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Entanglement transfer through the turbulent atmosphere
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The propagation of polarization-entangled states of light through fluctuating loss channels in the turbulent
atmosphere is studied, including the situation of strong losses. We consider violations of Bell inequalities by
light, emitted by a parametric down-conversion source, after transmission through the turbulent atmosphere. It is
shown by analytical calculations that, in the presence of background radiation and dark counts, fluctuating loss
channels may preserve entanglement properties of light even better than standard loss channels, when postselected
measurements are applied.
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I. INTRODUCTION

The distribution of quantum light through the turbulent
atmosphere has attracted a great deal of attention since
recent experiments [1–4] have demonstrated the feasibility
of quantum key distribution in free-space channels. In this
connection the question arises as to whether nonclassical
properties of light can be preserved during its propagation in
fluctuating media. Particularly, special interest is applied to the
transfer of entanglement [5] through the turbulent atmosphere
since this problem has important perspectives in quantum
communications.

The theory of classical light distributed through the atmo-
sphere was established many years ago [6]. Phenomena such
as beam wander, scintillations, beam spreading, and spatial
coherence degradation have been explained in the framework
of this description. It is based on Kolmogorov’s theory of
turbulence, which is successfully applied to a description of
wave propagation in random media.

The theory of nonclassical phenomena, such as entangle-
ment, for light propagation in random media is less developed.
First, one should mention the approach proposed in Ref. [7]
for the description of the photocounting statistics of quantum
light propagating through the turbulent atmosphere. The idea
of this approach is based on the introduction of a stochastic
intensity modulation for light propagating through random
media. Another approach describing nonclassical properties
of light is based on the photon wave function [8]. It enables
one to describe a special class of entangled states of light in
the turbulent atmosphere [9]. The concept of the single-photon
wave function can be formulated in a more sophisticated
way in terms of the single-photon Wigner function and then
generalized to the description of arbitrary quantum states. This
technique has been developed in [10] and applied to some
interesting examples of quantum and classical light.

Recently, a theoretical model for the light distributed
through the turbulent atmosphere and processed by homodyne
detection has been proposed [11]. The idea is based on the
description of random media in terms of a fluctuating loss
channel. It has been shown that the turbulent atmosphere
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introduces, compared with standard loss channels, additional
noise into quantum states of light. The presence of such noise
has also been discussed recently in Ref. [12]. Moreover, as
has been shown in Ref. [11], the nonclassicality of bright
light fields (especially fields with a large coherent amplitude)
is more fragile against turbulence than the nonclassicality of
weak light. In this connection special interest should be paid
to entangled photon pairs and single photons, whose fields are
weak enough to preserve their nonclassical properties.

In this paper we give a systematic theoretical description of
polarization-entangled states of light distributed through the
fluctuating loss channels in the atmosphere and processed by
polarization analyzers. For such light we check violations of
Bell inequalities [13,14]. Besides turbulence our consideration
includes imperfect detection and noise counts originating from
internal dark counts and background radiation. Moreover,
we deal with a realistic parametric down-conversion (PDC)
source of the radiation [1,2,15]. We apply the results of our
consideration to analyzing a recently reported experiment [1],
where light has been distributed over a 144-km atmospheric
channel between two Canary Islands in a configuration with
both receivers being co-located at the same place. We show
that with fluctuating loss channels one may observe larger
values of the Bell parameter compared with corresponding
nonfluctuating loss channels. This unexpected effect is caused
by those (postselected) random events which are related to
small losses.

The paper is organized as follows. In Sec. II we summarize
the needed basic principles of Bell-type experiments. A
systematic description of fluctuating loss channels for the case
of such experiments is given in Sec. III. In Sec. IV we consider
the violation of Bell inequalities by light after propagation
through the turbulent atmosphere, when the source generates
perfect Bell states. The situation for a realistic PDC source is
analyzed in Sec. V. In Sec. VI we describe a procedure for
measuring the needed turbulence parameters. A summary and
some concluding remarks are given in Sec. VII.

