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Physics counterpart of the PT non-Hermitian tight-binding chain
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We explore an alternative way of finding the link between a PT non-Hermitian Hamiltonian and a Hermitian
one. Based on the analysis of the scattering problem for an imaginary potential and its time-reversal process, it
is shown that any real-energy eigenstate of a PT tight-binding lattice with on-site imaginary potentials shares
the same wave function with a resonant transmission state of the corresponding Hermitian lattice embedded in a
chain. It indicates that the PT eigenstate of a PT non-Hermitian Hamiltonian has a connection to the resonance
transmission state of the extended Hermitian Hamiltonian.
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I. INTRODUCTION

An imaginary potential usually appears in a system to
describe physical processes phenomenologically due to its
simplicity, which was investigated under the non-Hermitian
quantum mechanics framework [1–10]. To discuss and explore
the usefulness of the imaginary potential, one has to be able to
establish a correspondence between a non-Hermitian system
and a real physical system in an analytically exact manner.
The effort to establish a parity-time (PT ) symmetric quantum
theory as a complex extension of the conventional quantum
mechanics [11–17] was stimulated by the discovery that a
non-Hermitian Hamiltonian with simultaneous PT symmetry
has an entirely real quantum mechanical energy spectrum [18]
and has profound theoretical and methodological implications.

When speaking of the physical significance of a non-
Hermitian Hamiltonian, it is implicitly assumed that there ex-
ists another Hermitian Hamiltonian, which shares the complete
or partial spectrum with it. Thus one of the ways of extracting
the physical meaning of a pseudo-Hermitian Hamiltonian with
a real spectrum is to seek for its Hermitian counterparts [8–10].
The metric-operator theory outlined in Ref. [11] provides
a mapping of such a pseudo-Hermitian Hamiltonian to an
equivalent Hermitian Hamiltonian. However, the obtained
equivalent Hermitian Hamiltonian is usually quite compli-
cated [11,19] and cannot be judged whether it describes real
physics or is just an unrealistic mathematical object.

In this article, we try to find an alternative way to establish
the connection between a pseudo-Hermitian Hamiltonian and a
physics system. We consider a simple class of discrete systems,
which are originally exploited to describe the solid-state
systems in condensed matter physics. In such systems, the
imaginary potential usually appears as source or sink, acting as
the connection to the outer world. In this sense, the eigenstates
of an unbroken PT non-Hermitian Hamiltonian seem to
be the dynamical equilibrium states of an open system.
The strategy of this article is to seek the ways of analytical
continuation of the eigenfunctions of a PT non-Hermitian
Hamiltonian into the stationary scattering states of an extended
Hermitian system. It indicates that the PT eigenstate of a
PT non-Hermitian Hamiltonian has a connection to the
resonance transmission state of the extended Hermitian
Hamiltonian.

*songtc@nankai.edu.cn

This article is organized as follows, Sec. II is the scattering
problem of the imaginary potential. In Sec. III, the connection
between a resonant transmission state and a PT -symmetry
eigenstate is established. In Sec. IV, the illustrative examples
are presented to demonstrate the main idea of this article.
Section V is the summary and discussion.

II. SCATTERING PROBLEM OF THE IMAGINARY
POTENTIAL

The first problem we address in our search for a physically
meaningful PT non-Hermitian Hamiltonian is how to asso-
ciate the individual imaginary potential with the Hermitian
subnetwork. Recently the formal theory of scattering for
complex potentials in a one-dimensional continuous system
was constructed (for review see Ref. [20] and references
therein). To establish such a correspondence in a discrete
system, we consider a simple model described by a non-
Hermitian Hamiltonian Hγ . It is a tight-binding chain with
uniform nearest-neighbor hopping integrals and an additional
imaginary on-site potential on one site of a semi-infinite chain,
which can be written as follows

