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Vortices and ring dark solitons in nonlinear amplifying waveguides

Jie-Fang Zhang,1,* Lei Wu (��),2 Lu Li,3 Dumitru Mihalache,4 and Boris A. Malomed5

1Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, People’s Republic of China
2Tianmu College, Zhejiang Forestry University, Lin’an 311300, People’s Republic of China

3Institute of Theoretical Physics, Shanxi University, Taiyuan, Shanxi 030006, People’s Republic of China
4Horia Hulubei National Institute for Physics and Nuclear Engineering, Magurele, Bucharest R-077125, Romania

5Department of Physical Electronics, Faculty of Engineering, Tel Aviv University, Tel Aviv IL-69978, Israel
(Received 12 October 2009; published 26 February 2010)

We consider the generation and propagation of (2 + 1)-dimensional beams in a nonlinear waveguide with the
linear gain. Simple self-similar evolution of the beams is achieved at the asymptotic stage if the input beams
represent the fundamental mode. On the contrary, if they carry vorticity or amplitude nodes (or phase slips),
vortex tori and ring dark solitons (RDSs) are generated, featuring another type of the self-similar evolution,
with an exponentially shrinking vortex core or notch of the RDS. Numerical and analytical considerations reveal
that these self-similar structures are robust entities in amplifying waveguides, being stable against azimuthal
perturbations.
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I. INTRODUCTION

The topic of self-similarity has been the focus of intense
research interest in versatile areas of physics [1]. In nonlinear
optics, the intrinsic self-similarity of the nonlinear Schrödinger
(NLS) equation has led to the development of the symmetry-
reduction method, which has been widely applied to search
for exact and asymptotic self-similar solutions [2–9]. Such
optical waves (similaritons) possess many attractive features
that make them potentially useful for various applications in
fiber-optic telecommunications and photonics, as they can
maintain the overall shape while allowing their amplitudes
and widths to vary, following the modulation of a system’s
parameters—dispersion, nonlinearity, gain, inhomogeneity,
and others. Recent studies reveal that similaritons also exist in
other fields of physics, including Bose-Einstein condensates
and plasmas [10–12].

Among various types of self-similar modes, there has been
an increasing interest in the study of asymptotically exact
parabolic similaritons since their first experimental realization
in normally dispersive fiber amplifiers [2]. One important
advantage of these waves is that they are free of collapse
and filamentation at high power levels. Another remarkable
property of the similaritons is that the corresponding output
profile is completely determined by the input power; that is,
all initial profiles with the same power evolve toward the
same parabolic similariton [2,3,13], which is very attractive
for applications such as pulse (or beam) shaping or optical
regeneration [14,15]. This conclusion, however, is correct
only when the initial beams are of the fundamental type;
that is, they do not have phase slips or phase singularities,
and their amplitude profiles do not have nodes. If the input
beam carries a phase slip, a dark soliton in the self-similar
parabolic background is generated [16]. On the other hand, a
spatiotemporal vortex torus will emerge if the input beam has
an embedded vorticity [17–19].
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In this work we study the generation and propagation of
optical beams inside the two-dimensional nonlinear waveguide
amplifier, focusing on effects of initial phase singularities,
phase slips, and amplitude nodes.

II. MODEL AND ASYMPTOTIC EXACT
SELF-SIMILAR BEAMS

The nonlinearity of the medium is assumed to be self-
defocusing, with refractive index n = n0 − n2I , where I is the
beam’s intensity and n2 is positive (the cubic self-defocusing
is possible in semiconductor waveguides). The respective
governing equation for the paraxial optical beam in such
an amplifying waveguide is the (2 + 1)-dimensional NLS
equation,
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where the beam’s envelope u, propagation distance z, spa-
tial coordinates x and y, and gain g are normalized by
(k0n2LD)−1/2, LD , w0, and L−1

D , respectively, with k0 =
2πn0/λ, LD = k0w

2
0, and w0 being, respectively, the wave

number at the input wavelength λ, the diffraction length, and
a characteristic transverse width.