II. BELL-TYPE EXPERIMENTS

Let us start with the consideration of a typical experimental
setup (see Fig. 1). The entangled photon pairs are emitted
by the source S and then transferred through the turbulent
atmosphere to the receiver stations A and B. In principle,

1050-2947/2010/81(2)/023835(8) 023835-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.023835


A. A. SEMENOV AND W. VOGEL PHYSICAL REVIEW A 81, 023835 (2010)

FIG. 1. A typical experimental setup for checking the violation of
Bell inequalities for light transmitting through turbulent atmosphere.
The source S produces entangled photon pairs. The polarization
analyzers at A and B sites consist of half-wave plates, HWP,
polarizer beam-splitters, PBS, and two pairs of detectors: DTA

for
the transmitted signal and DRA

for the reflected signal at the A site;
DTB

for the transmitted signal and DRB
for the reflected signal at the

B site.

different configurations of the considered experiment are
possible: The source can be placed separately from both
receivers (e.g., on a low-orbit satellite), it can be placed on
the site of one of the receivers [2], or both receivers can be
situated at the same place [1] (a configuration convenient for
testing the feasibility of entanglement transfer). At the receiver
stations the light is collected by a telescope (or other device)
and subsequently directed to the polarization analyzers. Each
of these analyzers consists of a half-wave plate (which turns the
polarization direction by the angles θA and θB at the receiver
stations A and B, respectively), a polarizing beam-splitter, and
two detectors.

According to photodetection theory [16,17], the probability
of registering one count at the detector iA = {TA,RA} by
receiver A, one count at the detector iB = {TB,RB} by receiver
B, and no counts at the other detectors is given by

PiA,iB (θA, θB) = Tr
(
�̂

(1)
iA

�̂
(1)
iB

�̂
(0)
jA

�̂
(0)
jB

�̂
)
, (1)

iA �= jA, iB �= jB , where �̂ is the density operator of the light
field at the inputs of both polarization analyzers,

�̂
(n)
iA(B)

=:
(ηiA(B)n̂iA(B) + NiA(B) )

n

n!
e
−ηiA(B)n̂iA(B) −NiA(B) : (2)

is the positive operator-valued measure for the detector iA(B)

[18], ηiA(B) and NiA(B) are the efficiency and the mean value
of noise counts (originating from internal dark counts and
background radiation), respectively, for the detector iA(B), and
:: means normal ordering. The photon number operator at
the input of the detector iA(B) can be written in terms of the
corresponding annihilation and creation operators,

n̂iA(B) = â
†
iA(B)

âiA(B) . (3)

These operators can be expressed via the operators of the
horizontal and vertical modes, âHA(B)

and âVA(B)
, respectively, at

the input of the polarization analyzers as

âTA(B)
= âHA(B)

cos θA(B) + âVA(B)
sin θA(B), (4)

âRA(B)
= −âHA(B)

sin θA(B) + âVA(B)
cos θA(B). (5)

In the case of using on/off detectors, which cannot distin-
guish between different photon numbers, Eq. (1) should be

rewritten as

PiA,iB (θA, θB ) =
+∞∑

n,m=1

Tr
(
�̂

(n)
iA

�̂
(m)
iB

�̂
(0)
jA

�̂
(0)
jB

�̂
)
. (6)

The correlation coefficient, which appears in the Bell theory
[13], is given by

E(θA, θB) = Psame(θA, θB) − Pdifferent(θA, θB)

Psame(θA, θB) + Pdifferent(θA, θB)
, (7)

where

Psame(θA, θB ) = PTA,TB
(θA, θB) + PRA,RB

(θA, θB ) (8)

is the probability of getting clicks on both detectors in
the transmission channels or both detectors in the reflection
channels and

Pdifferent(θA, θB) = PTA,RB
(θA, θB) + PRA,TB

(θA, θB) (9)

is the probability of getting clicks on the detectors in the
transmission channel at one site and the reflection channel
at another site. According to the Clauser-Horne-Shimony-Holt
(CHSH) Bell-type inequality [14] for any local-realistic theory
the maximal value of the parameter

B = ∣∣E(
θ

(1)
A , θ

(1)
B

) − E
(
θ

(1)
A , θ

(2)
B

)∣∣
+ ∣∣E(

θ
(2)
A , θ

(2)
B

) + E
(
θ

(2)
A , θ

(1)
B

)∣∣ (10)

should be

B � 2. (11)