Hγ = Hlγ + Hg + Hsub,

Hlγ = −J

−1∑
l=−∞

(a†
l al+1 + H.c.) − iγ a

†
0a0,

(1)
Hg = −g(a†

0a1 + a
†
1a0),

Hsub =
Ns∑

i,j=1

κij (a†
i aj + H.c.),

where a
†
l is the creation operator of the boson (or fermion) at

the lth site, the tunneling strengths and imaginary potential
are denoted by J, g, and −iγ (γ > 0). We separate the
Hamiltonian into severval parts to characterize the config-
uration of the system. A sketch of such a system is given
in Fig. 1(a). Here Hlγ is a semi-infinite uniform chain with
one potential −iγ at the edge, Hg represents the coupling
between this chain and an arbitrary subnetwork described by a
Hermitian Hamiltonian Hsub. In this sense, the conclusion that
will be obtained is applicable for a large class of systems.

To investigate the role of the imaginary potential in a
discrete system, we will be concerned with the scattering
problem of such a system: An incident plane wave eikj or
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FIG. 1. (Color online) Schematic illustration of configurations of
the typical tight-binding networks with imaginary potentials and their
Hermitian counterparts. (a) The scattering process of an absorptive
(absorbing) imaginary on-site potential, where Hsub is an arbitrary
Hermitian subnetwork. (b) The corresponding Hermitian counterpart
network of (a), which ensures the same wave function as (a) within the
common region. The system consists of system (a) and an attaching
lead. (c) and (d) describe the situations of (a) and (b) under the time-
reversal operations. Note that (c) represents the scattering process
of a new network different from (a), while (d) corresponds to the
time-reversal scattering process of (c) in the same system.

a broad wave packet comes from the leftmost and is reflected
and transmitted at the imaginary potential. The process can be
represented by the wave function f1(j )a†

j |0〉 (j ∈ (−∞, Ns])
with

f1(j � 0) = eikj + r1e
−ikj , (2)

where r1 represents the reflection amplitude. The explicit form
of the wave function f1(j > 0) within the subnetwork depends
on the the structure of Hsub. Generally speaking, the solution
of r1 cannot be obtained exactly even if the explicit form of
Hsub is given. However, we will see that it does not affect the
conclusion.

In the basis {a†
j |0〉 |j ∈ (−∞, Ns]}, the Schrödinger equa-

tions have the explicit form

−Jf1(j − 1) − Jf1(j + 1) = Ef1(j ) (j < 0),

−Jf1(−1) − gf1(1) = (E + iγ )f1(0),

−gf1(0) +
Ns∑
i=1

κi1f1(i) = Ef1(1) (3)

Ns∑
i=1

κijf1(i) = Ef1(j ) (j ∈ [2, Ns]),

within all the regions. We will show that such a scattering
process can occur in a Hermitian system.

It is well known that an imaginary potential, by means of an
effective interaction, can serve as a reduced description for the
outer world of an open system. Along this line, we consider
a similar lattice system to Hγ , described by a Hermitian

Hamiltonian HV . In this network, the imaginary potential is
replaced by a real potential V and a semi-infinite chain is
added, which acts as the complementary subspace or outer
word if Hγ is regarded as an open system. The corresponding
Hamiltonian has the form

HV = HlV + Hg + Hsub + Hν + Hlν

HlV = −J

−1∑
l=−∞

(a†
l al+1 + H.c.) + V a

†
0a0

(4)
Hν = −ν(a†

0b1 + b
†
1a0)

Hlν = −J

∞∑
l=1

(b†l bl+1 + H.c.),

where b
†
l is also the creation operator of the boson (or fermion)

at the lth site. HlV has a real potential V at the joint point of
two semi-infinite uniform chains.

A sketch of such a system is given in Fig. 1(b). Note that
the two systems assigned the same subnetwork j ∈ (−∞, Ns],
which is referred to as the common region. The corresponding
scattering wave functions within the two semi-infinite chains
are f2(j )a†

j |0〉 and f̃ (j )b†j |0〉 with

f2(j � 0) = eikj + r2e
−ikj ,

(5)
f̃ (j > 0) = teikj .

