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Collective uncertainty in partially polarized and partially decohered spin-1
2 systems
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It has become common practice to model large spin ensembles as an effective pseudospin with total angular
momentum J = Nj , where j is the spin per particle. Such approaches (at least implicitly) restrict the quantum
state of the ensemble to the so-called symmetric Hilbert space. Here, we argue that symmetric states are not
generally well preserved under the type of decoherence typical of experiments involving large clouds of atoms
or ions. In particular, symmetric states are rapidly degraded under models of decoherence that act identically
but locally on the different members of the ensemble. Using an approach [Phys. Rev. A 78, 052101 (2008)] that
is not limited to the symmetric Hilbert space, we explore potential pitfalls in the design and interpretation of
experiments on spin-squeezing and collective atomic phenomena when the properties of the symmetric states are
extended to systems where they do not apply.
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I. INTRODUCTION

For a variety of fundamental and technological reasons,
there is considerable interest in studying quantum fluctuations
in the angular momentum of large atomic or ionic spin ensem-
bles [1–11]. From a theoretical perspective, modeling such
systems is complicated by the fundamental property of quan-
tum mechanics that the Hilbert space HN describing N spin-j
particles grows exponentially with the number of particles,
dim HN = (2j + 1)N . As a result of exponential scaling, it has
become common practice to look for dynamical symmetries
that reduce the effective dimension of the spin ensemble by
restricting its state to a manageable sub–Hilbert space [12,13].
One then makes inferences about the properties of the large en-
semble based on those of the sub–Hilbert space. But, of course,
the validity of such inferences depends critically on how well
the actual spin system respects the symmetries used to formu-
late the reduced-dimensional description of its quantum state.

Although limited exceptions exist [13,14], most work
to date on reducing the effective dimension of large spin
systems has focused on the symmetric group [12,15,16]: the
sub–Hilbert space H S

N ⊂ HN spanned by N -body states that
are invariant under the permutation of particles �̂ij |ψ〉 =
|ψ〉, |ψ〉 ∈ H S

N . In theory, the symmetric group provides
a model of experiments that cannot distinguish between
particles during any portion of state preparation, manipulation
or measurement. For spin-1/2 ensembles, the dimension of the
symmetric group grows only linearly in the number of spin-
1/2 particles, dim H S

N = N + 1 � 2N , making it extremely
amenable to simulation and analysis. Yet, the symmetric
states still exhibit interesting multiparticle phenomena, such as
entanglement [12], spin-squeezing [17], and zero-temperature
quantum phase transitions [10,18–21].

This favorable trade-off between manageable size and
nonclassical behavior has made the symmetric group the sub–
Hilbert space of choice for analyzing large spin ensembles—
indeed, any approach that models a large spin ensemble as a
collective pseudospin of size J = Nj [1,10,15,16,22–27] is
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grounded at least implicitly in the theoretical underpinnings
of particle exchange symmetry [13]. To justify using the sym-
metric Hilbert space as a realistic model, two key assumptions
are generally made:

Assumption 1. The degree of spin polarization that is
achieved in practice (such as by optical pumping and possibly
additional purification) is sufficient to prepare the ensemble
into a state that is well described by a nearly pure symmetric
state and ideally by a spin-coherent state.

Assumption 2. Symmetric states are nearly preserved under
low to moderate levels of decoherence, at least of the
variety typically encountered in practice, such as that due to
spontaneous emission of a far-detuned probe laser.

Furthermore, it is generally taken to be true that reasonable
laboratory efforts to achieve homogeneous coupling to the
electromagnetic fields used to manipulate and measure the
ensemble correspond to conditions well approximated by
permutation invariance. Under these assumptions, several key
properties of symmetric states, reviewed in Sec. II A2, have
played a central role in the design and interpretation of
experiments involving large spin ensembles:

Interpretation 1. Spin-polarized states, such as those ob-
tained by optical pumping, exhibit minimum uncertainty in
angular-momentum observables transverse to the direction
of polarization 〈�Ĵ⊥a

〉 = √
N/2 [28] with respect to the

Heisenberg-Robertson inequality (h̄ = 1)

〈�Ĵ⊥1〉〈�Ĵ⊥2〉 � |〈[Ĵ⊥1 , Ĵ⊥2 ]〉|/2. (1)

Interpretation 2. Classical noise, or the uncertainty that
results from a classical mixture of spin eigenstates, grows
faster than

√
N and linearly in N for the worst case. Projection

noise scaling that grows faster than
√

N can be used to
diagnose the presence of classical uncertainty in the ensemble.

These properties are such fundamental characteristics of the
symmetric states that it has become common laboratory prac-
tice to view a linear increase in spin polarization coinciding
with a square-root increase of spin-projection noise [5] with
atom number as a signature of a spin-coherent state. These
misconceptions may have even lead to the mischaracterization
of spin uncertainty prior to the most recent experiments on
spin-noise reduction in large atomic ensembles [29–32].
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A. Local-symmetric versus collective-symmetric decoherence

For the symmetric Hilbert space H S
N to remain an accurate

description of a spin ensemble’s state (provided that the initial
state is an element of H S

N ), the system’s dynamics must
be generated by completely collective-symmetric processes:
processes that are themselves permutation invariant and thus
expressible in terms of collective operators

Ŝ =
∑

n

ŝ(n). (2)

Such operators apply the same single-particle operator ŝ ∈
su(2) to each atom in the ensemble, where ŝ(n) = 1̂1 ⊗ · · · ⊗
1̂n−1 ⊗ ŝn ⊗ 1̂n+1 · · · ⊗ · · · 1̂N acts nontrivially only on the nth

particle. As such, Eq. (2) is explicitly permutation invariant by
construction.