Quantum light may violate this inequality. In this case the
maximal violating by the value 2

√
2 is reached for the Bell

state

|B〉 = 1√
2

(|1〉HA
|0〉VA

|0〉HB
|1〉VB

+ eiϕ |0〉HA
|1〉VA

|1〉HB
|0〉VB

)

≡ 1√
2

(|H〉A|V〉B + eiϕ|V〉A|H〉B), (12)

for ϕ = π and (θ (1)
A , θ

(1)
B , θ

(2)
A , θ

(2)
B ) = (0, π

8 , π
4 , 3π

8 ).

III. FLUCTUATING LOSS CHANNELS

The next problem is to derive the density operator �̂ for the
light transmitted through the turbulent atmosphere. Similar to
Ref. [11], where homodyne detection of such light has been
studied, we will consider the atmosphere as an attenuating
system. However, an important feature of the present case is
that the nonmonochromatic output mode is not specified by
the local oscillator; it can take an arbitrary form depending
on the distribution of the refraction index in space. Generally
speaking, it is impossible to describe such light in terms of
a monochromatic or nonmonochromatic four-mode density
operator. However, it can be represented in terms of four
nonmonochromatic modes with fluctuating shapes. Of course,
such a representation is rather formal since it is difficult
to provide phase-sensitive measurements for such a mode.
However, it appears to be useful for evaluating observable
quantities in the considered experiment.
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Let âin
HA(B)

and âin
VA(B)

be the field annihilation operators of
the horizontal and vertical modes, respectively, generated by
the source in the direction of the A (B) receiver station. The
operator input–output relations for the attenuating system can
be written as

âHA(B)
= THA(B) â

in
HA(B)

+ THVA(B) â
in
VA(B)

+ RHA(B) ĉ
in
HA(B)

, (13)

âVA(B)
= TVA(B) â

in
VA(B)

+ TVHA(B) â
in
HA(B)

+ RVA(B) ĉ
in
VA(B)

, (14)

where THA(B) and TVA(B) are the transmission coefficients for the
horizontal and vertical modes, respectively, in the direction of
the A (B) receiver stations; ĉin

HA(B)
and ĉin

VA(B)
are the operators

describing the losses related to absorption and scattering with
the absorption and reflection coefficients RHA(B) and RVA(B) ,
respectively. Since the depolarization effect of the atmosphere
is extremely small [6], we may set in the following THVA(B) ≈ 0,
TVHA(B) ≈ 0, and THA(B) ≈ TVA(B) ≡ TA(B). Hence, the operator
input–output relations (13) and (14) can be simply written as

âHA(B)
= TA(B)â

in
HA(B)

+ RHA(B) ĉ
in
HA(B)

, (15)

âVA(B)
= TA(B)â

in
VA(B)

+ RVA(B) ĉ
in
VA(B)

. (16)

The transmission coefficients TA(B) and the absorption and
reflection coefficients RH(V)A(B)∣∣TA(B)

∣∣2 + ∣∣RH(V)A(B)

∣∣2 = 1. (17)

These relations can be converted into the corresponding
relations between the density operator �̂in of the light generated
by the source and the density operator �̂T [where T = (TA, TB )]
of the light transmitted through the loss channels under
the assumption that the absorption and scattering system
is in the vacuum state. For example, the relation between
the Glauber-Sudarshan P function [19] of the attenuated
light, PT(αHA

, αVA
, αHB

, αVB
), and the P function of the light

generated by the source, Pin(αHA
, αVA

, αHB
, αVB

), is given
by [17]

PT(αHA
, αVA

, αHB
, αVB

)

= 1

|TA|4|TB |4 Pin

(
αHA

TA

,
αVA

TA

,
αHB

TB

,
αVB

TB

)
. (18)

Similarly, the corresponding characteristic function of the
attenuated light, �T(βHA

, βVA
, βHB

, βVB
), is related to the

characteristic function of the light generated by the source,
�in(βHA

, βVA
, βHB

, βVB
), as

�T

(
βHA

, βVA
, βHB

, βVB

) = �in
(
T ∗

AβHA
, T ∗

AβVA
, T ∗

BβHB
, T ∗

BβVB

)
.