In the basis {a†
j |0〉|j ∈ (−∞, Ns], bj

†|0〉|j ∈ (1,+∞]},
the Schrödinger equations are

−Jf2(j − 1) − Jf2(j + 1) = Ef2(j ) (j < 0),

−Jf2(−1) − gf2(1) − νf̃ (1) = (E − V )f2(0),

−gf2(0) +
Ns∑
i=1

κi1f2(i) = Ef2(1), (6)

Ns∑
i=1

κijf2(i) = Ef2(j ), (j ∈ [2, Ns]),

and

−νf2(0) − J f̃ (2) = Ef̃ (1),
(7)

−J f̃ (j − 1) − J f̃ (j + 1) = Ef̃ (j ) (j > 1).

We can see that the Eqs. (3) and (6) within the common region
have the same form except for the ones at the zeroth site with
potentials. For the the same incident plane wave eikj , we have

E = −2J cos k, (8)

and furthermore, one can find that under the conditions

ν2 sin k = γ J , ν2 cos k = V J, (9)

the solutions for r1 and r2 are identical. The above equivalent
conditions can also be given in the energy-dependent form

ν2 = 2γ J 2

�
, V = −γE

�
, (10)

where � = √
4J 2 − E2. Then the wave functions (2) and (5)

within j ∈ [−∞, Ns] are the same. This indicates that for
the incident plane wave eikj , the imaginary potential can be
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regarded as a semi-infinite chain for wave escaping. It is worth
pointing out that it is a conditional equivalence, which is only
for the specific state. This equivalence is the building block
for the investigation of this article.

Now we consider the relevant situations derived from
the obtained results. We are interested in the case when
the imaginary potential is source-like. Actually, applying the
time-reversal operation on the previous scattering processes,
[i.e., taking the complex conjugation for Eqs. (1) and (4)]
the corresponding time-reversal solutions can be obtained,
which are illustrated in Figs. 1(c) and 1(d). Figure 1(c) shows
that the time-reversal solutions are for the new system Hγ̄ =
Hγ (γ → −γ ). Nevertheless, its counterpart HV is invariant
under time reversal. Figure 1(d) illustrates the corresponding
time-reversal process of that in Fig. 1(b). Based on the
processes in real physical systems illustrated in Figs. 1(b) and
1(c), the physics of the imaginary potential becomes clear: −iγ

acts as a drain lead, while iγ acts as a source lead associated
with an incoming plane wave. Although this is not a surprising
result, we still verify it explicitly in a strict manner and will
apply it to a PT non-Hermitian system.

III. RESONANT TRANSMISSION CONDITION
AND PT SYMMETRY

The previous result is essentially about the stationary state
for the infinite non-Hermitian system. Intuitively, a source
and drain can produce a stationary state in a finite system
between them when the gain rate is equal to the loss rate,
or in an open system with injecting sources and absorbing
sinks. The conceptual framework is required to substantiate
this idea. In this section, we consider the stationary state
of a non-Hermitian system based on the obtained scattering
solutions of the imaginary potential.

Although we cannot get the explicit solution about the
reflection amplitude r , the corresponding time-reversal process
illustrated in Fig. 1(c) exhibits the facts: For an incident
plane wave with amplitude 1, the reflected amplitude from
the absorptive potential −iγ is r , while for an incident plane
wave with amplitude r∗, the reflected amplitude from the
source potential iγ is just 1. The fact |r| = |r∗| indicates that
if we combine the building blocks from Figs. 1(a) and 1(c)
to construct a finite network with the geometry illustrated in
Fig. 2(a), the stationary state may be formed in the following
manner: a wave comes from the sources and sends back its
time-reversed version. On the other hand, such a configuration
has the PT symmetry spontaneously, which was shown to
process a real-energy eigenstate under certain conditions. In
the aid of its Hermitian counterpart shown in Fig. 2(b), one
can find that, in the case of the stationary state being formed,
it just corresponds to the resonant transmission. Therefore
the existence of the real-energy eigenstate of a PT -symmetric
system is connected to the occurrence of resonant transmission
in a Hermitian system. It follows that we can find an alternative
Hermitian counterpart to a PT -symmetric Hamiltonian in
the sense that they share the same eigenfunction within
the common region. This should be the way more directly
associated with the physics of the PT -symmetric system. In
the following sections, we will study the formation of the

iγ−iγ
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V

(b)

Ae

Be−

Ae

Be− ee

V

H H

H H

FIG. 2. (Color online) Schematic illustration of configurations of
a non-Hermitian tight-binding network with PT symmetry and its
Hermitian counterpart. They are constructed based on the building
blocks represented in Fig. 1. It indicates that an eigenstate (stationary
state) of (a) corresponds to a resonant transmission state of (b).