Unfortunately, many of the decoherence models most
appropriate for large spin ensembles cannot be described as
collective-symmetric processes even when the decoherence
acts identically on each particle. Consider the open system
dynamics governed by the master equation

dρ̂(t)

dt
= −γL[ŝ]ρ̂(t), (3)

where decoherence acts with the same rate γ but locally on
every member of the ensemble via the Lindbladian

LS[ŝ]ρ̂ ≡
N∑

n=1

ŝ(n)ρ̂[ŝ(n)]† − 1

2
([ŝ†ŝ](n)ρ̂ + ρ̂[ŝ†ŝ](n)). (4)

The (N + 1)-dimensional symmetric-group Hilbert space H S
N

is not preserved under such dynamics, as the Lindblad
superoperator cannot be expressed in terms of collective
operators. It has thus become common practice [25,26] to study
decoherence in spin ensembles by approximating Eq. (4) by
its associated collective-symmetric process

LC[Ŝ]ρ̂ ≡ [Ŝρ̂Ŝ† − 1
2 (Ŝ†Ŝρ̂ + ρ̂Ŝ†Ŝ)]. (5)

Equation (5) is more amenable to analysis and simulation
because it preserves the (N + 1)-dimensional symmetric
states. But, it is not always a good physical model. In atomic
systems, for example, a typical source of decoherence comes
from spontaneous emission, yet radiative processes described
by collective operators only occur under stringent conditions,
such as super-radiance from highly confined atoms [33] or
some cavity-QED and spin-grating settings [3]. Even in these
cases, the extent to which N atoms behave as a single point-
particle dipole moment is imperfect at best. Under typical
experimental conditions, Eq. (5) is often an inappropriate
model of decoherence, regardless of how much easier it is
to analyze.

B. Main results

In this article, we argue that the statistics of collective
angular-momentum operators in large spin ensembles are not
well predicted by the behavior of the symmetric group. The
following results fall in stark contrast with the conventional
wisdom surrounding large spin ensembles:

1. The uncertainty in collective spin obervables for the
completely depolarized state of N spin-1/2 particles

scales as
√

N with the number of particles, a scaling that
is analytically equivalent to that of a pure spin-coherent
state.

2. For large ensembles, optical pumping does not produce
an approximately pure symmetric state even at high
levels of spin polarization. For example, even with an
optical-pumping efficiency of 99.9%, the purity of an
ensemble with N ∼ 106 spin-1/2 particles is vanish-
ingly small, tr[ρ̂2] ∼ 10−409, while its overlap with
the symmetric group is about 10−205. Both decrease
exponentially with N .

3. For partially polarized ensembles (e.g., incomplete op-
tical pumping), the uncertainty in transverse collective
spin observables 〈�Ĵ⊥i〉 scales as

√
N with the number

of particles, while the polarization 〈Ĵ‖〉 scales linearly
in N . Thus, essentially every state of the ensemble
corresponding to incomplete optical pumping exhibits
the same scaling behavior as an actual spin-coherent
state.

4. If one could prepare a pure initial spin-coherent state,
even small levels of decoherence rapidly transform the
ensemble state into one that is extremely mixed and
very poorly described by a symmetric state. In fact, we
predict that an ensemble with N ∼ 105 particles which
has decohered by 20% (its polarization has dropped to
80% that of the initial coherent state) has a rather small
purity, approximately 10−92 630.

5. Collective states with very little overlap in the symmet-
ric group and vanishing purity can still be metrologi-
cally significant, such as those produced by the coun-
tertwisting Hamiltonian undergoing local-symmetric
decoherence. These states can exhibit more spin-
squeezing, characterized by the squeezing parameter
ξ 2, than those produced under the conventional model
of collective-symmetric decoherence.

C. Nomenclature

Prior to beginning a detailed analysis, it is beneficial
to establish upfront the nomenclature that will be used to
describe the different classes of quantum states and dynamical
processes investigated in this work. Unfortunately, the
historical development of the study of spin ensembles has
handed down to us some inconsistent definitions arising from
liberal use of the words “symmetric” and “collective.” As an
attempt to alleviate confusion, we present here a glossary of
terms as used below.

We consider the following classes of states:

1. Symmetric states (or the symmetric group) are those
quantum states that are invariant under exchange of particle
labels. These states transform in the same manner as the
maximum angular-momentum irreducible representation of
the rotation group. Such states provide a theoretical model
of physical systems in which no aspect of the dynamics
can distinguish between different particles in the system
and are equivalent to modeling the N -particle system as a
single pseudo-spin with fixed total angular momentum. The
properties of symmetric states are analyzed in Sec. II A2. Such
states ρ̂S are indicated by the superscript S.
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2. Generalized-collective states (or just “collective states”)
extend the symmetric group to the class of states that transform
according to the irreducible decomposition of the rotation
group in a manner that does not distinguish between degenerate
representations with the same total angular momentum. The
properties of the generalized collective states are analyzed in
Sec. II. Such states ρ̂C are indicated by the superscript C.

And we consider the following classes of operators and
dynamical processes:

1. Collective operators denote any operator that is invariant
to exchange of particle labels, as defined in Eq. (2).

2. Collective-symmetric processes map symmetric states
to symmetric states according to the form in Eq. (5). These
processes correspond to operations that do not distinguish
between particle labels and are expressed entirely in terms
of collective operators. Such maps LC are indicated by the
superscript C.

3. Local-symmetric processes map generalized collective
states to collective states via local-symmetric maps of the form
of Eq. (4). Local-symmetric processes constitute dynamics that
act identically, but individually, on each member of the spin
ensemble. Such maps LS are indicated by the superscript S.

