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Spatiotemporal electromagnetic soliton and spatial ring formation in nonlinear metamaterials
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We present a systematic investigation of ultrashort electromagnetic pulse propagation in metamaterials (MMs)
with simultaneous cubic electric and magnetic nonlinearity. We predict that spatiotemporal electromagnetic
solitons may exist in the positive-index region of a MM with focusing nonlinearity and anomalous group velocity
dispersion (GVD), as well as in the negative-index region of the MM with defocusing nonlinearity and normal
GVD. The experimental circumstances for generating and manipulating spatiotemporal electromagnetic solitons
can be created by elaborating appropriate MMs. In addition, we find that, in the negative-index region of a MM,
a spatial ring may be formed as the electromagnetic pulse propagates for focusing nonlinearity and anomalous
GVD; while the phenomenon of temporal splitting of the electromagnetic pulse may appear for the same case
except for the defocusing nonlinearity. Finally, we demonstrate that the nonlinear magnetization makes the sign
of effective electric nonlinear effect switchable due to the combined action of electric and magnetic nonlinearity,
exerting a significant influence on the propagation of electromagnetic pulses.
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I. INTRODUCTION

The underlying physical mechanism for ultrashort elec-
tromagnetic pulse propagation in conventional nonlinear ma-
terials has been well understood [1,2]. Generally speaking,
different qualitative spatiotemporal dynamical behaviors of
pulse evolution may occur, completely depending on the
interplay of dispersion, diffraction, and nonlinear processes.
In anomalous group velocity dispersion (GVD), Silberberg
theoretically predicted that the cubic self-focusing nonlin-
earity can compensate for both diffraction and dispersion
simultaneously, resulting in the formation of nondispersing
and nodiffracting pulses, namely, spatiotemporal solitons,
sometimes called “light bullets” to convey their particle-
like nature, when diffraction and dispersion have the same
magnitude [3]. However, a small perturbation will lead
to collapse of such a multidimensional soliton in a cubic
medium. Nevertheless, several ways to arrest the collapse and
stabilize spatiotemporal soliton have been proposed [1]. The
experimental realization of three-dimensional spatiotemporal
solitons in a cubic medium still poses significant challenges
to researchers owing to the difficulty of creating appropriate
experimental conditions [1–4]. In the normal GVD, previous
theoretical and experimental results demonstrated that, above
a certain threshold power, the light pulse in a cubic medium
may undergo temporal splitting which can arrest catastrophic
self-focusing [5,6]; while spatial ring formation may occur in
a saturating nonlinear optical medium [7].

Recently, artificially designed and engineered materials,
namely the metamaterials (MMs), have aroused increasing
interest in the scientific community due to their intriguing
properties, which are unattainable in naturally occurring
materials, and a variety of unprecedented applications [8–11].
Advances in the fabrication of MMs, ranging from microwave
to optical frequency [9–14] and from linear to nonlinear
[15–17], has further stimulated a great deal of research,
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including the revaluation and characterization of the classical
nonlinear optical processes. It is known that MMs have rich
and unusual linear and nonlinear electromagnetic properties,
indicating that MMs may be a new but important candidate
for solitons and other nonlinear optical phenomena such
as ultrashort electromagnetic pulse propagation [18–25]. In
addition, both linear and nonlinear electromagnetic properties
of MMs are engineerable, thus the manipulation of electro-
magnetic or light waves in MMs will be more desirable. Since
2005, some dynamical models for describing ultrashort pulse
propagation in MMs with a cubic nonlinear polarization and/or
a nonlinear magnetization have been established [18–22],
several intriguing and counterintuitive nonlinear phenomena
associated with pulse propagation and modulation instability
have been disclosed [18–25], and various soliton phenomena
and physics have been demonstrated [18–22,26–34].

