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Two-point density correlations of quasicondensates in free expansion
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We measure the two-point density correlation function of freely expanding quasicondensates in the weakly
interacting quasi-one-dimensional (1D) regime. While initially suppressed in the trap, density fluctuations emerge
gradually during expansion as a result of initial phase fluctuations present in the trapped quasicondensate.
Asymptotically, they are governed by the thermal coherence length of the system. Our measurements take place
in an intermediate regime where density correlations are related to near-field diffraction effects and anomalous
correlations play an important role. Comparison with a recent theoretical approach described by Imambekov
et al. yields good agreement with our experimental results and shows that density correlations can be used for
thermometry of quasicondensates.

DOI: 10.1103/PhysRevA.81.031610 PACS number(s): 03.75.Hh, 05.30.Jp, 63.22.−m, 71.45.Gm

Interacting Bose gases confined in strongly elongated traps
exhibit unique properties and quantum phases related to the
one-dimensional (1D) character of the underlying physics
[1–3]. They also represent one of the few complex many-body
systems which allow a direct comparison with exact and
often analytical theoretical description [4]. For such gases,
the smooth transition from a fully decoherent system to a
finite-size Bose-Einstein condensate is characterized by an in-
termediate quasicondensate regime where density fluctuations
are suppressed [5] whereas axial phonon-like excitations are
thermally populated. As a result, the gas displays 1D phase
fluctuations along its axial direction, strongly affecting its
coherence properties.

Early experimental evidences for this regime have been
obtained in expansion experiments where phase fluctuations of
the trapped quasicondensate turn into density fluctuations [6].
Momentum Bragg spectroscopy [7] and more recently matter-
wave interferometry [8–10] have allowed one to investigate in
depth the first-order coherence properties of such systems.
More involved interferometry schemes have been used to
measure the second-order correlation function of trapped
quasicondensates [11].

In this Rapid Communication we report on the experimental
measurement of the two-point correlation function of qua-
sicondensates released from a tight atom-chip wave guide.
The theoretical description of quasicondensate expansion is
motivated by the possibility of a unique mapping of the
emerging density correlations back to the trapped system [12].
In previous experiments, this was complicated by interaction-
induced hydrodynamic effects during expansion [6,13]. A
complete description of density correlations then requires
involved numerical calculations. Our samples are sufficiently
deep in the 1D regime so that the radial dynamics can be
neglected and the expansion can be considered as collisionless.
This allows us to apply the theory of Imambekov et al. [12]
and directly relate the density correlations in expansion to
the correlation length of phase fluctuations present in the

trapped system. Our measurements take place in a near-field
regime where the shape of the two-point correlation function
reflects the transition from the trapped system (suppressed
density fluctuations) to the asymptotic case (exponential decay
on a length scale given by the in-trap coherence length).
Extending on the work with elongated three-dimensional
(3D) Bose-Einstein condensates [13] we use the amplitude
of density fluctuations of quasicondensates for thermometry
in a temperature regime where conventional methods based on
the visibility of thermal atoms fail.

The starting point for our experiments is a thermal cloud
of 87Rb atoms in the |F = 1,mF = −1〉 state prepared in
a strongly anisotropic Ioffe-Pritchard-type wire trap on a
multilayer atom chip [14]. The measured trap frequencies
are ωr = 2π × 2.3 kHz in the radial and ωa = 2π × 19 Hz
in the axial direction. We use forced rf evaporation to
cool the gas into the quantum degenerate regime, the final
temperature is adjusted by limiting the effective trap depth to
(1 − 10)h̄ωr . To ensure thermal equilibrium, this situation is
maintained for several hundreds of milliseconds. We adjust an
additional hold time to keep an atom number of ≈3500 in all
presented experiments, making use of technical losses. This
corresponds to a peak atomic density of n1D(0) = 90 µm−1

and a chemical potential of µ/h̄ = 2π × 1.6 kHz = 0.7ωr

[15]. For temperatures T < h̄ωr/kB = 110 nK we realize the
regime of weakly interacting quasi-1D Bose gases (µ, kBT <∼
h̄ωr ) where the radial degrees of motion have negligible
influence on the system.1 In this regime the quasicondensate is
characterized by thermal phase fluctuations with a correlation
length λT = 2h̄2n1D/mkBT , m being the mass of the atoms.
For our experiment λT ranges from 0.25Ra to 0.5Ra where
2Ra = 64 µm is the axial size of the gas.

1For T < 20 nK we will expect a smooth crossover to a finite-size
condensate; this is, however, not accessible in our setup.
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FIG. 1. (a) Linear density profile for a short expansion time
(2 ms), where density fluctuations have not yet developed, and fitted
density profile [15]. (b) Linear density profile after 10 ms of free
expansion, showing high contrast density fluctuations, where the
averaged density profile (gray dashed line) is smooth. (c) Example
images of density fluctuations emerging during free expansion.