PT symmetrical state by dealing with the more tractable
models.

IV. ILLUSTRATIVE EXAMPLES

In this section, we investigate a simple exactly solvable
system to illustrate the main idea of this article. To exemplify
the previously mentioned analysis of relating the stationary
states of a non-Hermitian PT -symmetric Hamiltonian and a
Hermitian one, we take Hsub to be the simplest network: a
uniform chain. Then the sample Hamiltonian has the form

Hγ γ̄ = −J

N+2Ns−1∑
l=1

(a†
l al+1 + H.c.)

+ iγ a
†
Ns+1aNs+1 − iγ a

†
N+Ns

aN+Ns
, (11)

which is sketched in Fig. 3(a). It has PT symmetry (i.e.,
HPT

γ γ̄ = PT Hγ γ̄PT = Hγ γ̄ ), which was studied systemati-
cally in the case of zero Ns [19]. Here P and T represent
the space-reflection operator (or parity operator) and the time-
reversal operator, respectively. The corresponding Hermitian
Hamiltonian reads

HV V =
[
−J

N+2Ns−1∑
l=1

a
†
l al+1 − J

±∞∑
l=±1

b
†
l bl±1

− ν
(
a
†
Ns+1b−1 + a

†
Ns+Nb1

) + H.c.

]

+V
(
a
†
Ns+1aNs+1 + a

†
Ns+NaNs+N

)
, (12)

which is sketched in Fig. 3(b). It is a P-symmetric system (i.e.,
[P,H ] = 0) which was studied in the framework of Bethe
ansatz in the case of zero V [21]. The effects of P and T on
the discrete system are

T iT = −i, Pa
†
l P = a

†
N+2Ns+1−l , Pb

†
l P = b

†
−l . (13)

Note the region {a†
l |0〉, l ∈ [1, N + 2Ns]} is regarded as the

common region of the two models. In the following, we present
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FIG. 3. (Color online) Schematic illustrations of a tight-binding
network with PT symmetry and its Hermitian counterpart, where
Hsub is a simple chain of length Ns . An exact Bethe-ansatz solution
shows that the eigenstate of (a) accords to the equal-energy resonant
scattering state of (b) under the condition (9).

the analytical results in the framework of Bethe ansatz for the
two models to perform a comprehensive study.

A. PT chain Hγ γ̄

According to the PT -symmetric quantum mechanics [16],
system Hγ γ̄ can be further classified to be either unbroken
PT symmetry or broken PT symmetry, which depends on
the symmetry of the eigenstates |ψγ

k 〉 in different regions of γ .
The time-independent Schrödinger equation is

Hγ γ̄

∣∣ψγ

k

〉 = ε
γ

k

∣∣ψγ

k

〉
, (14)

with corresponding eigenvalue ε
γ

k . The system is unbroken
PT symmetry if all the eigenfunctions have PT symmetry

PT
∣∣ψγ

k

〉 = ∣∣ψγ

k

〉
, (15)

and all the corresponding eigenvalues are real simultaneously.
This classification depends on the value of the parameter γ .
Beyond the unbroken PT -symmetric region the system is a
broken PT symmetry, where Eq. (15) does not hold for all
the eigenfunctions and the eigenvalues of broken PT -
symmetric eigenfunctions are complex. We denote the single-
particle eigenfunction in the form |ψγ

k 〉 = ∑
f

γ

k (l)a†
l |0〉.