In this paper, we present a systematic investigation of
electromagnetic pulse propagation in MMs with both cubic
electric and cubic magnetic nonlinearity, focusing on the
unusual propagation properties of electromagnetic pulses
associated with the unique electromagnetic properties of the
MMs. As is well known, the evolution of spatiotemporal
electromagnetic pulses is mainly governed by the interplay
among dispersion, diffraction, and nonlinearity in a dispersive
nonlinear medium. For MMs described by the Drude model,
diffraction may be either positive or negative, depending on
the sign of the refractive index seen by the propagating pulse
in MMs [19,20]. This provides us with more combinations for
the signs of dispersion, diffraction, and nonlinearity, greatly
enriching the dynamical behaviors of electromagnetic pulse
propagation. We will show that the MMs can be exploited to
create appropriate experimental circumstances for generating
and manipulating spatiotemporal electromagnetic solitons.
We will also predict the counterintuitive conditions for the
interesting phenomena of spatial ring formation and tempo-
ral splitting of pulsed electromagnetic beams in MMs and
elucidate the underlying physical mechanisms. Moreover, we
will discuss the role of the additional nonlinear magnetization
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[18–21], which has never arisen in conventional materials,
in the propagation of electromagnetic pulses. We find that
the nonlinear magnetization makes the sign of the effective
electric nonlinear effect switchable due to the combined action
of electric and magnetic nonlinearity, exerting a significant
influence on the propagation of electromagnetic pulses.

The rest of this paper has been split into several parts. In
Sec. II we present the basic propagation models for ultrashort
pulse propagation in MMs with a cubic nonlinear polarization
and/or a nonlinear magnetization and discuss the linear and
nonlinear properties of the MMs described by the Drude
model. In Sec. III, first, by utilizing the variational approach
we arrive at an explicit, although approximate, analytical
spatiotemporal soliton solution and analyze the requirements
for the existence of spatiotemporal electromagnetic solitons in
bulk MMs. Then, based on the split-step Fourier method, we
investigate the physical mechanism for spatial ring formation
and temporal splitting of electromagnetic pulses. Finally, we
discuss the controllable sign of the nonlinear effect in MMs
and its role in the propagation of electromagnetic pulses. A
brief conclusion will be given in Sec. IV.

II. NONLINEAR PROPAGATION MODELS FOR
SPATIOTEMPORAL ELECTROMAGNETIC PULSES

IN METAMATERIALS

A MM usually shows a microscopic periodic structure
[9,15]. When the characteristic scale of the wavelength of
the electromagnetic field is much larger than the period of
the microstructured medium, the effective medium approach
for both linear and nonlinear MMs is applicable. In such
an approach, a microstructured composite is treated as a
homogeneous isotropic medium characterized by an effective
electric permittivity ε(ω) and magnetic permeability µ(ω),
which are strongly affected by the internal structure of the
medium [15–25]. We consider electromagnetic pulse propa-
gation in this regime, and thus we can assume that the pulse is
propagating in uniform, bulk material, in which there are no
free charges and in which no free currents flow. In addition,
we assume the MM has a nonlinear electric polarization and
a nonlinear magnetization. Taking into full consideration the
unique characteristics of the MM, one can obtain the following
coupled nonlinear Schrödinger equations (NLSEs) describing
nonlinear propagation of ultrashort electromagnetic pulses in
MMs by following the classical steps for deducing NLSEs in
ordinary dielectrics [20]:
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where E and H are the envelope amplitudes of elec-
tric and magnetic fields, respectively, ξ is the propaga-
tion distance, τ is time in the co-moving reference frame,

∇2
⊥ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplace operator,

ε0 and µ0 are, respectively, the electric permittivity and the
magnetic permeability in vacuum, ω0 is the carrier frequency
of the electromagnetic pulse, β0 is the corresponding wave
number in MMs, β2 accounts for group-velocity dispersion,
χ (3)

p and χ (3)
m are, respectively, the third-order electric and

magnetic susceptibilities, and η = η0ηr ≡ √
µ0/ε0

√
µr/εr is

the impedance of MMs, where η0 and ηr are the impedance
in vacuum and the relative impedance of the medium, respec-
tively, and εr and µr are the relative electric permittivity and
relative magnetic permeability, respectively. It should be noted
that, in the derivation of the set of Eqs. (1), we have assumed
a Kerr-type nonlinear polarization PNL = ε0χ

(3)
p |E|2E and a

Kerr-type nonlinear magnetization MNL = µ0χ
(3)
m |H |2H . For

a MM created by arrays of wires and split-ring resonators
embedded in a nonlinear Kerr dielectric [15], such a material
has a Kerr-type nonlinear polarization and a comparatively
complicated form of nonlinear magnetization, similar to the
form of saturation nonlinearity. However, for a relatively small
magnetic field intensity, the nonlinear magnetization can also
be taken as the Kerr type [18,28]. In addition, the higher order
linear dispersion terms and higher order nonlinear terms have
been neglected in this paper for simplicity.