II. GENERALIZED COLLECTIVE STATES OF THE
ENSEMBLE

Consider an ensemble of N identical spin-1/2 parti-
cles described by the single-particle Pauli operators σ̂ (n) =
(σ̂ (n)

x , σ̂ (n)
y , σ̂ (n)

z ) and corresponding angular-momentum oper-

ators ĵ (n)
a = σ̂ (n)

a /2 [28]. The joint Hilbert space for the en-
tire spin ensemble H = H (1) ⊗ · · · ⊗ H (N) has dimension
dim(H ) = 2N , and arbitrary pure states of the ensemble can
be expressed in the tensor product basis

|ψ〉 =
∑
mn

cm1,...,mN
|m1,m2, . . . , mN 〉, (6)

where the basis states |m1, . . . , mN 〉 = | 1
2 ,m1〉1 ⊗ · · · ⊗

| 1
2 ,mN 〉N are simultaneous eigenkets of [ĵ (n)]2 and ĵ (n)

z :

[ĵ (n)]2|m1, . . . , mN 〉 = jn(jn + 1)|m1, . . . , mN 〉 (7)

ĵ (n)
z |m1, . . . , mN 〉 = mn|m1, . . . , mN 〉. (8)

Each particle in the ensemble transforms separately under
rotation such that |ψ ′〉 = [D

1
2 (R)]⊗N |ψ〉, where D

1
2 (R) is the

spin-1/2 rotation operator parameterized by the Euler angles
R = (α, β, γ ). Expressed in the tensor-product basis, the
[D

1
2 (R)]⊗N provide a reducible representation for the rotation

group but can be decomposed into irreducible components
(irreps)

D(R) =
Jmax⊕

J=Jmin

⎡
⎣ dJ

N⊕
i=1

DJ,i(R)

⎤
⎦ (9)

via the total spin eigenstates
Ĵ 2|J,M, i〉 = J (J + 1)|J,M, i〉 (10)

Ĵz|J,M, i〉 = M|J,M, i〉 (11)

with the collective spin operators Ĵa = 1
2

∑N
n=1 σ̂ (n)

a and J =
1/2 mod(N, 2), . . . , N/2. For each total angular momentum

J , the quantum number i = 1, . . . , dJ
N distinguishes between

the

dJ
N = N !(2J + 1)

(N/2 − J )!(N/2 + J + 1)!
(12)

degenerate irreps with total angular momentum J [34]. It is
readily shown that the degeneracy function satisfies

N/2∑
J=0

(2J + 1)dJ
N = 2N . (13)

A. Generalized collective states

In the “irrep basis,” arbitrary pure states of the spin
ensemble are expressed as

|ψ〉 =
∑
J,M,i

cJ,M,i |J,M, i〉, (14)

which still requires 2N coefficients [refer to Eq. (13)]. Of
course, simply transforming to the irrep basis does not change
the effective dimension of the Hilbert space, but it suggests the
symmetry that was used to develop the concept of generalized
collective states in Ref. [13]. Such states are described by the
sub–Hilbert space H C

N ⊂ HN spanned by N -particle states
that are indistinguishable across the dJ

N degenerate irreps for
each total angular momentum J . This generalized permutation
symmetry cJ,M,i = cJ,M,i ′ ,∀i, i ′ makes it unnecessary to dis-
tinguish basis kets |J,M, i〉 with respect to their irrep label. By
defining effective basis kets |J,M〉, all degenerate irreps with
the same angular momentum J are represented by a single
J-irrep block. The generalized collective states are

|ψC〉 =
∑
J,M

cJ,M |J,M〉, (15)

with the rescaled coefficients

cJ,M =
√

1

dJ
N

dJ
N∑

i=1

cJ,M,i , (16)

where the summation is over the dJ
N copies of the irrep with

total angular momentum J . Under this symmetry, dim(H C
N ) =

(N + 2)2/4 (for N even) scales only quadratically with the
number of particles in the ensemble. While not as convenient
as the linear dimensional scaling of the symmetric group, the
O(N2) scaling of the generalized collective states is still a
vast improvement over exponential scaling and is sufficient to
allow simulations with at least 100 or so particles.

When studying decoherence and other open-system dynam-
ics of a spin ensemble, it is necessary to work with the density
operator of the system rather than a state vector. The collective
state density operator is defined as the direct sum over the
reduced density operators ρ̂J for each J -irrep block [13]

ρ̂C ≡
⊕

J

ρ̂J =
∑

J

∑
M,M ′

ρJ,M;J,M ′ |J,M〉〈J,M ′|. (17)

As defined, the collective density operator restricts against
coherence between irrep blocks. It is shown in Ref. [13]
and in Sec. III that local-symmetric maps exhibit a type of
super-selection property, which prevents them from generating
coherences between irrep blocks. Generalized collective states
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are therefore sufficient to model any dynamics of the form in
Eq. (4), provided that the initial state satisfies Eq. (17).

1. Irrep populations and purity

The structure of generalized collective states can be
analyzed by considering the fraction of the population that
resides within each J -irrep block

pJ = tr[ρ̂J ], (18)

where ρ̂J is the reduced density matrix defined in Eq. (17). The
overlap of a generalized collective state with the symmetric
group is therefore given by

pN/2 = tr[ρ̂N/2]. (19)

Another important distinction between symmetric and gener-
alized collective states is that the collective states can be mixed
over J -irrep blocks even if all of the reduced density operators
ρ̂J are internally pure. From Eq. (16) the purity of the full
density operator ρ̂ is given by

Purity = tr[ρ̂2] =
∑

J

1

dJ
N

tr
[
ρ̂2

J

]
. (20)

2. The symmetric states

The symmetric states previously considered for large spin
ensembles are a special case of the generalized collective
states [13]: H S

N ⊂ H C
N is spanned by the maximal angular-

momentum manifold: cJ,M = 0 for J �= N/2 and d
N/2
N = 1.

Since the symmetric states only have support on the maximum-
J irrep, their trace vanishes on all irrep blocks except for
J = N/2, tr[ρ̂J ] = δJ,N/2, thus providing a simple test to
determine whether a collective state is also symmetric. The
symmetric states can be defined equivalently as the manifold
of states that can be reached from the maximum Ĵz eigenstate
|N/2, N/2〉 ↔ | 1

2 , . . . , 1
2 〉 using only maps generated by

collective operators, Eq. (2) (the z-polarized state |N/2, N/2〉
is clearly permutation invariant).

