)(p + 2)](p + 1)

(2aβ)2[4ν2 + 2εκ(2p + 1) + ε2p(p + 1)](p + 2)
Bp−1, (29)

where

P (p) = 2εp(p + 2)(2εκ + p)(2εκ + p + 1)

+ ε{4(ε2κ2 − ν2) − p[4ε2κ2 + p(p + 1)]}
+ (2p + 1)[4ε2κ + 2(p + 2)(2εµ2 − κ)], (30)

Q(p) = (2p + 3)[4ν2 + 2εκ(2p + 1) + p(p + 1)]

− a2(2p + 1)(p + 1)(p + 2). (31)

In comparison with other articles (see Refs. [1,2,20,21,26,27]
and references therein), our consideration provides an alterna-
tive way of the recursive evaluation of the special values Ap

and Bp, when we deal separately with one of these integrals
only. The corresponding initial data A0 = 1, B−1 = a2β/µ

can be found in Ref. [26]. It is important emphasizing, for
the purpose of this article, that this argument resembles the
reduction of the first-order system of differential equations
for relativistic radial Coulomb wave functions F and G to
the second-order differential equations (see, for example,
Refs. [18,28]).

If one wants to solve equations (28)–(29) analytically for
all admissible powers, then the major obstacle is that they are
not difference equations of hypergeometric type on a quadratic
lattice, solutions of which are available in the literature [3,17].
The following consideration helps. A linear transformation(

Xp

Yp

)
= Tp

(
Ap

Bp

)
, (32)

where

Tp =
(

αp βp

γp δp

)
, det Tp = αpδp − βpγp �= 0, (33)

results in a new system of the first-order difference equations(
Xp

Yp

)
= S̃p

(
Xp−1

Yp−1

)
, (34)

where the corresponding similar matrix is given by

S̃p = TpSpT −1
p−1 =

(
ãp b̃p

c̃p d̃p

)
(35)

with

det Tp−1 ãp = αpδp−1ap − αpγp−1bp

+ βpδp−1cp − βpγp−1dp, (36)

det Tp−1 b̃p = −αpβp−1ap + αpαp−1bp

− βpβp−1cp + βpαp−1dp, (37)

det Tp−1 c̃p = γpδp−1ap − γpγp−1bp

+ δpδp−1cp − δpγp−1dp, (38)

det Tp−1 d̃p = −γpβp−1ap + γpαp−1bp

− δpβp−1cp + δpαp−1dp, (39)

and

�̃p = det S̃p = det Sp

det Tp

det Tp−1
�= 0. (40)

The new separated three-term recurrence equations take the
similar forms

Xp+1 =
(

ãp+1 + b̃p+1

b̃p

d̃p

)
Xp − b̃p+1

b̃p

�̃p Xp−1, (41)

Yp+1 =
(

d̃p+1 + c̃p+1

c̃p

ãp

)
Yp − c̃p+1

c̃p

�̃p Yp−1. (42)

As in the case of the radial wave functions in Refs. [18]
and [28], there are several possibilities to choose the matrix Tp

in order to simplify the original equations (28)–(29). Examples
of such transformations, when the resulting equations are of a
hypergeometric type and coincide with difference equations
for special dual Hahn polynomials [12,15,17] (see also
Appendix A), are given in the next section.
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III. TRANSFORMATIONS OF RELATIVISTIC
COULOMB INTEGRALS

The integrals Ap, Bp, and Cp can be evaluated in terms
of two linearly independent 3F2 functions, which are related
to the special dual Hahn polynomials that can be thought of
as difference analogs of the Laguerre polynomials in explicit
formulas for the radial wave functions (see Refs. [18,28] for
a detailed tutorial on solution of the relativistic Coulomb
problem). This fact has been partially explored in Ref. [26]
and we elaborate on this connection here. Two different
representations of the expectation values are available in
a complete analogy with the well-known structure of the
relativistic wave functions.