Obviously, the equations for the electric field [Eq. (1a)] and
the magnetic field [Eq. (1b)] exhibit an evident symmetry; in
fact we can formally obtain Eq. (1b) from Eq. (1a) and vice
versa with the formal substitutions ε0 → µ0, µ0 → ε0, E →
H , and H → E. Further, the coupled system (1) can be
incorporated into a single equation for the electric field by
using the relation between magnetic and electric fields [20]:

H = −i
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(
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(3)
m |H |2)

(
∂E
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+ iβ0E

)
. (2)

Under the slowly varying envelope approximation
(|∂E/∂ξ | � |β0E|) and the approximation |χ (3)

m ||H |2 �
|µr |, we have H ≈ E/η. Substituting this relation into
Eq. (1a) we obtain
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For convenience of computation, we define four characteristic
lengths for diffraction, dispersion, and electric and magnetic
nonlinearity, respectively, as follows:

LDF = ∣∣β0w
2
0

∣∣, (4a)

LDS =
∣∣∣∣τ 2
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β2
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∣∣χ (3)
m

∣∣|H0|2
, (4d)

where w0 is the initial input beam radius (1/e) and τ0 is the ini-
tial pulse width (1/e), and E0 and H0 are the initial amplitudes
of the electric and magnetic field envelopes, respectively. Now
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we normalize Eq. (3) using the transformations Z = ξ/LDF,
X = x/w0, Y = y/w0, T = τ/τ0, and A = E/E0:

∂A

∂Z
= − isgn (β2)

2
s
∂2A

∂T 2
+ isgn (n)

2
∇2

⊥A + ip|A|2A, (5)

where sgn (β2) = ±1 corresponds to normal and anoma-
lous GVD, respectively, and sgn (n) = ±1 corresponds to
positive-index and negative-index material, respectively. The
dimensionaless dispersion coefficient is s = LDF/LDS, and the
nonlinear coefficient p in Eq. (5) is given by

p = sgn
(
χ (3)

p

) LDF

LENL

[
1 + sgn

(
χ (3)

m /χ (3)
p

) LENL

f 2LHNL

]
, (6)

where f = ηH0/E0 ≈ 1 because H ≈ E/η. Here sgn (χ (3)
p ) =

±1 stands for focusing and defocusing electric nonlinearity,
respectively, and sgn (χ (3)

m ) = ±1 stands for focusing and
defocusing magnetic nonlinearity, respectively. Obviously, the
parameter p can be positive or negative, and its sign is
dependent on the combined effect of electric and magnetic
nonlinearity. In this paper, sgn (p) = ±1 is considered as the
focusing and defocusing nonlinearity for MMs, respectively, as
in conventional materials. In what follows, we will investigate
the generic propagation properties of electromagnetic pulses
in MMs based on Eq. (5).

The properties of MMs are described by the Drude model
in the paper, in which the relative permittivity and relative
magnetic permeability are expressed as

εr (ω) = 1 − ω2
pe

ω2
, µr (ω) = 1 − ω2

pm

ω2
, (7)

where ωpe and ωpm are the electric and magnetic plasma
frequencies. Here for simplicity we have neglected the electric
and magnetic losses in the following analysis. From Eq. (7)
we can easily obtain the expressions for the refractive index n,
relative impedance ηr , and GVD β2:
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√√√√(
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peω