The spin-coherent states are a special case of the symmetric
states, defined by the manifold of states that are simply
connected to the z-polarized state |N/2, N/2〉 by a rotation

|θ, φ〉 = D(θ, φ)|N/2, N/2〉. (21)

It is well known, and readily shown, that the expecta-
tion value along the direction of spin polarization Ĵθ,φ =
D(θ, φ)ĴzD †(θ, φ) is given by

〈θ, φ|Ĵθ,φ |θ, φ〉 = 〈N/2, N/2|Ĵz|N/2, N/2〉 = N

2
(22)

with 〈�Ĵθ,φ〉 = 0 while the transverse expectation values
vanish for the spin-coherent state

〈Ĵ⊥1〉 = 1

2
〈N/2, N/2|(Ĵ+ + Ĵ−)|N/2, N/2〉 = 0 (23)

〈Ĵ⊥2〉 = i

2
〈N/2, N/2|(Ĵ+ − Ĵ−)|N/2, N/2〉 = 0, (24)

but the transverse variances do not

〈�2Ĵ⊥i
〉 = 1

4
〈N/2, N/2|Ĵ+Ĵ−|N/2, N/2〉 − 0 = N

4
.

(25)

The scaling of the spin projection noise 〈�Ĵ⊥i
〉 = √

N/2 for
a coherent state is the basis for Interpretation 1, described in
Sec. I.

The completely mixed state of a spin system with total
angular momentum j is given by ρ̂ = 1̂2j+1/(2j + 1), and
therefore the completely mixed symmetric state is

ρ̂S
mixed =

(
1

N + 1

)
1̂N/2 ⊕ 0̂N/2−1 ⊕ · · · ⊕ 0̂, (26)

which has the property that it is completely depolarized with
respect to all collective spin operators

〈Ĵa〉 = 1

N + 1
tr[Ĵa] = 0. (27)

The variance in collective spin observables

〈�2Ĵa〉 = 1

N + 1
tr
[
Ĵ 2

a

] − 〈Ĵa〉2 = N (N + 2)

12
(28)

is a direct consequence of the permutation-invariance con-
straint tr[ρ̂N/2] = 1. This linear scaling of the spin projection
noise for the mixed state ρ̂S

mixed is the basis for Interpretation
2, described in Sec. I.

3. The completely mixed collective state

When permutation-invariance is lifted (retaining invariance
only over the degenerate copies of irreps), the completely
mixed state of the N spins generalizes to

ρ̂C
mixed =

⊕
J

1

dJ
N

dJ
N⊕

i=1

1̂J

2J + 1
= 1

2N

⊕
J

dJ
N 1̂J . (29)

That is, for each irrep contribution to the direct sum, the
elements of the density operator are given by the ratio of the
degeneracy of that irrep to the total dimension of the Hilbert
space,

ρ̂J,M;J,M ′ = 2−NdJ
NδM,M ′

= N !(2J + 1)δM,M ′

2N (N/2 − J )!(N/2 + J + 1)!
, (30)

precisely as would be expected. Normalization of the com-
pletely depolarized state is readily verified using Eq. (13).
Once again, the expectation values of all collective angular-
momentum operators vanish

〈Ĵa〉 = 0, (31)

but their variance does not

〈�2Ĵa〉 = 1

2N
tr

[⊕
J

dJ
N Ĵ 2

a

]
− 〈Ĵa〉2

=
N/2∑
J=0

J (J + 1)dJ
N

3 · 2N
= N

4
. (32)

In fact, the uncertainty of all collective spin observables with
respect to the completely mixed state is quantitatively identical
to that of the spin-coherent state

〈�Ĵa〉 =
√

N

2
. (33)
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III. LOCAL-SYMMETRIC DYNAMICS AND
COLLECTIVE-STATE PRESERVING PROCESSES

The superoperator

Lρ̂C =
∑

J

∑
M,M ′

ρJ,M;J,M ′f J
MM ′ (34)

will preserve collective states L : H C
N → H C

N if its action

f J
MM ′ = L|J,M〉〈J,M ′| (35)

can be expressed in the irrep basis in such a way that it
does not distinguish between degenerate irreps f

J,i
MM ′ = f

J,i ′
MM ′ .

Operators that transform simply with respect to the rotation
group

Ŝ =
⊕

J

ŜJ =
∑

J

∑
M,M ′

sJ
M,M ′ |J,M〉〈J,M ′|, (36)

including the collective angular-momentum operators Ĵa and
all collective operators Ŝ = ∑N

n=1 ŝ(n) formed from ŝ(n) ∈
su(2), satisfy the requirement of invariance over degenerate
irreps by construction.

But as discussed in Sec. I A, processes that are identical
only with respect to local single-particle superoperators,

LS[ŝ]ρ̂ =
N∑

n=1

L(n)[ŝ(n)]ρ̂ =
∑

n

ŝ(n)ρ̂(ŝ(n))†, (37)

do not transform simply under rotations. Our present work
is made possible by results from our previous demonstration
that any local-symmetric map of the form in Eq. (37) can
be brought into the form of Eq. (34) and therefore preserves
collective states [13]. For the su(2) operator

ŝ = �s · σ̂ = s01̂ + s+σ̂+ + s−σ̂− + szσ̂z (38)

expressed in the basis {σ̂−, σ̂+, σ̂z, 1̂}, the action of Eq. (37)
can be constructed as

f J
MM ′ = �s · g(J,M,M ′) · �s† (39)

from the tensor operator [28]

gqr =
N∑

n=1

σ̂ (n)
q |J,M〉〈J,M ′|σ̂ (n)†

r . (40)

The elements of g can be derived recursively [13] to give

gqr = AJ,M
q AJ,M ′

r

2J

×
(

1 + αJ+1
N (2J + 1)

dJ
N (J + 1)