Our first aim is to investigate the self-similar evolution of the
optical beam in the asymptotic limit of z → ∞ by considering
the intrinsic self-similarity of Eq. (1). For the evolution to be
exactly self-similar, the functional form of the beam’s inten-
sity profile must remain unchanged at different propagation
distances. Accordingly, one can express the beam’s inten-
sity as |u(z, x, y)|2 = exp[

∫ z

0 g(z′)dz′]|U (X, Y )|2/�2, where
(X, Y ) ≡ (x, y)/�, with �(z) being a positive function of
the propagation distance that characterizes the evolution of
the beam’s width, and |U (X, Y ) |2 is a functional form
satisfying the energy conservation condition, obtained after
the subtraction of the gain effect,∫ ∫

|U (X, Y )|2dXdY = U0, (2)
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with U0 being the input power of the optical beam. With this
intensity shape, the expansion velocity of the beam’s intensity
profile is v = �−1 (d�/dz) r, where r ≡ {x, y}. This velocity
is equal to the gradient of the beam’s phase, v = ∇φ [20].
Therefore, the phase of the beam undergoing the self-similar
evolution is φ = (2�)−1 (d�/dz) r2 − φ0(z), where φ0(z) is a
phase offset. Thus, by introducing the following self-similar
transformation,

u (x, y, z) = U (X, Y )

�
exp

[
1

2

∫ z

0
g(z′)dz′ + iφ

]
, (3)

we cast Eq. (1) into the form of

|U |2U − 1

2
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0
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where ∇2 = ∂2/∂X2 + ∂2/∂Y 2 and R2 = X2 + Y 2.
Without the loss of generality, we let (d2�/dz2)�3 =

exp[
∫ z

0 g(z′)dz′] and (dφ0/dz)�2 = µ exp[
∫ z

0 g(z′)dz′], where
µ is a positive constant to be determined. Note that the
coefficient in front of the diffraction term in Eq. (4),
exp[− ∫ z

0 g(z′)dz′]/2, vanishes at z → ∞. Therefore, if
U (X, Y ) is smooth with a finite value of ∇2U , the diffrac-
tion term may be neglected in the asymptotic regime. The
aforementioned consideration shows that the exact self-similar
evolution of the optical beam can be achieved in the asymptotic
limit, under which Eq. (4) yields

|U |2 = µ − R2

2
, (5)

for R2 � 2µ, and U = 0 otherwise, where the positive
constant µ = √

U0/π is determined by Eq. (2). Note that
this profile is essentially the same as that produced by the
Thomas-Fermi approximation for the ground-state solution
of the two-dimensional Bose-Einstein condensates described
by the Gross-Pitaevskii equation with the isotropic parabolic
potential and repulsive interatomic interaction [21]. Thus, the
exact self-similar beams are robust entities.

Hereafter we assume g to be a constant; hence the variable
characterizing the change of the beam width is

�(z) =
√

4

g
exp

(
gz

4

)
, (6)

and the phase offset is

φ0(z) = µ

2

[
exp

(
gz

2

)
− 1

]
. (7)

From Eqs. (3) and (6), it follows that the amplitude and
the half width of the exact self-similar beam increase
exponentially as

√
µg exp(gz/4)/2 and

√
8µ/g exp(gz/4),

respectively. As the optical beam expands, a phase-front
curvature (chirp) develops. Using the stationary-phase method
[22], one can find that the spatial spectrum of the optical
beam is parabolic too. Note that the asymptotically exact
self-similar evolution of the optical beam is predicated upon
the assumption that U is smooth, so that the relative strength
of the diffraction becomes negligible when compared to

that of the nonlinearity [6]. This condition does not hold
if the input beam carries vorticity, nodes in its amplitude
profile, or phase slips. As stated previously, the generation
of vortex tori and ring dark solitons (RDSs) is expected in that
case.

