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Sign of coupling in barrier-separated Bose-Einstein condensates and stability of double-ring systems
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We revisit recent claims about the instability of nonrotating tunnel coupled annular Bose-Einstein condensates
leading to the emergence of angular momentum Josephson oscillation [Phys. Rev. Lett. 98, 050401 (2007)]. It
was predicted that all stationary states with uniform density become unstable in certain parameter regimes. By
careful analysis, we arrive at a different conclusion. We show that there is a stable nonrotating and uniform
ground state for any value of the tunnel coupling and repulsive interactions. The instability of an excited state
with π phase difference between the condensates can be interpreted in terms of the familiar snake instability.
We further discuss the sign of the tunnel coupling through a separating barrier, which carries significance for the
nature of the stationary states. It is found to always be negative for physical reasons.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) located in different
minima of an external potential created by magnetic or
light forces and coupled by tunneling through a potential
barrier have been the host to many exciting developments and
discoveries in recent years [1]. Phenomena explored include
analogs of the Josephson effect in double or multiple quantum-
well structures [2–4], gap solitons of repulsive BECs [5],
and quantum phase transitions [6]. Often these systems are
modeled by considering just one mode per potential minimum
and their linear coupling provided by tunneling through a
separating barrier. These simplified models, which are usually
labeled as two-mode or multiple-mode models, variants of the
Bose-Hubbard model, or the discrete nonlinear Schrödinger
equation, are tailored to describe certain properties or aspects
of the dynamics of the many-body system under investiga-
tion. Although there is an abundance of literature on such
models [7–16], there still appear to exist misconceptions about
the nature of the effective model parameters, especially the
sign of the tunnel coupling, as only few authors attempt
to calculate such parameters based on a more complete
theoretical treatment [11,13,14]. In addition, classic papers
disagree in explicit or implicit statements made about the sign
of the tunneling constant [7,8,17]. It is the purpose of this Brief
Report to clarify the matter.

The sign of the tunnel coupling bears special significance
in systems where the tunneling appears over an extended
(at least one-dimensional) region of space. Such systems
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have recently been analyzed by Bouchoule [18] and Kaurov
and Kuklov [19], who studied two parallel tunnel-coupled
cigar-shaped BECs. Related earlier studies [20] considered
the propagation of BECs in adiabatically split parallel wave
guides. In another recent work, Lesanovsky and von Klitzing
investigated the stability of tunnel-coupled annular BECs [21].
The latter paper points to an interesting dynamical instability
leading to the spontaneous formation of angular momentum
fluctuations. We will show in the following that the sign
on the tunnel coupling bears consequences on the nature
and stability of the stationary states found in the mean-field
treatment of tunnel-coupled BECs. Specifically, we find that
the system studied by Lesanovsky and von Klitzing has a
stable ground state for any value of the tunnel coupling and
repulsive interactions. The instability of an excited state with
π phase difference between the condensates can be interpreted
in terms of the familiar snake instability [22]. The ground
state of a rotating co-planar double-ring system is discussed in
Ref. [23].

We examine the stationary states of double-ring BECs in
Sec. II. A careful analysis of the sign of the tunnel coupling
used in effective models for BECs in double-well traps follows
in Sec. III. Conclusions are presented in Sec. IV.

II. STABILITY OF STATIONARY STATES IN
DOUBLE-RING BECs

The calculation performed in Ref. [21] starts from a number
of generally reasonable assumptions. Under the condition that
radial excitations of the vertically stacked annular BECs are
suppressed by the trapping potentials and the only mecha-
nism for coupling the two systems is via tunneling through
a potential barrier, the Gross-Pitaevskii equation for the
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two-mode spinor wave function (χu, χd) specializes to

i∂τχu/d = −∂2
ϕχu/d − |κ| χd/u + γ |χu/d|2χu/d. (1)

Here χu(d) is the condensate wave function for atoms in the
upper (lower) ring. Our Eq. (1) agrees with Eq. (2) of Ref. [21],
except that we explicitly indicate the negative sign of the tunnel
coupling. We give detailed reasons for the relevance of the sign
of the tunnel coupling in Sec. III, where we also show that the
tunnel coupling is indeed negative. At this point, we only
note that the tunnel coupling κ was assumed to be positive in
Ref. [21] (see their Fig. 1), in contradiction to our findings.