After preparation of the quasicondensate, the confining
atom-chip potential is suddenly switched off (within less than
10 µs) and the atomic density is imaged after an expansion time
texp using standard absorption imaging.2 During the switchoff,
the expansion changes from hydrodynamic to collisionless on
a time scale on the order of ω−1

r . During this time, short-range
fluctuations up to the size of δx = ξh µ/h̄ωr , ξh = h̄/

√
mµ

being the healing length, will be smeared, and are not visible
in the correlation function [12]. Since this length scale is on
the order of 100 nm it cannot be resolved with our imaging
system. For the visible density fluctuations we can therefore
assume ballistic expansion.

Typical experimental images are depicted in Fig. 1. Starting
from a smooth in situ density profile, the atomic density
develops density fluctuations in the course of the expansion,
reflecting the thermal phase fluctuations initially present in the
quasicondensate. In contrast to other work [16,17], density
fluctuations in the initial sample (e.g., due to corrugation
of the trapping potential) can be neglected here. In expan-
sion, each individual realization exhibits different density
fluctuations. The mean image, however, shows a smooth
profile.

The theoretical model by Imambekov et al. [12] describes
the axial shape of the density correlation function g2(x, texp)
of a uniform 1D Bose gas as a function of expansion
time, 1D density, and temperature (compare Fig. 2). To
allow for comparison with our experimental finite-size qua-
sicondensate, we determine an averaged two-point correla-
tion function g̃2 defined as follows: We first compute the
autocorrelation function for a single integrated density profile

2We find it interesting to note that (in the quasi-1D regime) important
information on the two-point correlation function of quasicondensates
can be obtained from standard absorption imaging without the need
for single-atom sensitivity or atom shot-noise-limited detection.

FIG. 2. Two-point correlation function of an ultracold 1D Bose
gas for different times texp after the release from the trap in the case of
weak interactions (quasicondensate limit). The units on both axes are
dimensionless. In the trap (texp = 0) g2(x) ≈ 1, the asymptotic limit
for texp → ∞ is g2(x) ≈ 1 + exp[−2|x|/(λT )].

∫
n1D(u)n1D(u + x)du and obtain G2(x) = 〈∫ n1D(u)n1D(u +

x)du〉 by averaging over many (several hundred) repeti-
tions. The function g̃2 is then obtained by normalizing with
the autocorrelation function of the mean density profile∫ 〈n1D(u)〉〈n1D(u + x)〉du.

Figure 3 shows experimentally obtained two-point density
correlation functions for two different temperatures after an
expansion time texp = 10 ms. We observe correlation well
in excess of 1 (bunching) for small relative distances, as
expected for an only partially coherent source such as a
phase fluctuating (and hence multimode) quasicondensate.
Furthermore, we find minimum correlations below 1 at
finite distance, which is a signature of the transition from
the trapped gas g2(x, texp = 0) ≈ 1 to the far-field limit

FIG. 3. Black dots (open diamonds): Measured correlation func-
tion g̃2(x) for 150 nK (60 nK) [i.e., h̄texp/mλ2

T = 0.18 (0.03)]. The
solid line (dashed line) shows the according theoretical prediction
convolved with the imaging PSF. (Inset) Solid line (dashed line):
corresponding theory curves not considering the imaging system.
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g2(x, texp → ∞) ≈ 1 + exp(−2|x|/λT ) throughout the free
expansion.

This behavior can be understood in terms of probability
flow in the relative distance space toward x = 0 resulting in
the deficit of probability to find a second atom within a certain
distance range. As texp increases, this range spreads toward
larger |x|. The depth of the minimum decreases as texp → ∞,
and finally the minimum vanishes for all finite |x|. Note that
the area below the g2(x, texp) function is maintained for all
expansion times. Alternatively, this behavior may be described
as near-field diffraction in terms of a matter wave analogous
to the Talbot effect [12]. The two-particle problem is reduced
to a single particle one by elimination of the center-of-mass
motion. The random phase of the matter-wave in the relative
coordinate is even due to Bose-Einstein statistics, which leads
to a g2(x) peak formation always at x = 0. As illustrated in
Fig. 2 the oscillatory behavior will only vanish for expansion
times on the order of seconds.