III. VORTICES AND RDSs EMBEDDED IN THE
PARABOLIC BACKGROUND

Now we proceed to the investigation of the dynamics of a
vortex torus of topological charge S in the asymptotic limit.
As the local beam’s intensity vanishes at the center of the
vortex, the relative strength of the diffraction in the vortical
core is much larger than that of the nonlinearity. The size of
the core range is determined by the coherence length, L =
S
√

1/2|u|2. In the presence of the gain, the beam’s amplitude
increases exponentially; therefore L decreases at the same rate.
Therefore, at the asymptotic stage, the vortex becomes very
narrow when compared to the whole beam, which makes it
reasonable to seek a solution to Eq. (4) in the asymptotic limit
by setting

U = �(R) exp(iSθ ), (8)

where θ is the azimuthal angle, and neglecting terms contain-
ing gradients of �. Then, we obtain an asymptotic expression
for the local intensity of the vortex torus,

|�|2 = µvort − R2

2
− p

R2
, (9)

where p ≡ (S2/2) exp(−gz) and µ in Eq. (5) is replaced by
µvort such that the phase offset keeps the form of Eq. (7) with
µ replaced by µvort.

From Eq. (9), it follows that, in this approximation, the
power in the core of the vortex vanishes at R2 < µvort −√

µ2
vort − 2p ≈ p/µvort (in the exact solution, the beam’s

intensity vanishes as R|S| at R → 0). On the other hand,
the last term in Eq. (9) may be neglected at large R; hence the
beam’s intensity profile keeps the parabolic form outside of the
core. Note that the local beam’s intensity of the vortex torus at
large distances is slightly greater than that of the fundamental
soliton [Eq. (5)] for the same input power, since the optical
field is removed in the narrow core of the vortex. Therefore, the
difference of µvort, which is generated by the local nonlinearity,
from µ is almost negligible. Thus it can be concluded, from
the aforementioned expressions, that the radius of the vortex
decreases exponentially, as

r = R� �
√

2

gµ
S exp

(
−gz

4

)
, (10)

whereas the width and amplitude of the whole beam increase
exponentially, like those of the fundamental spatial soliton.
This analysis predicts peculiarities of the self-similar evolution
of the vortex torus, in comparison with the vortex-free beam.

It should be emphasized that now U is not only a function
of X and Y , but also a function of z [Eqs. (8) and (9)]. The
latter contradicts the definition of the function U = U (X, Y )
in the transformation [Eq. (3)]. This contradiction, however,
is negligible: if U is also a function of z, Eq. (4) will
contain an additional term i�2 exp[− ∫ z

0 g(z′)dz′]Uz. From
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FIG. 1. (Color online) (a) The self-similar evolution of the
vortex torus of topological charge S = 1 in the waveguide amplifier,
starting with input beam u(0, r) = r exp(−r2/2) exp(iθ ), for g = 2.
From the top to the bottom, the propagation distance is 5.25, 5,
4.75, and 4.5, respectively. (b) The beam’s amplitude in the core
of the vortex, which is a linear function of r . (c) The phase
[phase offset φ0(z) is ignored] of the vortex torus at propagation
distance z = 5.25, with the inset showing the phase slip π in the
x direction, to confirm that the topological charge is 1. Here and
in the following figures, the solid lines and circles represent results
of numerical simulations of Eq. (1) and the analytical predictions,
respectively.

Eq. (9) it follows that this term can be approximated by
2i exp(−gz/2)µ−1/2

vort pR−2, which is about exp(gz/2) times
less than the last term in Eq. (9), and hence it is negligible
at the asymptotic limit. The same argument also holds for the
dark solitons embedded in the parabolic background shown in
Fig. 2.

Figure 1 displays the evolution of an initial Laguerre-
Gaussian beam of topological charge S = 1 toward the vortex
torus, whose intensity and phase profiles at the asymptotic
stage of the evolution are found to be in good agreement with
the predictions based on Eqs. (3), (6), (8), and (9). Further
numerical simulations show that initial Laguerre-Gaussian
beams with topological charges up to S = 10 evolve into the
corresponding vortex tori, indicating that the latter are robust
entities in the waveguide amplifiers.