The most general form of the polar-angle-dependent
wave function can be written as a Fourier series, χu/d =
(2π )−

1
2
∑

m α
(u/d)
m eimϕ . Inserting this ansatz into Eq. (1) and

equating coefficients of the orthogonal Fourier components,
we find

i∂τα
(u/d)
m = m2α(u/d)

m − |κ| α(d/u)
m

+ γ

2π

∑
n,n′

α(u/d)
n α

∗(u/d)
n′ α

(u/d)
m−n+n′ . (2)

This result differs from the corresponding Eq. (3) in Ref. [21]
in the tunnel coupling and the nonlinear term.

As a first approximation, it is reasonable to assume that
only the m = 0 mode is occupied in each of the two annuli.
Straightforward calculation yields the new ground and excited
states of the coupled-annuli system, which are the symmetric
and antisymmetric superpositions of single-well states having
chemical potential µ± = ε ∓ |κ|, respectively. ε = γN0/(2π )
is defined in terms of the equal number of atoms, N0, in each
well as in Ref. [21]. In order to study the stability of these
states, finite but small amplitudes in the m �= 0 modes are
assumed:

α
(u/d)
m�=0 = e−iµ±τ

[
u

(u/d)
m,± e−iωτ + v

∗(u/d)
m,± eiωτ

]
. (3)

Here the subscript ± distinguishes perturbations to the ground
and excited states, respectively. Inserting the perturbation (3)
into Eq. (2) and linearizing in the small amplitudes u, v

yields

ωu
(u/d)
m,± = (m2+ε ± |κ|) u

(u/d)
m,± + εv

(u/d)
−m,±−|κ|u(d/u)

m,± ,
(4)

−ωv
(u/d)
−m,± = (m2+ε ± |κ|) v

(u/d)
−m,± + εu

(u/d)
m,± −|κ|v(d/u)

−m,±.

The upper (lower) sign refers to the symmetric ground
(antisymmetric excited) state. Crucial differences between our
Eq. (4) and Eq. (5) in Ref. [21] result in markedly different
excitation spectra. We find that both the symmetric (ground)
state and antisymmetric (excited) state share one branch,

ω1 =
√

(m2 + ε)2 − ε2 , (5a)

whose frequency is independent of the tunnel coupling. This
was also found in Ref. [21]. In contrast to the results of these
authors, however, we find that the second branch differs for
the two states:

ω2,± =
√

(m2 + ε ± 2|κ|)2 − ε2. (5b)

Clearly, ω2,+ is always real for repulsive BECs (ε > 0),
implying stability of the symmetric (ground) state of the
coupled annular condensates. In contrast, the antisymmetric
(excited) state will become unstable for ε > |κ| − m2/2 > 0,

signified by ω2,− becoming imaginary in this range. Our
own numerical simulations of the time evolution of the
antisymmetric state seeded with a small amount of noise show
the development of angular momentum Josephson junctions
similar to those shown in Figs. 2 and 3 of Ref. [21].

In attractive condensates where ε < 0, imaginary solutions
of ω1 for 2ε < −m2 indicate the well-known modulational
instability toward the formation of localized peaks (bright
solitons) in the individual rings. For the symmetric state,
ω2,+ does not add new instabilities (with imaginary solutions
for ε < −m2/2 − |κ|). The antisymmetric state, however, is
further destabilized by the tunnel coupling due to imaginary
frequencies of ω2,− at ε < |κ| − m2/2 < 0.