(19)

The corresponding expressions can also be written for s-
parametrized phase-space distribution, for normal-ordered
moments (see, e.g., Ref. [11]), for the density operator in
the Fock-state representation [20], and, in principle, for an
arbitrary representation of the density operator.

The main difference of the fluctuating loss channels from
the standard loss channels is that the transmission coefficients
TA and TB are random variables. This means that the
density operator of the field at the input of the polarization
analyzers, �̂, should be obtained by averaging the density
operator �̂T with the probability distribution of the transmission

coefficient (PDTC), P(T),

�̂ =
∫

D

dTP(T) �̂T, (20)

where dT = d2TA d2TB , and the integration domain is defined
by the conditions

D = {|TA|2 � 1, |TB |2 � 1}. (21)

Such an approach is closely related to the idea of a random
intensity modulation in the description of the photocounting
distribution for light transmitted through turbulent media [7].
An important difference is that the factor of the intensity
modulation was allowed to attain values in the range of
[0,+∞). In our approach this domain is restricted to [0, 1],
which preserves the required positivity of the density operator
in Eq. (20).

IV. BELL STATES

We start with the consideration of the idealized situation,
when the source generates the Bell state (12). This will
help us to better understand the nature of contributions from
noise, atmospheric turbulence, and different experimental
imperfections. First, we consider the density operator (and
its entanglement properties) of such a state after passing the
light through fluctuating loss channels. Next, we include in the
consideration background radiation, dark counts, and detection
losses—for such conditions we analyze violations of Bell
inequalities.

A. Output density operator

The density operator of the Bell state (12) is simply written
as �̂in = �̂B ≡ |B〉〈B|. Utilizing Eqs. (18)–(20) one gets that
the corresponding density operator for the light at the input
ports of the polarization analyzers is written as a convex
combination,

�̂ = p0�̂0 + pHA
�̂HA

+ pVA
�̂VA

+ pHB
�̂HB

+ pVB
�̂VB

+ pB�̂B,

(22)

of the following states: vacuum state �̂0 with the probability

p0 = 〈(1 − |TA|2)(1 − |TB |2)〉, (23)

single-photon states �̂HA
, �̂VA

, �̂HB
, and �̂VB

in the corresponding
modes with the probabilities

pHA
= pVA

= 1
2 〈|TA|2(1 − |TB |2)〉, (24)

pHB
= pVB

= 1
2 〈|TB |2(1 − |TA|2)〉, (25)

and the Bell state �̂B [cf. Eq. (12)] with the probability

pB = 〈|TA|2|TB |2〉. (26)

The brackets 〈. . .〉 mean averaging with the PDTC, P(T).
In the absence of background radiation and dark counts,

only the contribution of the density operator �̂B in Eq. (22)
is postselected in the measurements. Hence the entanglement
properties of the light for such an experiment are not destroyed
by the atmospheric turbulence, at least in the absence of dark
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counts, background noise, and other experimental imperfec-
tions. The result, nevertheless, may be significantly changed
when such effects play a major role.

B. Imperfect photodetection

In the presence of background radiation and dark counts,
the postselection procedure no longer results in the perfect
separation of the density matrix �̂B from the combination (22).
Indeed, in this case it is possible that one click at the receiver
station A (B) originated from the signal is combined with a
click originated from noise at the receiver station B (A). Also
it is possible that noise contributes into clicks at both receiver
stations.

This situation should be analyzed by substitution of the
density operator (22) in Eqs. (1) and (6) and then the result
should be used in Eq. (7). The general analytical solution of
this problem is given in [21]. Here we consider an important
special case of equal detectors and equal background noise at
all detectors, that is, ηiA(B) = ηc and NiA(B) = Nnc for all iA(B)

in Eq. (2).
After some algebra, the correlation coefficient (7) appears

to be equal to

E(θA, θB ) = S[− cos 2θA cos 2θB + cos ϕ sin 2θA sin 2θB].