Analogs of the traditional forms are as follows

2(p + 1)aµ(2aβ)p
�(2ν + 1)

�(2ν + p + 1)
Ap

= (µ + aκ)[a(2εκ + p + 1) − 2εµ]

× 3F2

(
1 − n, −p, p + 1

2ν + 1, 1

)
+ (µ − aκ)[a(2εκ + p + 1) + 2εµ]

× 3F2

(−n, −p, p + 1

2ν + 1, 1

)
, (43)

2(p + 1)aµ(2aβ)p
�(2ν + 1)

�(2ν + p + 1)
Bp

= (µ + aκ)[a(2κ + ε(p + 1)) − 2µ]

× 3F2

(
1 − n, −p, p + 1

2ν + 1, 1

)
+ (µ − aκ)[a(2κ + ε(p + 1)) + 2µ]

× 3F2

(−n, −p, p + 1

2ν + 1, 1

)
, (44)

4µ(2aβ)p
�(2ν + 1)

�(2ν + p + 1)
Cp

= a(µ + aκ)3F2

(
1 − n, −p, p + 1

2ν + 1, 1

)
− a(µ − aκ)3F2

(−n, −p, p + 1

2ν + 1, 1

)
. (45)

The averages of rp for the relativistic hydrogen atom were
evaluated in the late 1930s by Davis [7] as a sum of certain
three 3F2 functions. But it has been realized only recently
that these series are, in fact, linearly dependent and related
to the Chebyshev polynomials of a discrete variable [26]. Here,
the most compact version of the final result is presented (we
use the standard definition of the generalized hypergeometric
series throughout the article [4,8]).

Analogs of the Nikiforov and Uvarov form of the relativistic
radial functions [18,28] are given by

4(p + 1)εµν(2aβ)p Ap

= a(εκ + ν)[2(εκ − ν) + p + 1]

× �(2ν + p + 3)

�(2ν + 2)
3F2

(
1 − n, p + 2, −p − 1

2ν + 2, 1

)

− a(εκ − ν)[2(εκ + ν) + p + 1]

× �(2ν + p + 1)

�(2ν)
3F2

(−n, p + 2, −p − 1
2ν, 1

)
,

(46)

4µν(2aβ)p Bp

= a(εκ + ν)
�(2ν+p+3)

�(2ν + 2)
3F2

(
1−n, p+2, −p − 1

2ν + 2, 1

)

− a(εκ − ν)
�(2ν+p+1)

�(2ν)
3F2

(−n, p+2, −p−1

2ν, 1

)
,

(47)

8(p + 1)εµ2ν(2aβ)p Cp

= a(εκ + ν)[2κ(εκ − ν) + (p + 1)(κ − εν)]

× �(2ν + p + 3)

�(2ν + 2)
3F2

(
1 − n, p + 2, −p − 1

2ν + 2, 1

)
− a(εκ − ν)[2κ(εκ + ν) + (p + 1)(κ + εν)]

× �(2ν + p + 1)

�(2ν)
3F2

(−n, p + 2, −p − 1

2ν, 1

)
.

(48)

These representations simplify Eqs. (3.7)–(3.9) of Ref. [26]
with the help of the linear relation (4) (the calculation details
are left to the reader).

It is important noting in this article that formulas (43)–(45)
and (46)–(48) provide explicit examples (of inverses) of the
linear transformations (32) that reduce the original three-term
recurrence relations (19)–(20) to the difference equations
of the corresponding dual Hahn polynomials in a complete
analogy with the case of the relativistic radial wave functions
(see, for example, Refs. [18,28]). One may choose any two of
three linearly dependent integrals Ap, Bp, and Cp and take
the corresponding renormalized dual Hahn polynomials as Xp

and Yp.

For example, by choosing Ap and Bp as the independent
integrals and introducing

Xp = 3F2

(
1 − n, −p, p + 1

2ν + 1, 1

)
,

Yp = 3F2

(
−n, −p, p + 1

2ν + 1, 1

)
, (49)

from (43)–(44) we arrive at the following transformation
matrix

Tp = (2aβ)p

2a2

�(2ν + 1)

�(2ν + p + 1)

×

⎛⎜⎜⎝
a[2κ+ε(p+1)]+2µ

µ+aκ
−a(2εκ+p+1) + 2εµ

µ + aκ

−a[2κ+ε(p+1)]−2µ

µ−aκ

a(2εκ+p+1) − 2εµ

µ−aκ

⎞⎟⎟⎠
(50)

with

det Tp =
[

(2aβ)p
�(2ν + 1)