To compare theory and data, the finite resolution of the
imaging system has to be taken into account. Typical structure
sizes in the density fluctuations are on the order of the system’s
point spread function (PSF), which hinders the observation of
smaller features. The PSF can be determined, starting from
a description in Fourier space [18], which includes effects of
diffraction, pixel sampling, and finite extent of the cloud along
the optical axis. It is then approximated by a Gaussian curve
with a half width at half maximum (HWHM) of σ1 = 3.9 µm.
For two-point correlation data, this value becomes σ2 = √

2σ1.
The PSF is finally convolved with the theoretical prediction
for the correlation function g2(x). Figure 3 compares a
measured g̃2(x) function to a theoretical calculation based on
the experimental parameters and the imaging resolution. We
find excellent agreement without any adjustable parameters.

As the expansion time and the atomic 1D density are known
to high precision, the density correlation function can be used
to determine the temperature of the system in cases where this
information cannot be retrieved otherwise. In the interesting
temperature range from 20 nK to the critical temperature
Tc ≈ 350 nK, the density correlation function at zero distance
g2(0, texp) is a monotone function of T that can be calculated
in a straightforward fashion from [12] and can hence be used
for thermometry (compare Fig. 4).

Before comparing data to theory, again technical aspects
of the imaging system have to be considered. The noise
in absorption images is typically composed of atomic and
photonic shot noise and technical detector noise. We study
the noise characteristic of our system by evaluating images
integrated along the quasicondensate axis with and without
atomic signal. It shows that the dominating contribution
to noise is technical. Atomic shot noise can be neglected
since the main contribution to the variance on a single pixel
arises from the density fluctuations themselves. The technical
noise contribution is uncorrelated and therefore contributes to
g̃2(0, texp) only. To account for this noise in the analysis, we
use an empty region of each absorption picture and integrate
it in the same direction as the region of interest containing the
atomic signal. Then we calculate the variance of the empty
region and subtract this value from the autocorrelation of the
corresponding integrated region of interest before averaging
and normalization.

FIG. 4. Noise-corrected peak height of the correlation function
g̃2(x = 0, texp) plotted against the expected temperatures correspond-
ing to the calibration Tcal. The vertical error bars are given by the
statistical fluctuations, the horizontal ones indicate the accuracy
of the calibration. The theoretical prediction (grey) is plotted for
comparison, its width is given by the uncertainty in optical resolution.
The inset shows a comparison of calibrated temperature Tcal and
measured temperature Tmeas (black squares) to a line through origin
with unity slope (solid).

To evaluate whether measurements of density correlation
functions can be used for quantitative comparison, we need
an alternative temperature calibration for our samples. For
the quasi-1D regime that is currently accessible in our setup,
the condensate fraction is between 70% and 90%. For higher
temperatures (T > Tc/2) a more pronounced thermal fraction
is present and the temperature of the sample can be determined
by fitting a Bose function to the tails of the density profile. For
low temperatures, we perform a similar measurement using
a special fluorescence imaging scheme [18], which allows us
to detect small thermal fractions down to 10% in a single
measurement.3 To gauge the temperatures of our samples, we
relate the temperature of a single measurement to the final
value of the rf used for evaporative cooling. We find a linear
dependence over a range 4 Tc to 0.2 Tc.

In Fig. 4 we compare experimental values of g2(x =
0, texp) obtained for different temperatures to the theoretical
prediction based on [12] and find agreement within the error
bars. Note that we expect the theory to deviate from the
data for temperatures above 110 nK as the system becomes
increasingly 3D. Temperatures obtained from g2(x = 0, texp)
compared to temperatures derived from the calibration de-
scribed previously are in agreement with a straight line through
origin of slope one. We observe also a deviation from the
theoretical prediction for lower temperatures. This is expected
since the coherence length approaches the sample length for
low temperatures, whereas theoretical calculations assume an
infinite system.

3The ability to measure temperatures significantly below Tc is a
unique feature of our setup; it does not invalidate a broad interest in
alternative thermometry methods based on density correlations.
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For our experiments, the stability of the effective trap depth
is crucial, since it defines the reference point of the temperature
calibration. The precision of g̃2(x = 0, texp) is then given by the
statistical fluctuation of the measurement and the noise char-
acteristics of the imaging system. For 300 measurements we
achieve an accuracy of ≈ ±30 nK, where the main limitation
is given by the statistical fluctuations.

To conclude, we studied the two-point density correlation
function of quasicondensates in free, collisionless expansion.
We find an excess of correlations (bunching) at short
interparticle distance and an oscillatory behavior at finite
distances with correlations below unity, in good agreement
with the theoretical models of [12]. We show that a quantitative

comparison can be used for thermometry in regimes, where
conventional methods based on absorption imaging fail. We
are convinced that two-point density correlations provide a
powerful probe for one-dimensional and two-dimensional
systems, nonequilibrium dynamics [9], and integrability [19].
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