(27)

For photon-number-resolving detectors we get

S = pB[ηc + (1 − ηc)Nnc]2

pB[ηc + (1 − ηc)Nnc]2 + 2p1Nnc[ηc + 2Nnc(1 − ηc)] + 4p0N2
nc

(28)

and

S = pBe
2Nnc [ηc + (1 − ηc)(1 − e−Nnc )]2

pBe2Nnc [ηc + (1 − ηc)(1 − e−Nnc )]2 + 2p1[eNnc − 1][ηceNnc + 2(eNnc − 1)(1 − ηc)] + 4p0[eNnc − 1]2
(29)

for on/off detectors. Herein, p1 = pHA
+ pVA

+ pHB
+ pVB

is
the probability of the appearance of a single-photon state.

The visibility V = E(π
4 , π

4 ) (see [1,2]) can be simply
obtained from Eq. (27) as

V (ϕ) = S cos ϕ. (30)

The maximal and minimal values for this parameter are
V± = ±S. In the case of different detectors and/or different
background radiations at these detectors (see [21]), we ob-
tain V+ �= −V−. The parameter S strictly depends on both
noise counts and turbulence properties of the atmosphere.
Hence, in contrast to the case of perfect photodetection, the
maximal value of the Bell parameter [Eq. (10)] depends
on the atmospheric turbulence. In Fig. 2 we consider this
parameter as a function of the parameter cos ϕ, which appears
in Eq. (27).

The obtained analytical results can be used for analyzing
a realistic experimental situation, such as that considered in
Ref. [1]. In this case both receiver stations had been positioned
at the same place. Consequently, the light pulses at receivers
A and B have been propagating along the same path through
the fluctuating atmosphere. They are separated by a small time
interval, which is much less than the characteristic time of the
atmospheric fluctuations. Hence, in this case one can simply
set

|TA|2 = |TB |2 ≡ ηatm, (31)

where ηatm is the fluctuating atmospheric efficiency. We also
suppose that this efficiency is approximately log-normally

distributed [11],

P(ηatm) = 1√
2πσηatm

exp

[
−1

2

(
ln ηatm + θ̄

σ

)2
]

, (32)

where θ̄ = −〈ln ηatm〉 characterizes the mean atmospheric
losses and σ (the variance of θ = − ln ηatm) characterizes the
atmosphere turbulence. It is worth noting that this distribution
can be applied only for σ 	 θ̄ . Realistic parameters for the
detection efficiency and the mean atmospheric losses can
be extracted from Ref. [1]: ηc = 0.25 and θ̄ = 7.7 (which
corresponds to 32-dB single-photon atmosphere attenuation
and 1.5-dB losses at the receiver device [22]).

1.0 0.5 0.0 0.5 1.0
1.6

1.8

2.0

2.2

2.4

2.6

2.8

cos

a

b

c

FIG. 2. (Color online) The maximal value of the Bell parameter
B vs cos ϕ, for different values of the parameter S: (a) 1, (b) 0.9,
(c) 0.8.
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FIG. 3. (Color online) The visibility V+ vs the mean value of
noise counts Nnc, for different values of the turbulence parameter
σ : (a) 0.1, (b) 1, (c) 2. The detection efficiency is ηc = 0.25; the
mean atmospheric losses are θ̄ = 7.7. The result is equal for both
photon-number-resolving and on/off detectors.

An important conclusion is that the visibility in the presence
of loss-fluctuating channels attains higher values compared
with similar standard-loss channels (or with slightly fluctu-
ating loss channels) (see Fig. 3). This fact can be explained
by contributions of random events with θ = − ln ηatm (losses)
less than the average value θ̄ . In the presence of postselected
measurements, this plays a significant role.

V. PARAMETRIC DOWN-CONVERSION SOURCE

The realistic sources used in experiments generate radiation
states, which are more complicated than the Bell state
(12). For example, in Refs. [1,2] one uses a PDC source
for the generation of entangled photon pairs. For such a
source, the contribution from the multiphoton pair emission
is essential. In the presence of losses or/and in the case
of using on/off detectors, all these photons contribute to
the measured Bell parameter. Moreover, the result appears
to be very sensitive to the background noise and dark
counts.