)
|J,M + q〉〈J,M ′ + r|

+ BJ,M
q BJ,M ′

r αJ
N

2JdJ
N

|J − 1,M + q〉〈J − 1,M ′ + r|

+ αJ+1
N DJ,M

q DJ,M ′
r

2(J + 1)dJ
N

|J + 1,M + q〉〈J + 1,M ′ + r|
(41)

where the reduced degeneracies are given by αJ
N = ∑N/2

J ′=J dJ ′
N

and the coefficients are defined as

A
J,M
± = +

√
(J ∓ M)(J ± M + 1) (42)

AJ,M
z = M (43)

B
J,M
± = ±

√
(J ∓ M)(J ∓ M − 1) (44)

BJ,M
z =

√
(J + M)(J − M) (45)

D
J,M
± = ∓

√
(J ± M + 1)(J ± M + 2) (46)

DJ,M
z =

√
(J + M + 1)(J − M + 1). (47)

The three terms in Eq. (41) arise from two types of processes:
(Term 1) transitions that occur between M levels within
a single J irrep; and (Terms 2–3) transitions that couple
neighboring irreps with �J = ±1. It is this coupling between
irreps that prevents maps of the form in Eq. (4) from preserving
symmetric states and that makes collective-symmetric models
of decoherence inadequate for modeling spin ensembles under
most laboratory conditions.

IV. EXAMPLES

We have found simulations of large spin systems to be an
invaluable tool for studying the properties of local-symmetric
decoherence. Even though the effective dimension of the
generalized collective states grows faster that that of the
symmetric group, O(N2) rather than O(N ), it is still possible
to run simulations over a sufficient range to make both
qualitative and quantitative predictions. As such, we have
performed simulations aimed at addressing the following
specific questions:

1. “Is it possible to prepare a large spin system into
a state that is well-approximated by a spin-coherent
state, and thus a symmetric state?” Time-evolving the
density operator for a spin system under a model of
optical pumping enables us to analyze the purity and
irrep structure of the system as it is spin-polarized
from an initial mixed state, including what happens
for incomplete polarization.

2. “Do symmetric states remain a good model of spin
ensembles subject to limited decoherence?” Time-
evolving the N -particle density operator under a local-
symmetric model of spin depolarization enables us
to study the relationship between the expectation
value and uncertainty of collective angular-momentum
operators as well as the irrep structure of the state as it
decoheres from an initial spin-coherent state.

3. “Is the practice of approximating local-symmetric
decoherence models with their associated collective-
symmetric processes justified if only expectation values
and uncertainties of collective operators are of inter-
est?” Time-evolving the system under an entangling
Hamiltonian and contrasting the effect of the different
decoherence models allows us to compare their collec-
tive statistics.

A. Partial polarization of the spin ensemble

To determine whether symmetric states, and in particular
spin-coherent states, provide a good description of a large
spin ensemble subject to optical pumping, we considered the
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FIG. 1. (Color online) Simulation of a model of spin-polarization dynamics, corresponding for example to optical pumping computed for
N = 50 (plots a1 and a2) and N = 100 (plots b1-b2) spin-1/2 particles. Beginning from the completely mixed state Eq. (29), the spin ensemble
evolves under the local-symmetric z-axis polarizing channel given by Eq. (48). As the dynamics proceed (a1 and b1), the mean polarization
〈Ĵz〉 increases while its uncertainty 〈�Ĵz〉 decays. The transverse uncertainties, 〈�Ĵx〉 = 〈�Ĵy〉 = √

N/2, are a constant of the motion. The
evolution of the J -irrep block traces (plots a2 and b2) clearly shows that despite 〈Ĵz〉 quickly approaching maximum polarization, the J < Jmax

irrep blocks are still highly populated and the state is quite mixed.

local-symmetric polarizing channel

dρ̂(t)

dt
= γLS[ĵ+]ρ̂(t), (48)

which describes the effective spin-1/2 dynamics that arise
when radiative excited states are adiabatically eliminated from
atoms with two ground states under conditions where the
atoms are coupled to a circularly polarized laser field [35].
It is readily shown that the steady state corresponding to the
local-symmetric polarizing channel is the spin-coherent state
|θ = 0, φ = 0〉, i.e., the state that is polarized along the positive
z-axis, with 〈Ĵz〉 = N/2.

Under typical laboratory conditions, however, optical
pumping does not achieve complete polarization; pumping
falls short of reaching the steady state of Eq. (48) [32,36].
Figures 1(a1) and 1(b1) plot the time evolution of the collective
expectation value 〈Ĵz〉 and uncertainties, 〈�Ĵx〉, 〈�Ĵy〉, and
〈�Ĵz〉, as the spin ensemble evolves from a completely mixed
initial state, Eq. (29), for N = 50 and N = 100 particles. As
expected, the spin polarization 〈Ĵz〉 increases monotonically
from its initial value of zero, coinciding with a decrease in 〈Ĵz〉
as the system progresses toward the maximum-Ĵz eigenstate.
The transverse uncertainties, 〈Ĵx〉 and 〈Ĵy〉, are constants of

the motion: beginning at
√

N/2 for the completely mixed state
and remaining at

√
N/2 at all times as the system progresses

toward the |0, 0〉 spin-coherent state.
Figures 1(a2) and 1(b2) show the irrep decomposition and

purity of the spin ensemble as it is gradually polarized under
the dynamics of Eq. (48). The reduced traces pJ = tr[ρ̂J ] are
shown for each of the irrep blocks, for J = 0, 1, . . . , N/2
(for clarity, only the irrep blocks with J close to Jmax = N/2
are labeled on the plot). The initial completely mixed state
has an extremely small overlap with the symmetric group and
a purity that is exponentially small in N . As the dynamics
proceed, population is gradually transferred to irreps with
increasing angular momentum. Furthermore, the progression
of the state to higher J -irrep blocks is apparently slower for
N = 100 particles than for N = 50 particles. For N = 50,
the maximum-J irrep (symmetric group) begins to show
a non-negligible population when the spin polarization is
approximately 80% of N/2. For N = 100 particles, however,
the symmetric group does not begin to be populated until nearly
90% spin polarization. The behavior of the purity [dashed
lines in Figs. 1(a2) and 1(b2)] is more dramatic. Even at 98%
spin polarization, the state of the ensemble is far from pure:
tr[ρ̂2] < 0.4 for N = 50 and tr[ρ̂2] < 0.2 for N = 100.
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The apparent decrease in purity and overlap with the
symmetric group for a given level of spin polarization as the
number of particles is increased is explored further in Fig. 2.
For each value of N , the state of the system is evolved under
Eq. (48) from a mixed state at t = 0 until the time when the
fractional spin polarization