According to the Bethe-ansatz method, the eigenstates can
be in the form of

f
γ

k =
⎧⎨
⎩

CLeikj + DLe−ikj , j ∈ [1, Ns + 1]
Aeikj + Be−ikj , j ∈ [Ns + 1, Ns + N ]
CReikj + DRe−ikj , j ∈ [Ns + N,N + 2Ns]

. (16)

The coefficients {A,B,CL(R),DL(R)} and the quasimomentum
k are to be determined by the matching conditions

f
γ

k (j + 0+) = f
γ

k (j + 0−),
(17)

(j = Ns + 1, Ns + N ),

and the corresponding Schrödinger equations of j (j �= Ns +
1, N + Ns) in the center of the system

−Jf
γ

k (j + 1) − Jf
γ

k (j − 1) = ε
γ

k f
γ

k (j ), (18)

the Schrödinger equations of j for the sites j = Ns + 1
and Ns + N

−Jf
γ

k (Ns + 2) − Jf
γ

k (Ns)

= (
ε

γ

k − iγ
)
f

γ

k (Ns + 1),−Jf
γ

k (Ns + N + 1)

− Jf
γ

k (Ns + N − 1)

= (
ε

γ

k + iγ
)
f

γ

k (Ns + N ), (19)

and for the edges of the system j = 1 and N + 2Ns

−Jf
γ

k (2) = ε
γ

k f
γ

k (1)
(20)

−Jf
γ

k (N + 2Ns − 1) = ε
γ

k f
γ

k (N + 2Ns).

These lead to the equation of k

−γ 2χ2
k [eik(N−1) − e−ik(N−1)]

= J 2[eik(N+2Ns+1) − e−ik(N+2Ns+1)], (21)

where

χk = eik(Ns+1) − e−ik(Ns+1)

eik − e−ik
. (22)

The solutions of k can be classified in two categories: physical
and unphysical states, which correspond to real and complex k,
respectively. The corresponding energies are real or complex
and in the form

ε
γ

k = −J (eik + e−ik). (23)

A straightforward algebra shows that there are at least (N − 1)
solutions of real k for arbitrary γ /J . In this article, we only
focus on the physics counterparts of these states rather than
the detailed form of the solutions.

B. Hermitian counterpart HV V

For the Hamiltonian Eq. (12), it has P and T symmetry
simultaneously (i.e., PHV VP = T HV V T = HV V ). Neverthe-
less, for a scattering state, a plane wave comes from the
leftmost, the P and T symmetry are broken. We will show
that under certain conditions, the wave function within the
common region of Hγ γ̄ and HV V has PT symmetry.

We can set the scattering wave function in the form of

f V
k =

⎧⎨
⎩

Cs
Leikj + Ds

Le−ikj , j ∈ [1, Ns + 1]
Aseikj + Bse−ikj , j ∈ [Ns + 1, Ns + N ]
Cs

Reikj + Ds
Rre−ikj , j ∈ [Ns + N,N + 2Ns]

,

(24)

and

f̃ V
k =

{
eikj + re−ikj j ∈ (−∞,−1]
teikj , j ∈ [1,+∞)

, (25)

where f V
k represents the one within the common region, while

f̃ V
k represents the one in the two leads. The reflection and trans-

mission amplitudes r, t , coefficients {As, Bs, Cs
L(R),D

s
L(R)}

and the quasimomentum k are to be determined by the
matching conditions

f V
k (j + 0+) = f V

k (j + 0−), (j = Ns + 1, N + Ns)

f̃ V
k (Ns + 1) = f V

k (Ns + 1) (26)

f̃ V
k (Ns + N ) = f V

k (Ns + N ),
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and the corresponding Schrödinger equations of j in the center
of the system

−Jf V
k (j + 1) − Jf V

k (j − 1) = ε
γ

k f V
k (j )

(27)
−J f̃ V

k (j + 1) − J f̃ V
k (j − 1) = ε

γ

k f̃ V
k (j ),

Schrödinger equations of j for the connection sites Ns + 1,

Ns + N

−νf̃ V
k (−1) − Jf V

k (Ns + 2) − Jf V
k (Ns)

= (
ε

γ

k − V
)
f V

k (Ns + 1),−νf̃ V
k (1) − Jf V

k (Ns + N + 1)

− Jf V
k (Ns + N − 1)

= (
ε

γ

k − V
)
f V

k (Ns + N ), (28)

and for the edges of the system j = 1, N + 2Ns

−Jf V
k (2) = ε

γ

k f V
k (1)

(29)
−Jf V

k (N + 2Ns − 1) = ε
γ

k f V
k (N + 2Ns).