The state generated by the PDC source is given
by (cf. [18])

|PDC〉 = (cosh χ )−2
+∞∑
n=0

√
n + 1 tanhn χ |�n〉, (33)

where χ is the squeezing parameter and

|�n〉 = 1√
n + 1

n∑
m=0

eiϕm|n − m〉HA
|m〉VA

|m〉HB
|n − m〉VB

.

(34)

For n = 1, |�n〉 is the Bell state [cf. Eq. (12)]. The state
(33) is Gaussian—its characteristic function of the Glauber-
Sudarshan P function is written as

�in
(
βHA

, βVA
, βHB

, βVB

) = exp

[
− tanh2 χ

∣∣βVA

∣∣2 + tanh2 χ
∣∣βHB

∣∣2 − tanh χ
(
βVA

βHB
+ β∗

VA
β∗

HB

)
1 − tanh2 χ

]

× exp

[
− tanh2 χ

∣∣βHA

∣∣2 + tanh2 χ
∣∣βVB

∣∣2 − tanh χ
(
eiϕβHA

βVB
+ e−iϕβ∗

HA
β∗

VB

)
1 − tanh2 χ

]
. (35)

We apply Eq. (35) for the quantum-state input–output rela-
tions (19) and (20). In the resulting characteristic function, the
variables (βHA

, βVA
, βHB

, βVB
) are transformed to the variables

(βTA
, βRA

, βTB
, βRB

) using the input–output relations for the
polarization analyzers (4) and (5), which should be rewritten in
terms of the arguments of the characteristic function. Finally,
we substitute the resulting expression in Eqs. (6) and (1),
which should be also rewritten in terms of the characteristic
function. The obtained result is used in Eqs. (7) and (10) for
analyzing violations of Bell inequalities. For the probability
PiA,iB (θA, θB) we get

PiA,iB (θA, θB) = ηTA
ηRA

ηTB
ηRB

(1 − tanh2 χ )4

× exp(−Nnc)

[
2

〈
CiACiB

C3
0

〉
−

〈
CiA,iB

C2
0

〉

+NiA

〈
CiB

C2
0

〉
+ NiB

〈
CiA

C2
0

〉
+ NiANiB

〈
1

C0

〉]

(36)

for photon-number-resolving detectors and

PiA,iB (θA, θB ) = ηTA
ηRA

ηTB
ηRB

(1 − tanh2 χ )4

× exp(−Nnc)

[〈
1

C0 + CiA + CiB + CiA,iB

〉

−
〈

e−NiA

C0 + CiA

〉
−

〈
e−NiB

C0 + CiB

〉
+

〈
1

C0

〉]
(37)

for on/off detectors. Here

Nnc = NTA
+ NRA

+ NTB
+ NRB

(38)

is the total number of noise counts by the four detectors. The
analytical form for the coefficients C0, CiA , CiB , and CiA,iB is
given in [21].

Consider again the case when both receiver stations are
situated in the same place (see [1]). For simplicity we suppose
all detectors to be equal and all transmission coefficients to be
strongly correlated [i.e., satisfying condition (31)]. As follows
from the equations in [21], in this case one can combine
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atmospheric and detection losses in one efficiency,

η = ηatmηc. (39)

We suppose this efficiency to be log-normally distributed,
similar to Eq. (32). In this case, the coefficients C0, CiA , CiB ,
and CiA,iB have the form

C0 = {η2 tanh2 χ − [1 + (η − 1) tanh2 χ ]2}2, (40)

CiA = CiB = η(1 − η)(1 − tanh2 χ ) tanh2 χ

×{η2 tanh2 χ − [1 + (η − 1) tanh2 χ ]2}, (41)

CTA,TB
= CRA,RB

= η2 tanh2 χ [1 − tanh2 χ ]2

× [(1 − η)2 tanh2 χ − sin2(θA − θB)], (42)

CTA,RB
= CRA,TB

= η2 tanh2 χ [1 − tanh2 χ ]2

× [(1 − η)2 tanh2 χ − cos2(θA − θB)]. (43)

The realistic values of some parameters can be extracted
from Ref. [1]: θ̄ = 9.1 (32 dB of single-photon atmosphere
attenuation, 1.5 dB of losses at the receiver device [22],
and detection losses with ηc = 0.25) and Nnc = 0.5 × 10−6

(200 counts/s from the dark counts and 200 counts/s from the
background radiation in the time window of 1.25 ns).