f = 〈Ĵz〉
N/2

(49)

achieves a target value. The corresponding state is then
analyzed to determine its overlap with the symmetric group
pN/2 = tr[ρ̂N/2] and its purity tr[ρ̂2]. Figure 2(a) plots the
results for fractional polarizations f = 92%, 95%, and 98%
over the range 4 � N � 120. As can be seen from Fig. 2(a),
both the overlaps with the symmetric group (solid lines) and the
purities (dotted lines) decrease exponentially with the number
of spins N over the range of N that could be analyzed. Given
the consistency of the simulation data as a function of N , it
seems reasonable to extrapolate the results to higher values of
N by fitting the data to an exponential form:

tr[ρ̂2] ≈ 10−η
op
p N and tr[ρ̂N/2] ≈ 10−η

op
s N . (50)

Values of the exponents η
op
p and η

op
n for various fractional

polarizations f are listed in Table I. The results are quite
dramatic, suggesting that even at very high levels of spin
polarization, such as f = 99.9%, the purity and symmetric-
group overlap achieved by optical pumping in typical ex-
periments are both vanishingly small, e.g., tr[ρ̂N/2] ∼ 3 ×
10−21 for N = 105. Thus, it seems reasonable to conclude
that symmetric states are vastly inadequate for describing
such ensembles.

Figure 2(b) shows the scaling of the mean polarization
〈Ĵz〉 and the transverse uncertainties, 〈�Ĵx〉 and 〈�Ĵy〉, as a
function of N for different levels of optical pumping efficiency.

TABLE I. Fitted values of the scaling exponents in Eq. (50) for
the purity tr[ρ̂2] and overlap with the symmetric group tr[ρ̂N/2] that
is partially polarized to a fixed level of spin-polarization f beginning
from an initial completely mixed state.

f ηop
p ηop

s

80.0% 0.0856200 0.0454300
90.0% 0.0424700 0.0218100
95.0% 0.0209700 0.0106200
98.0% 0.0084510 0.0042460
99.0% 0.0041670 0.0020890
99.9% 0.0004082 0.0002042

As expected, the mean polarization scales linearly with N . For
incomplete optical pumping, its value is degraded with respect
to the maximum value by the factor f . That is, 〈Ĵz〉 = f N/2.
More surprisingly, perhaps, is that the transverse uncertainties,
〈�Ĵx〉 and 〈�Ĵy〉, are always equal to

√
N/2 regardless of

the degree of spin polarization. This result illustrates that
there is a fundamental flaw in the laboratory practice of
identifying a spin-coherent state simply from scaling behavior:
spin polarization that scales as N coinciding with transverse
uncertainty that scales as

√
N . Rather, such an identification

is only possible provided with a high-quality, independent
measurement of N .

B. Decoherence from a spin-coherent state

To assess whether symmetric states provide a good model
of large spin systems subject to decoherence, we considered
the dynamics

dρ̂(t)

dt
= γLS

DP ρ̂(t) (51)
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FIG. 2. (Color online) Demonstration that the symmetric states provides an extremely poor model of a large spin ensemble that is
incompletely polarized under the local-symmetric polarizing channel, Eq. (48), beginning from an initial completely mixed state. Plot (a) shows
the scaling of the purity tr[ρ̂2] (dashed lines) and overlap with the symmetric group tr[ρ̂N/2] (solid lines) for systems that have been polarized to
92%, 95%, and 98% of 〈Ĵ max

z 〉 = N/2. Both the purity and overlap with the symmetric group are seen to decrease exponentially in N . Plot (b)
shows that the spin-polarization 〈Ĵz〉 grows linearly in N while the transverse uncertainties grow as

√
N even for systems that are incompletely

polarized.
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FIG. 3. (Color online) As the state of a spin ensemble decoheres from a coherent state under the local-symmetric depolarizing channel,
Eq. (52), the mean spin-polarization 〈Ĵz〉 decreases from its maximum value of N/2; however, the transverse uncertainties, 〈�Ĵx〉 and 〈�Ĵy〉
remain constant with the value

√
N/2. As the ensemble decoheres, population is transferred out of the symmetric group and into total-J irreps

with J < Jmax, as indicated by the evolving irrep traces tr[ρ̂J (t)], as the purity of the state tr[ρ̂2] (dotted line) decreases accordingly. Comparison
of the decoherence dynamics for N = 50 (a) versus N = 100 (b) particles suggests that the state of the system leaves the symmetric group
more rapidly as N increases.

of an initial spin-coherent state subject to the local-symmetric
depolarizing channel

LS
DP = (LS[ĵx] + LS[ĵy] + LS[ĵz]). (52)

As discussed in the introduction, the local-symmetric depo-
larizing channel acts identically but locally on each spin in
the ensemble, which is in contrast to the collective-symmetric
analog of Eq. (52), which is written using collective operators

LC
DP = (LC[Ĵx] + LC[Ĵy] + LC[Ĵz]). (53)