In our analysis so far we have assumed that the sign of the
coupling constant κ is negative. This leads to the symmetric
state with α

(d)
0 = α

(u)
0 = constant · eiµ+τ and α

(u/d)
m�=0 = 0 with

µ+ = ε − |κ| being the ground state. Let us now briefly
consider the consequences of the (hypothetical) case of a
positive coupling constant κ > 0. The analysis of Sec II can
be carried out the same way as before, with the difference that
|κ| should be replaced by −|κ| in all formulas. It is easily seen
that, in this case, the antisymmetric state with α

(d)
0 = −α

(u)
0

will be the ground state. Since the sign change also affects
Eq. (5b), we find the antisymmetric state being stable (for
ε > 0) and the symmetric one becoming unstable. However,
since the roles of these states have changed, we still find that
the ground state is stable for repulsive BECs.

III. NATURE OF THE TUNNEL COUPLING

In order to determine the correct sign and value of the
coupling constant κ appearing in Eq. (1), we briefly revisit the
derivation of this model. Generally, two types of approaches
have been followed for deriving effective two-mode models:
(a) The mode functions and tunnel parameter are derived
from solutions of the single-particle Schrödinger equation.
This approach is commonly used when deriving the fully
quantum mechanical Bose-Hubbard model [15,17] and was
the basis of Refs. [7,21]. In this case both the sign and the
value of κ are completely independent of particle number
or interaction strength. In the context of the cylindrically
symmetric double-ring system it is further possible to com-
pletely separate the azimuthal, radial, and axial degrees of
freedom. As a consequence, the tunnel coupling κ is also
independent of angular momentum along the trap axis (az-
imuthal excitations). (b) When the mode functions and model
parameters are calculated from the nonlinear Schrödinger
equation [8,13] or by a variational procedure within the
interacting system [11,12], this separability of the spatial
degrees of freedom is lost. While this procedure has the
potential to reproduce the dynamics of systems with large
particle number more accurately than the type (a) approaches,
the tunnel coupling κ , in principle, becomes dependent on
particle number and interaction strength as well as angular
momentum due to centrifugal distortions. While exploring the
consequences of these dependencies in detail goes beyond the
scope of this Brief Report, we argue that the sign of κ is fixed
by requiring that the low-energy physics is described correctly
in a qualitative manner.
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FIG. 1. (Color online) Energy difference �AS = EA − ES be-
tween the lowest antisymmetric and symmetric eigenstates of a
quadratic-plus-quartic double-well potential, plotted as a function
of the dimensionless effective interaction strength g̃. The fact that
�AS � 0 indicates that the symmetric (nodeless) state remains the
ground state even in the limit where the atoms interact strongly.
Double-well parameters [see Eq. (7)] are ξ0 = 5 and h = 0.002 (solid
curve), 0.02 (dashed curve), and 0.05 (dot-dashed curve).

For the purpose of determining the sign of κ , the azimuthal
degree of freedom in the double-ring model of Ref. [21]
is irrelevant. It suffices to consider the problem of a BEC
in a one-dimensional (1D) double-well potential, as in
Refs. [7,14]. Generalization to multiple wells and different
geometries (coupled cigars or pancakes) are straightforward.

The goal of a two-mode model is generally to correctly
describe the ground and low-lying excited states of the system.
Initially we consider the linear Schrödinger equation of a
particle in a symmetric double well as relevant to type
(a) derivations. The quantity that is obtainable from the 1D
model and carries unambiguous information about the sign of
the tunnel coupling is the energy difference �AS = EA − ES

between the antisymmetric state with one node and the
nodeless symmetric state. The node theorem of quantum
mechanics [24] guarantees that the nodeless symmetric state
in a 1D double-well potential must be the ground state; thus
�AS � 0 and, consequently, the correct sign of κ is negative.