�(2ν + p + 1)

]2
µ(p + 1)

a(µ2 − a2κ2)
. (51)
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Then

S̃p = TpSpT −1
p−1 = [a2p(2ν + p)]−1

×
(

−a2p2 + 2aεµp − 2(µ2 − a2κ2) 2(µ2 − a2κ2)

−2(µ2 − a2κ2) a2p2 + 2aεµp + 2(µ2 − a2κ2)

)
(52)

with the help of the matrix identity (B1) and

�̃p = det S̃p = 2ν − p

2ν + p
. (53)

The new system (34) takes much simplier form

Xp = −a2p2 − 2aεµp + 2(µ2 − a2κ2)

a2p(2ν + p)
Xp−1

+ 2(µ2 − a2κ2)

a2p(2ν + p)
Yp−1 (54)

and

Yp = −2(µ2 − a2κ2)

a2p(2ν + p)
Xp−1

+ a2p2 + 2aεµp + 2(µ2 − a2κ2)

a2p(2ν + p)
Yp−1 (55)

with the initial data(
X0

Y0

)
= T0

(
A0

B0

)

= 1

2a2

⎛⎜⎜⎝
a(2κ + ε) + 2µ

µ + aκ
−a(2εκ + 1) + 2εµ

µ + aκ

−a(2κ + ε) − 2µ

µ − aκ

a(2εκ + 1) − 2εµ

µ − aκ

⎞⎟⎟⎠
×

(
1

ε

)
=

(
1

1

)
. (56)

After this transformation, the three-term recurrence relations
(41)–(42) become:

Xp+1 = (2p + 1)[2(ν + n) − 1]

(p + 1)(2ν + p + 1)
Xp

− p(2ν − p)

(p + 1)(2ν + p + 1)
Xp−1, (57)

Yp+1 = (2p + 1)[2(ν + n) + 1]

(p + 1)(2ν + p + 1)
Yp

− p(2ν − p)

(p + 1)(2ν + p + 1)
Yp−1 (58)

and coincide with the difference equations for the correspond-
ing special dual Hahn polynomials (A7) [one should use
the spectral identity εµ = a(ν + n) and the initial conditions
X0 = Y0 = 1, further computational details are left to the
reader].

Our consideration shows how the relativistic Coulomb
expectation values Ap and Bp can be independently found

in their closed forms (43)–(44), when solving the original
system (5)–(6) by the methods of the theory of difference
equations developed in the previous section and without
explicit evaluation of the integrals. A striking similarity with
the structure of the radial wave functions provides a guidance
in this approach. In addition, use of the single recurrence
relation in (57)–(58) gives an effective way of simultaneous
numerical evaluation of all three integrals (43)–(45) (see also
Ref. [2]).

Analysis of the case (46)–(47) is similar. Denoting

X̃p = 3F2

(
1 − n, p + 2, −p − 1

2ν + 2, 1

)
, (59)

Ỹp = 3F2

(
−n, p + 2, −p − 1

2ν, 1

)
, (60)

we obtain the following system:

X̃p = (2ν − p)
(a2ν2+ε2µ2)(p + 1)+2ν(a2ν2 − ε2µ2)

2aεµν(p+2ν + 2)(p + 1)
X̃p−1

− (2ν + 1)(a2ν2 − ε2µ2)

aεµ(p + 2ν + 2)(p + 1)
Ỹp−1 (61)

and

Ỹp = (p − 2ν)
[(p + 1)2 − 4ν2](a2ν2 − ε2µ2)

4aεµν2(2ν + 1)(p + 1)
X̃p−1

+ (a2ν2 + ε2µ2)(p + 1) − 2ν(a2ν2 − ε2µ2)

2aεµν(p + 1)
Ỹp−1

(62)

[one can start from the new system (54)–(55) instead of (5)–(6)
and use another matrix identity (B2)]. Then equations (41)–
(42) for the corresponding dual Hahn polynomials are given
by

X̃p+1 = 2(ν + n)(2p + 3)