In the case of photon-number-resolving detectors, the Bell
parameter attains maximal values in the expected range (less
than 2

√
2 but larger than 2) for small values of the squeezing

parameter χ (see Fig. 4). The pronounced minimum near
tanh χ = 0 is caused by contributions from classical back-
ground radiation and dark counts. Similar to the case of Bell
states, the fluctuating-loss channels preserve entanglement
properties of light better than similar channels with standard
(or slightly fluctuating) losses. This unexpected property is a
consequence of contributions from random events with θ < θ̄

in the postselected measurements, where θ = − ln η.
The situation becomes different in the case of using on/off

detectors (see Fig. 5). In the case of small fluctuations (or
no fluctuations) of the transmission coefficients, the maximal
value of the Bell parameter may attain values near zero for
the whole range of the parameter χ . This is caused by a
strong sensitivity of this type of measurement with respect to
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FIG. 4. (Color online) The maximal value of the Bell parameter
B, obtained for photon-number-resolving detectors, vs parameter
tanh χ for the mean value of noise counts Nnc = 0.5 × 10−6, the
mean total losses θ̄ = 9.1, and the turbulence parameter σ : (a) 0.1,
(b) 2, (c) 3.
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FIG. 5. (Color online) The maximal value of the Bell parameter
B, obtained for on/off detectors, vs the parameter tanh χ , for the
mean value of noise counts Nnc = 0.5 × 10−6, the mean total losses
θ̄ = 9.1, and the turbulence parameter σ : (a) 0.1, (b) 2, (c) 3.

noise counts. When the turbulence parameter σ becomes rather
large, contributions from events with θ < θ̄ in the postselected
measurements are dominant. This explains the nonclassical
values of the Bell parameter for strong turbulence.

VI. MEASUREMENT OF TURBULENCE PARAMETERS

A complete theory of quantum light in the turbulent
atmosphere should include a model for the explicit form
of the PDTC. Of course, the log-normal distribution (32)
cannot be applied in general. Alternatively, one can con-
sider a procedure that enables one to reconstruct the PDTC
from independent measurements. Such a procedure has been
proposed in Ref. [11] for the case of homodyne detection
of the light propagating through the atmosphere. In the
considered case the situation is rather different: Since the
output nonmonochromatic mode has a fluctuating form, it is
difficult to measure its phase properties. On the other hand,
the phase information is not necessary in the considered
experiments—the corresponding equations (see, for example,
Refs. [21]) include only mean values of the functions of
|TA|2 = ηA and |TB |2 = ηB . Hence, one can consider the
reconstruction of the PDTC, P(ηA, ηB), or alternatively, its
statistical moments 〈ηn

A
ηm

B
〉.

Let the input light be prepared in coherent states, |αA〉 in
the direction of the receiver A and |αB〉 in the direction of the
receiver B. For the sake of simplicity we consider a realistic
situation when the resulting signal at the receivers is much
stronger than the background radiation and the dark counts.
In this case the photocounting distribution at the receivers is
given by

PnA,nB
=

∫ 1

0
dηAdηBP(ηA, ηB)

[ηcηA|αA|2]nA

nA!

× [ηcηB|αB|2]nB

nB!
e−ηc(ηA|αA|2−ηB |αB |2), (44)

where ηc is the detection efficiency. In principle, the methods
of ill-posed problems (see, e.g., [23]) enable one to invert
Eq. (44) and to get the PDTC, P(ηA, ηB), from the measured
photocounting statistics.
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An alternative way to resolve this problem is the recon-
struction of statistical moments of the PDTC. A mean value
of a function of ηA and ηB can be presented as a series of
such moments. These moments can be obtained from the
corresponding moments of photocounts,

nn
Anm

B =
∑
nA,nB

nn
Anm

B PnA,nB
. (45)

For example, for the first moments, one gets

nA = |αA|2〈ηA〉, (46)

nB = |αB|2〈ηB〉. (47)