We now consider the case (b) of two-mode models designed
to approximate the system in an interacting (nonlinear) regime.
We decide to choose the parameters of the two-mode model in
order to reproduce �AS as found from a 1D Gross-Pitaevskii
equation. The ordering of eigenvalues by the number of nodes
in the wave function is now no longer guaranteed by the node
theorem of linear quantum mechanics, and we are not aware of
a nonlinear generalization of this theorem. However, we find
by numerical calculation that the ordering is preserved under
repulsive interactions. The main result of this section is the
dependence of �AS on the nonlinear interaction strength g̃,
shown in Fig. 1. As can be seen from Fig. 1, the presence of
a repulsive nonlinear interaction does not change the sign of
�AS and therefore κ remains negative. We now present details
of our calculation.

Starting from the three-dimensional Gross-Pitaevksii equa-
tion for a BEC in a double-well or double-ring trap and
employing a separation ansatz, an effective 1D equation
describing the dynamics in the direction perpendicular to the
potential barrier can be derived:

µ

ε0
φ(ξ ) =

[
− d2

dξ 2
+ Vdw(ξ ) + g̃|φ(ξ )|2

]
φ(ξ ). (6)

Here the energy scale ε0 and length scale a0 defined by the
trap are used as units for all energies and the spatial coordinate,
respectively, and the condensate wave function φ is normalized
to unity. We introduced the dimensionless interaction strength
g̃ = g1DN/(ε0a0), where N denotes the number of atoms in
the trap and g1D is the effective 1D interaction strength [25].
To be specific, we use the double-well potential

Vdw = h
(
ξ 2 − ξ 2

0

)2
, (7)

where h parametrizes the barrier height between the two
wells centered at ±ξ0. It is straightforward to solve Eq. (6)
with the potential (7) and find the lowest symmetric and
antisymmetric eigenstates as well as their respective energies
ES and EA. Figure 2 shows typical results obtained for low
and high interactions strengths, respectively. As is apparent
from the figure, the higher repulsive interaction strength
is associated with more strongly delocalized double-well
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FIG. 2. (Color online) Lowest symmetric (solid curve) and antisymmetric (dashed curve) condensate wave functions obtained for a
double-well potential [see Eq. (7)] with ξ0 = 5, h = 0.05, and g̃ = 30 (left panel) or 300 (right panel). Notice the greater delocalization of
atoms between the two wells when the interaction strength is high. This arises because repulsive interactions result in an effective lowering of
the tunnel barrier.
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wave functions, indicating an effectively stronger tunnel
coupling. This can be explained simply by noting that the
nonlinear interaction energy for the two condensate fractions
in each well shifts up their respective energies, thus effec-
tively lowers the barrier and brings the condensates closer
together. As a result, the effective tunnel coupling increases.
Most importantly, the energy difference between the lowest
symmetric and antisymmetric eigenstates remains positive
for any strength of repulsive interactions, which implies
that the sign of the tunnel coupling κ entering Eq. (1) is
negative.

Several previous works relate to the sign or value of the
coupling constant. Milburn et al. [7] present an analytical
expression for tunnel coupling and the sign is contrary to
our findings. The authors of Refs. [8,17,20] do not discuss
the sign of the coupling constant explicitly but imply by
usage of examples a negative sign (in our convention), which
is consistent with our findings. The same sign is implied
by calculations of Ananikian and Bergeman [14], which are
similar to those in Sec. III, although the sign is not explicitly
discussed in Ref. [14].

IV. CONCLUSIONS

The authors of Ref. [21] predict a dynamical instability of
a repulsively interacting BEC in a double-ring trap against
angular momentum fluctuations. We have carefully revisited
the analysis of Ref. [21] and have recalculated the elementary
excitation spectrum. This leads us to a different conclusion
that makes physical sense. The ground state of a nonrotating
condensate in the double-ring configuration is stable against
spontaneous angular momentum oscillations. However, the
antisymmetric state with its circular node between the two
annular quantum wells can be viewed as the analog of a
stationary 2D dark soliton, which is known to have a dynamical
instability toward the formation of local vorticity (“snake”
instability) [22].
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