(2ν + p + 3)(p + 2)
X̃p

− (2ν − p)(p + 1)

(2ν + p + 3)(p + 2)
X̃p−1, (63)

Ỹp+1 = 2(ν + n)(2p + 3)

(2ν + p + 1)(p + 2)
Ỹp

− (2ν − p − 2)(p + 1)

(2ν + p + 1)(p + 2)
Ỹp−1 (64)

with X̃−1 = Ỹ−1 = 1. Further details are left to the reader.
It is worth noting, in conclusion, that the explicit solutions

of systems of the first-order difference equations with variable
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coefficients are not widely available in mathematical literature.
This is why, it is important to study in detail a remarkable
structure of the expectation values pointed out in this article
for a classical problem of quantum mechanics, such as spectra
of high-Z hydrogenlike ions. After more than 80 years of
a thorough investigation, the relativistic Coulomb problem
keeps generating some mathematical challenges.

IV. RELATED TRANSFORMATIONS OF GENERALIZED
HYPERGEOMETRIC SERIES

On the second hand, our equations (43)–(45) and (46)–(48)
imply the following linear relations:

3F2

(
1 − n, −p, p + 1

2ν + 1, 1

)
(65)

= (2ν + n)(2ν + p + 1)(2ν + p + 2)(2n + p + 1)

4ν(2ν + 1)(ν + n)(p + 1)

× 3F2

(
1 − n, p + 2, −p − 1

2ν + 2, 1

)

− n(4ν + 2n + p + 1)

2(ν + n)(p + 1)
3F2

(
−n, p + 2, −p − 1

2ν, 1

)
and

3F2

(
−n, −p, p + 1

2ν + 1, 1

)

= n(4ν + 2n − p − 1)(2ν + p + 1)(2ν + p + 2)

4ν(2ν + 1)(ν + n)(p + 1)

× 3F2

(
1 − n, p + 2, −p − 1

2ν + 2, 1

)

− (2ν + n)(2n − p − 1)

2(ν + n)(p + 1)
3F2

(
−n, p + 2, −p − 1

2ν, 1

)
(66)

between two pairs of the generalized hypergeometric series
under consideration. As required, only one dimensionless
parameter is involved in the transformations. Details of these
elementary but rather tedious calculations are left to the reader.

In addition, from (3.7) of Ref. [26] and (46) of this article
one obtains

p(p + 1)

2ν + n
3F2

(
1 − n, p + 1, −p

2ν + 1, 2

)

= (p − 2ν)(2ν + p + 1)

2(2ν + 1)(ν + n)
3F2

(
1 − n, p + 1, −p

2ν + 2, 1

)

+ ν

ν + n
3F2

(
−n, p + 1, −p

2ν, 1

)
, (67)

which complements relation (3.12) of Ref. [26]:

p(p + 1)

n + 2ν
3F2

(
1 − n, −p, p + 1

2ν + 1, 2

)

= p(p + 1)

2ν + 1
3F2

(
1 − n, 1 − p, p + 2

2ν + 2, 2

)

= 3F2

(
−n, −p, p + 1

2ν + 1, 1

)
− 3F2

(
1 − n, −p, p + 1

2ν + 1, 1

)
(68)

reproduced here for completeness. One needs to derive
transformations (65)–(67) directly from the advanced theory
of generalized hypergeometric functions [4,8].
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I thank Carlos Castillo-Chávez, Hal Smith, and Vladimir
Zakharov for valuable discussions and encouragement.

APPENDIX A: LAGUERRE AND DUAL
HAHN POLYNOMIALS

The Laguerre polynomials are [8,17,18]

Lα
m(x) = �(α + m + 1)

m! �(α + 1)
1F1

(
−m

α + 1
; x

)
. (A1)

The dual Hahn polynomials are given by [17]

w(c)
m [s(s + 1), a, b] = (1 + a − b)m(1 + a + c)m

m!

× 3F2

(
−m, a − s, a + s + 1

1 + a − b, 1 + a + c
; 1

)
.