The first statistical moments of the PDTC, 〈ηA〉 and 〈ηB〉, are
easily obtained from these equations. Similarly, the second
moments of photocounts are given by

nAnB = |αA|2|αB|2〈ηAηB〉, (48)

n2
A = |αA|4

〈
η2

A

〉 + |αA|2〈ηA〉, (49)

n2
B = |αB|4

〈
η2

B

〉 + |αB|2〈ηB〉. (50)

Combining these equations with Eqs. (46) and (47), one gets
the second statistical moments of the PDTC from nAnB , n2

A,

n2
B , nA, and nB . In the same way one can get higher moments

of the PDTC by considering the corresponding moments of
photocounts.

VII. SUMMARY AND CONCLUSIONS

In recent experiments, violations of Bell inequalities have
been studied, by using entangled light after transmission
through the turbulent atmosphere. Here we have presented
analytical investigations of the transfer of entanglement
through channels with fluctuating losses. The effect of the
atmospheric turbulence has been modeled by the statistical
properties of the complex transmission coefficient. We show
how the corresponding statistical characteristics of such
channels can be experimentally determined. Of course, the
turbulence itself usually diminishes nonclassical properties
of light. In the considered case only a small depolarization

caused by the atmospheric turbulence might slightly destroy
the entanglement properties of light. However, since this effect
is very small it has been neglected.

For a realistic analysis of experiments, one must take
into account that the measurements are usually performed
in the presence of background radiation and dark counts.
This may also lead, in the presence of strong losses, to
a decrease of the measured value of the Bell parameter.
In this context it is an important result of our treatment
that fluctuating loss channels may preserve entanglement
properties of light even better than the corresponding standard
loss channels. The reason for this as follows: Some of the
recorded events are related to small values of the fluctuating
atmospheric transmission. These events are typically caused
by background radiation and dark counts. On the other hand,
for strong atmospheric turbulence the events with randomly
occurring large values of the transmission coefficient will
be dominant in the postselected measurements. In fact, these
are the wanted events originating from the nonclassical light
source.

Realistic radiation sources generate quantum states, which
differ from the perfect Bell states. Important examples are
parametric down-conversion sources, which are often used
in experimental investigations. For such sources we study
the situation for both photon-number-resolving detectors and
on/off detectors. The latter appear to be very sensitive to
the presence of background radiation and dark counts. We
have analyzed this problem for realistic parameters. Unlike
in the case of photon-number-resolving detectors, for on/off
detectors and for weak turbulence the Bell parameter may
become extremely small. Increasing atmospheric turbulence
may substantially improve this situation.
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(1997).

[16] L. Mandel, E. C. G. Sudarshan, and E. Wolf, Proc. Phys. Soc.
(London) 84, 435 (1964); R. J. Glauber, Phys. Rev. 130, 2529
(1963); 131, 2766 (1963); P. L. Kelley and W. H. Kleiner, ibid.
136, 316 (1964).

[17] L. Mandel and E. Wolf, Optical Coherence and Quan-
tum Optics (Cambridge University Press, Cambridge,
1995).

[18] A. A. Semenov, A. V. Turchin, and H. V. Gomonay, Phys. Rev.
A 78, 055803 (2008); 79, 019902(E) (2009).

[19] R. J. Glauber, Phys. Rev. Lett. 10, 84 (1963); Phys. Rev. 131,
2766 (1963); E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277
(1963).

[20] T. Kiss, U. Herzog, and U. Leonhardt, Phys. Rev. A 52, 2433
(1995).

[21] See supplementary material at http://link.aps.org/supplemental/
10.1103/PhysRevA.81.023835 for correlation coefficient for
Bell states and for coefficients in the detection probabilities for
the parametric down-conversion source.

[22] The experimental setup in Ref. [1] consists of an additional
beam-splitter at the receiver station. Here we do not consider the
corresponding field transformations. The related losses of 1.5 dB
(i.e., 3 dB of the photon-pair attenuation) are included in the
atmospheric losses.

[23] C. Byrne, Inverse Probl. 20, 103 (2004); M. Bertero and
P. Boccacci, Introduction to Inverse Problem in Imaging
(Institute of Physics, Bristol, 1998).

023835-8