The solution for reflection amplitude r is given, after a
straightforward algebra, by

r = 2iν2ξ sin(k) sin2[k(N − 1)]

J 2 sin2(k) − J 2ξ 2 sin2[k(N − 1)]
− 1, (30)

where

ξ = V

J
+ sin[kN ]

sin[k(N − 1)]
− ν2

J 2
eik − sin[kNs]

sin[k(Ns + 1)]
. (31)

We are interested in the resonant transmission state, which
should be relevant to the PT eigenstate of Hγ γ̄ , according to
the previous time-reversal analysis. For r = 0 we have

2iν2ξ sin(k) sin2[k(N − 1)]

= J 2 sin2(k) − J 2ξ 2 sin2[k(N − 1)]. (32)

The analysis in Sec. II indicates that, under the
conditions (9), there should be a resonant transmission state
corresponding to the eigenstate of Eq. (11). In fact, substituting
Eq. (9) into Eq. (32), one can obtain

γ 2 sin2[k(Ns + 1)] sin[k(1 − N )]

= J 2 sin2(k) sin[k(N + 2Ns + 1)], (33)

which is just the reduced form of Eq. (21) for the real
quasimomentum k. It can be shown exactly that there are
at least N − 1 real solutions for Eq. (33). This exhibits
the connection between the two models (11) and (12) pre-
dicted by the previously mentioned analysis. Accordingly,

we have
CL(R)

Cs
L(R)

= DL(R)

Ds
L(R)

= A

As
= B

Bs
, (34)

which shows that both functions within the common re-
gion are identical, that is, the scattering wave function
{r, t , As, Bs , Cs

L(R),D
s
L(R)} is the analytical continuation of the

one {A,B,CL(R),DL(R)}.
Thus two eigenstates of the Hamiltonian (11) belong to the

resonant transmission scattering states of two different systems
(with different V and v). In this sense, nonorthogonality of the
eigenstates of a pseudo-Hermitian Hamiltonian is obvious. In
general the norm of a wave function is conserved in a Hermitian
system, while the norm of many components of the wave
function is not. These wave components may be associated
with a truncated basis set, or a subspace of the full Hilbert
space. The common region of Hγ γ̄ and HV V is a concrete
example in the discrete system to demonstrate this fact.

V. CONCLUSION AND DISCUSSION

In conclusion, we present an alternative way of finding
the link between a PT non-Hermitian Hamiltonian and
a Hermitian one, based on the analysis of the scattering
problem for an imaginary potential. We find that the on-site
absorptive imaginary potential can be equivalent to an attached
semi-infinite chain as a drain with respect to a specific wave
scattering problem. Applying this result and its extension to
the time-reversal process on the PT non-Hermitian system,
the eigenstate problem is connected to that of the resonant
transmission problem in the corresponding Hermitian system.
It is shown that any real-energy eigenstate of a PT tight-
binding lattice with on-site imaginary potentials shares the
same wave function with a resonant transmission state of the
corresponding Hermitian lattice embedded in a chain.

It is not surprising that the PT eigenstate has a connection
to the resonance transmission state of the extended system. In
general, for an infinite system with parity (P) symmetry, it also
has the time-reversal (T ) symmetry. An arbitrary scattering
state, as an eigenstate of the system, probably breaks the P, T ,
and also PT symmetries simultaneously. Interestingly, in the
case of the resonance transmission, the corresponding wave
function possesses PT symmetry. Such wave functions can
be the eigenstates of the PT non-Hermitian system with the
real eigenvalues.

We acknowledge the support of the CNSF (Grant Nos.
10874091 and 2006CB921205).
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