(A2)

In (43)–(45) and (46)–(48) of this article, we are dealing only
with the following special cases: m = n − 1, n and a = b =
0, c = 2ν, s = p and a = b = 0, c = 2ν ± 1, s = p + 1,

respectively.
The difference equation for the dual Hahn polynomials has

the form

σ (s)
�

∇x1(s)

[∇y(s)

∇x(s)

]
+ τ (s)

�y(s)

�x(s)
+ λmy(s) = 0, (A3)

where �f (s) = ∇f (s + 1) = f (s + 1) − f (s), x(s) = s(s +
1), x1(s) = x(s + 1/2), and

σ (s) = (s − a)(s + b)(s − c), (A4)

σ (s) + τ (s)∇x1(s) = σ (−s − 1) (A5)

= (a + s + 1)(b − s − 1)(c + s + 1),

λm = m. (A6)

It can be rewritten as the three-term recurrence relation

σ (−s − 1)∇x(s)y(s + 1) + σ (s)�x(s)y(s − 1)

+ [λm�x(s)∇x(s)∇x1(s) − σ (−s − 1)∇x(s)

− σ (s)�x(s)]y(s) = 0. (A7)

See Refs. [12,15,17] for more details on the properties of the
dual Hahn polynomials.
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APPENDIX B: MATRIX IDENTITIES

The required matrix identity

⎛⎜⎜⎝
a[2κ + ε(p + 1)] + 2µ

µ + aκ
−a(2εκ + p + 1) + 2εµ

µ + aκ

−a[2κ + ε(p + 1)] − 2µ

µ − aκ

a(2εκ + p + 1) − 2εµ

µ − aκ

⎞⎟⎟⎠
×

(
−p

[
4ν2ε + 2κ(p + 1) + εp(2κε + p + 1)

]
4µ2(p + 1) + p(2κε + p)(2κε + p + 1)

−p
[
4ν2 + 2κε(2p + 1) + ε2p(p + 1)

]
4µ2ε(p + 1) + p(2κε + p) [2κ + ε(p + 1)]

)

×
(

(µ + aκ) [a(2εκ + p) − 2εµ] (µ − aκ) [a (2εκ + p) + 2εµ]

(µ + aκ) [a (2κ + εp) − 2µ] (µ − aκ) [a (2κ + εp) + 2µ]

)

= 8a2µ2(p + 1)

(
−a2p2 + 2aεµp − 2(µ2 − a2κ2) 2(µ2 − a2κ2)

−2(µ2 − a2κ2) a2p2 + 2aεµp + 2(µ2 − a2κ2)

)
, (B1)

provided that a2 = 1 − ε2 and µ2 = κ2 − ν2 can be verified
with the help of a computer algebra system.

Another convenient matrix relation

(
a(εµ + aν)(p + 1) − 2(ε2µ2 − a2ν2) a(εµ − aν)(p + 1) + 2(ε2µ2 − a2ν2)

a(εµ − aν)(p + 1) − 2(ε2µ2 − a2ν2) a(εµ + aν)(p + 1) + 2(ε2µ2 − a2ν2)

)

×
(

−a2p2 + 2aεµp − 2(ε2µ2 − a2ν2) 2(ε2µ2 − a2ν2)

−2(ε2µ2 − a2ν2) a2p2 + 2aεµp + 2(ε2µ2 − a2ν2)

)

×
(

a(aν + εµ)p + 2(ε2µ2 − a2ν2) a(aν − εµ)p − 2(ε2µ2 − a2ν2)

a(aν − εµ)p + 2(ε2µ2 − a2ν2) a(aν + εµ)p − 2(ε2µ2 − a2ν2)

)
= 2a4p2

×

⎛⎜⎜⎝
(a2ν2 + µ2ε2)(p + 1) + 2ν(a2ν2 − µ2ε2)

(2ν − p)−1
−(p + 2ν)(p + 2ν + 1)(a2ν2 − µ2ε2)

(p − 2ν)(p − 2ν + 1)(a2ν2 − µ2ε2)
(a2ν2 + µ2ε2)(p + 1) − 2ν(a2ν2 − µ2ε2)

(p + 2ν)−1

⎞⎟⎟⎠ , (B2)

when ε2κ2 − ν2 = µ2 − a2κ2 = ε2µ2 − a2ν2, can be derived
in a similar fashion.
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