Now, we proceed to the generation and propagation of dark
solitons in waveguide amplifiers. Since quasi-one-dimensional
(stripe-shaped) dark solitons eventually decay into vortices,
we focus on the RDSs [23]. Numerical simulations reveal that
dark solitons of this type can be generated from input beams
with nodes in the amplitude profile [Fig. 2(a)] or from Gaussian
beams with ring phase slips [Fig. 2(b)]. In the asymptotic limit,
the approximate RDS solution of Eq. (4) can be written as

|U |2 =
(

µ − r2

2�2

){
1 − A2sech2

[√
µA exp

(
gz

2

)
r − rc

�

]}
,

(11)
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FIG. 2. (Color online) The self-similar evolution of radial dark
solitons in the amplifying waveguide, obtained from input beams
of total power π with initial profiles (a) u(0, r) = W−3 exp(−r2/

2W 2)(r2 − W 2) and (b) u(0, r) = W−1 exp(−r2/2W 2) exp{iπ tanh
[2(r − W )]/2}. The gain parameter is g = 2 and the initial width is
W = 1.5.

where A and rc characterize the depth and location of the
center of the RDS, respectively. From Eq. (11) it follows that
the effective width of the black RDS decreases exponentially,
as (2/

√
gµ) exp(−gz/4) [cf. Eq. (10)]. The character of self-

similar evolution of the RDS, which is qualitatively similar to
that of the vortex, is confirmed by simulations displayed in
Fig. 2, where one could also find that (i) the RDSs generated
from the initial phase slip are much more shallow than those
generated from the initial amplitude node and (ii) the RDSs
move outward due to their self-repulsive nature and the ex-
panding parabolic background. Finally, Fig. 3 shows the output
beam intensity at z = 5 in the amplifying waveguide with
g = 2, as obtained from the input beam of power π , where
one could see that the vortex and RDSs may coexist, being
embedded in the self-similar parabolic background.
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FIG. 3. (Color online) (a) The coexistence of a vortex with the
topological charge S = 2 and radial dark soliton. (b) The beam’s
amplitude in the core of the vortex (solid lines), where the squares
represent the numerical fits of |u| as quadratic functions of r . The ini-
tial condition is u(0, r) = 0.309 exp(−r2/2)(r2 − 3/2)r2 exp(2iθ ),
and the gain parameter is g = 2. From the top to the bottom, the
propagation distance is 5, 4.75, and 4.5, respectively.

023836-3



ZHANG, WU, LI, MIHALACHE, AND MALOMED PHYSICAL REVIEW A 81, 023836 (2010)

Next we investigate the stability of RDSs. By introducing
the transformation U → U exp(iφ0), we rewrite Eq. (4) as
iUZ + ∇2U/[2 exp(gz)] − |U |2U = R2U/2, where the new
propagation distance Z ≡ (1/2)[exp(gz/2) − 1], as obtained
from Eq. (7). If the coefficient in front of the diffraction term
is 1 (g = 0), this equation is just the governing equation for
the dynamics of RDS in Bose-Einstein condensates with the
harmonic potential [23], and it was demonstrated that: (i) in the
limit case of a quasi-plane soliton, the mass of the deep RDS is
2 and its oscillation frequency is ω = √

1/2, and (ii) the RDSs
persists up to Z � 3T = 6π/ω and then begins to decay due to
the azimuthal modulation instability (AMI). When g 	= 0, the
effective mass of the deep RDS is 2 exp(gz) and its oscillation
frequency is approximately

√
1/2 exp(−gz/2). Thus, the RDS

would reach the AMI threshold at Z′ ≈ 6
√

2π exp(gz/2).
In fact, because Z is always smaller than Z′, we infer that
the instability threshold will never be reached in the present
model, which is indeed confirmed by direct numerical simula-
tions. Thus, the RDSs are robust entities in the waveguide
amplifiers, contrary to the common opinion that AMI is

inevitable for two-dimensional topological modes, such as
RDS [17,24,25].

IV. CONCLUSIONS

In summary, within the framework of the (2 + 1)-
dimensional NLS equation including the linear gain, we have
found three types of self-similar optical beams in nonlinear
amplifying waveguides, namely, fundamental beams with
parabolic profiles, robust vortex tori with different values of the
topological charge, and radial dark solitons with a parabolic
background. These results were obtained in the analytical form
using a Thomas-Fermi type of asymptotic approximation and
were confirmed by numerical simulations.
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