Figure 3 plots the time evolution of the expectation
value 〈Ĵz〉 and uncertainties, 〈�Ĵx〉, 〈�Ĵy〉, and 〈�Ĵx〉, of
the collective spin operators for ensembles consisting of
N = 50 and N = 100 particles beginning from the initial
z-polarized spin-coherent state |θ = 0, φ = 0〉. As expected,
the expectation value 〈Ĵz〉 decreases in time while the uncer-
tainty 〈�Ĵz〉 increases; however, the uncertainties 〈�Ĵy〉 and
〈�Ĵx〉 are constants of the motion, in contrast to the behavior
that would be observed under Eq. (53). The irrep block traces
are plotted as a function of time in the bottom panels of Fig. 3
for N = 50 and N = 100 particles. It is evident from the plots
that the symmetric group quickly becomes a poor description
of the state of the spin ensemble: the trace tr[ρ̂N/2] of the
maximum J -irrep block quickly decays. For N = 50 particles

at 95% polarization tr[ρ̂25] < 0.6, indicating that much of
the population has been transferred to lower J -irrep blocks.
For N = 100 at 95% polarization, the departure from the
symmetric group is even more dramatic, with tr[ρ̂50] < 0.35.
As N becomes larger, this behavior becomes more pronounced
and even minimal decoherence produces significant deviation
from the symmetric states. Analogous to the fitting procedure
described in Sec. IV A, the purity and symmetric group overlap
can be extrapolated to higher numbers of particles according
to the exponential fits

tr[ρ̂2] ≈ 10−η
dp
p N and tr[ρ̂N/2] ≈ 10−η

dp
s N . (54)

Values of the exponents η
dp
p and η

dp
n for various decoherence

levels (measured by the remaining fractional polarization f )
are listed in Table II. Again, the results are dramatic, suggesting
that even at low levels of decoherence, the remaining purity and
symmetric-group overlap become exponentially small. Thus,
it also seems reasonable to conclude that symmetric states
are vastly inadequate for describing a spin ensemble subject
to small amounts of decoherence even if it were possible
to prepare an initial spin-coherent state. The scalings of the
symmetric-group overlap and purity are plotted as a function
of N in Fig. 4 for various levels of depolarization.
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FIG. 4. (Color online) The purity tr[ρ̂2] (dotted lines) and
symmetric group overlap tr[ρ̂N/2] (solid lines) are plotted for a system
that has decohered by 2%, 5%, and 15% of 〈Ĵ max

z 〉 = N/2 from an
initial spin-coherent state under Eq. (52).

Figure 5 depicts the structure of the density operator, ex-
pressed in irrep-block basis, for various levels of decoherence.
For the sake of clarity, the figure was generated for a rather

TABLE II. Fitted values of the scaling exponents in Eq. (54) for
the purity tr[ρ̂2] and overlap with the symmetric group tr[ρ̂N/2] that
has decohered to a fixed level of spin-polarization f beginning from
an initial spin-coherent state.

f ηdp
p ηdp

s

80.0% 0.09263 0.04944
85.0% 0.07182 0.03768
90.0% 0.04946 0.02552
92.0% 0.04165 0.02138
95.0% 0.02552 0.01296
98.0% 0.01719 0.008685
99.0% 0.008685 0.004365

small number of atoms N = 16; however, we have verified
that the qualitative results generalize to higher N . As the
dynamics proceed from the initial spin-coherent state toward
the depolarized state, irrep blocks with lower total angular
momentum, J < Jmax become populated. The steadily
decreasing value of the spin polarization 〈Ĵz〉 is therefore
a result of two mechanisms: deocherence within each irrep
block, and mixing between the blocks. Throughout this
process, the transverse uncertainties of the collective spin

10% Depolarization

50% Depolarization

Initial Coherent State

J = 8

J = 7

J = 6

J = 5

J = 40

0

30% Depolarization

3

FIG. 5. (Color online) A fully polarized state undergoing no decoherence is confined to the symmetric group corresponding to the highest
J -irrep block. As the state becomes decohered under the depolarization channel Eq. (52), population from the highest J -irrep is transferred
to lower J -irrep blocks. Simulations show that even for N = 16 particles, as seen above, mild amounts of decoherence ∼ 10% significantly
deplete the J = 8-irrep block and the state is driven far from the manifold of symmetric states. At 30% decoherence, only a vestigial trace
population remains in the J = 8-irrep block.
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FIG. 6. (Color online) Plot (a) compares the uncertainty in
the collective spin observables 〈�Ĵa〉 for the steady states of the
local-symmetric depolarizing channel Eq. (52) versus the collective-
symmetric depolarizing channel Eq. (53) as a function of the number
of spin-1/2 particles, N . In the case of collective-symmetric decoher-
ence, the calculated steady state of LC

DP agrees with Eq. (26) and the
calculated uncertainty (squares) matches that of the completely mixed
symmetric state, with 〈�Ĵa〉 = √

N (N + 2)/12 (dotted line). For
the local-symmetric decoherence model LS

DP , the calculated steady
state agrees with Eq. (29) and the calculated uncertainty (circles)
matches that of the completely mixed generalized collective state,
with 〈�Ĵa〉 = √

N/2 (solid line). In the latter case, the uncertainty
scales identically to that of a spin-coherent state, despite that it is
completely mixed. Plot (b) indicates the computational resources
required to find the steady state as a function of N : the memory
required to store the Liouville superoperator for LS

DP (squares,
right-side axis) and the time required to find the λ = 0 eigenstate
ρ̂ss (circles, left-side axis).

operators, 〈�Ĵx〉 and 〈�Ĵy〉 do not increase, even though the
uncertainties in individual irrep blocks do.

1. Projection noise of the depolarized state

We compared the scaling of the uncertainty in the collective
spin observables Ĵx , Ĵy , and Ĵz, for the steady-state solutions
to the local-symmetric Eq. (52) versus collective-symmetric
Eq. (53) models of decoherence as a function of the number of
particles N . To do so, we determined the steady-state density
operator ρ̂ss corresponding to the decoherece dynamics by

solving

Lρ̂ss = 0. (55)

In practice, this is accomplished by expressing both the
quantum state ρ̂ and the superoperator L in their associated
Liouville representations, where ρ̂ is an O(N2 × 1)-
dimensional column vector and L is an O(N2 × N2)-
dimensional sparse matrix. The steady-state density operator
is then given by the eigenvector associated with the λ = 0
eigenvalue of L.

Our results are illustrated by Fig. 6(a). The uncertainties of
the collective spin observables 〈�Ĵa〉 for the steady state of
the local-symmetric depolarizing decoherence superoperator
Eq. (52) as a function of the number of particles N are shown
by the circles. As expected, for a completely depolarized
steady state, all of the collective spin uncertainties are identical
〈�Ĵx〉 = 〈�Ĵy〉 = 〈�Ĵz〉. Furthermore, the uncertainties scale
as

√
N with the number of particles, verified by the agreement

of the data points with the predicted uncertainty scaling of
the completely depolarized state derived in Eq. (33). For
comparison, the uncertainties of the collective spin observables
〈�Ĵa〉 were also computed for the steady-state solutions to the
collective-symmetric depolarizing channel, Eq. (53), as a func-
tion of the number of particles [squares in Fig. 6(a)]. Again, all
uncertainties are equal for the completely depolarized steady
state; however, the scaling with N is linear, in accordance with
Eq. (28).

Figure 6(b) shows the computational resources required to
simulate generalized collective states. The practical limitation
to the maximum value of N that could be analyzed was
determined by the time required to compute the λ = 0
eigenvector ofLS

DP . Two hours were required to do so for N =
120 even though the memory required to store the Liouville
representation of Eq. (52), which was only on the order of 30
MB for N = 120 (although the swap-space consumed by the
eigensolver was at least 5 GB for the N = 120 calculation).

C. Decoherence and dynamical spin squeezing

As a final example, we compare and contrast the dynamics
of a spin system that is subject to Hamiltonian evolution gener-
ated by a collective operators as it undergoes local-symmetric
versus collective-symmetric models of decoherence. Specifi-
cally, we compare evolution under the master equation

dρ̂(t)

dt
= −i[Ĥ , ρ̂(t)] + γLS

DP ρ̂(t) (56)

versus the master equation

dρ̂(t)

dt
= −i[Ĥ , ρ̂(t)] + γLC

DP ρ̂(t) (57)

for the “counter-twisting” Hamiltonian [17]

Ĥ = −iλ(Ĵ 2
+ − Ĵ 2

−) (58)

that has previously been used to study spin squeezing within
the symmetric group.

Dynamics were simulated for a variety of values of N ,
λ, and γ beginning from a z-polarized spin-coherent state
|θ = 0, φ = 0〉. Figure 7(a) plots the time evolution of the
collective expectation value 〈Ĵz〉 and transverse uncertainties,
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FIG. 7. (Color online) Simulations of N = 50 particles evolving under the counter-twisting Hamiltonian Ĥ = −iλ(Ĵ 2
+ − Ĵ 2

−) with either
collective-symmetric, local-symmetric, or no decoherence. Plot (a) shows that although the expectation 〈Ĵz〉 and uncertainty 〈�Ĵx〉 evolve in a
qualitatively similar manner for the three models, the Ĵy uncertainty does not: the local-symmetric and no-decoherence models exhibit a decrease
in 〈�Ĵy〉, but the collective-symmetric model increases. As a result, the local-symmetric and no-decoherence models exhibit spin-squeezing
while the collective-symmetric model does not, as evidenced in the plot of the squeezing parameter ξ 2 = N〈�2Ĵy〉/〈Ĵz〉2 in plot (b).

〈�Ĵx〉 and 〈�Ĵy〉, for the specific case of N = 50, λ =
1/50, and γ = 4/50. As expected, the mean polarization
〈Ĵz〉 decreases over time in all three cases. In the absence
of decoherence this apparent depolarization is a by-product
of the increased uncertainty in Ĵx , i.e., the antisqueezing,
even though the state remains pure. When decoherence is
added, increased depolarization is observed, as expected
[comparison of the dotted, dashed, and solid lines for 〈Ĵz〉 in
Fig. 7(a)]. This depolarization is noticeably more pronounced
under the model of collective-symmetric decoherence than
under the local-symmetric model. The time evolution of the
transverse uncertainties, 〈�Ĵx〉 and 〈�Ĵy〉, also shows that the
local-symmetric model of decoherence degrades the collective
statistics less so than does collective-symmetric decoherence.

Each taken alone, neither the uncertainty reduction 〈�Ĵy〉
nor the depolarization 〈Ĵz〉 assesses the utility of the spin
system for precision measurement [5,6]. Figure 7(b) plots the
time evolution of the squeezing parameter

ξ 2 = N
〈
�Ĵ 2

y

〉
〈Ĵz〉2 + 〈Ĵx〉2

, (59)

which provides a metric for characterizing the sensitivity
of spin-resonance measurements relative to that of a spin-
coherent state (for which ξ 2 = 1). It is evident from the plot
that, even in the presence of decoherence, the squeezing
parameter can drop below ξ 2 = 1. Although it would be
technically incorrect to refer to the state of the ensemble
as a “spin-squeezed state” (as such a state as typically
defined constitutes a relatively pure symmetric state) [17],

it would appear that a metrological improvement over an
actual spin-coherent state is possible even in the presence of
local-symmetric decoherence under Eq. (52).

V. CONCLUSION

We have identified a number of flaws inherent in using
the qualitative properties of symmetric states for modeling the
behavior of large spin ensembles. In the most state-of-the-
art laboratory settings, experiments involve atom numbers
ranging from 5 × 103 to 5 × 107. Under these conditions,
it is uncommon to find optical pumping efficiencies bet-
ter than 95–98%, and in many cases the degree of spin
polarization may be much worse. However, for even the
best examples of spin polarization, we have found that
the resulting state is not well described by a pure spin-
coherent state although the expectation values of collec-
tive spin operators values may approximately coincide with
those of a coherent state. Furthermore, even when sufficient
care is taken in the laboratory to reduce decoherence to
minimal levels, highly mixed states with little overlap in
the symmetric group are inevitably produced. As a result
of these findings, we conclude that greater care must be
exercised when interpreting experiments on large spin systems
using scaling laws inferred from the properties of symmetric
states.
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