2
pmω−4)/nω − ωpe(1 − ω2

peω
2
pm

ω−4)2/n3ω. Based on the Drude model, the corresponding
diffraction length, dispersion length, and nonlinear lengths for
electric and magnetic fields, respectively, can be transformed
into the following forms:
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and where c is the light velocity in vacuum.
The linear and nonlinear properties of MMs described by

the Drude model are summarized in Fig. 1. The left-hand
column shows the four characteristic lengths LDF, LDS, LENL,
and LHNL versus normalized frequency ω/ωpe, and the right-
hand column shows n, ηr, and β2 versus ω/ωpe. We clearly see
that, for the Drude model, the electromagnetic MM exhibits
quite different properties in the three regions. (1) In the
negative-index region [sgn (n) < 0], β2 can be either positive
or negative in the case of ωpm/ωpe > 1 or ωpm/ωpe <; while β2

is always negative in the case of ωpe/ωpm = 1. (2) In the stop-
band region (gray region), no incident electromagnetic wave
can propagate. (3) In the positive-index region [sgn (n) > 0],
β2 is always negative. For simplicity of discussion, we assume
that L0

ENL = L0
HNL and L0

DS = L0
DF in the following analysis.

Under such conditions, some interesting conclusions about
the four characteristic lengths can be drawn from Fig. 1. First,
when ωpm/ωpe < 1 and sgn (n) < 0, or when ωpm/ωpe > 1 and
sgn (n) > 0, the electric nonlinear length LENL is always longer
than the magnetic nonlinear length LHNL, and near the plasma
frequency, LENL tends to become very long while LHNL tends
to become very short. When ωpm/ωpe > 1 and sgn (n) < 0,
or when ωpm/ωpe < 1 and sgn (n) > 0, the electric nonlinear
length LENL is always shorter than the magnetic nonlinear
length LHNL, and near the plasma frequency, LENL tends
to become very short while LHNL tends to become very
long. When ωpm/ωpe = 1, LENL is always equivalent to the
magnetic nonlinear length LHNL. Second, when ωpm/ωpe > 1,
or ωpm/ωpe < 1, both the diffraction length LDF and the
dispersion length LDS near the plasma frequency become very
short. Finally, and most importantly, the four characteristic
lengths for describing the pulse propagation are dependent not
only on the parameters of the electromagnetic pulse itself but
also on the electric and magnetic plasma frequencies related
to the sizes of split-ring resonators and wires for MMs. As a
result, we can engineer the magnitude for these four lengths
by adjusting the structural sizes of the MMs. These provide us
with an alternative approach to manipulating electromagnetic
pulse evolution not accessible in natural media

III. PROPAGATION PROPERTIES OF SPATIOTEMPORAL
ELECTROMAGNETIC PULSES IN METAMATERIALS

A. Spatiotemporal electromagnetic solitons in metamaterials

Now, let us concentrate on Eq. (5) again. Apparently,
it is formally identical to that for light pulse propagation
in conventional materials except for the diffraction term.
As a result, when we only consider the temporal pulse
propagation in MMs, the conditions for the bright and dark
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FIG. 1. (Color online) The four characteristic lengths LDF, LDS, LENL, and LHNL (left) and n, ηr , and β2 (right) versus normalized frequency
ω/ωpe for ωpm/ωpe= 0.8 (first row), 1.0 (second row), and 1.2 (third row), respectively. Here LDF, LDS, LENL, and LHNL are calculated in units
of L0

DF, L0
DS, L0

ENL, and L0
HNL, respectively, and β2 is calculated in units of 1/cωpe.

soliton formation are the same as those in conventional
materials, irrespective of the sign of the refractive index
[27]. However, when we consider the combined effects of
dispersion, diffraction, and nonlinearity, the dynamics of the
three-dimensional spatiotemporal soliton will become richer
and more interesting owing to the fact that the sign of
diffraction has an alternate choice of being negative, compared
to that in conventional material where the sign of diffraction
is always positive. Based on the well-known results drawn
from the NLSE for light pulse propagation in conventional
media [1–3,35], we note that, for sgn (β2) sgn (n) < 0 and
s = 1, Eq. (5) exhibits complete symmetry between time
and space variables. As a consequence, for the positive-index
region of MMs, spatiotemporal electromagnetic solitons may
only form in focusing nonlinear materials with anomalous
GVD; while for the negative-index region of MMs, spatiotem-
poral electromagnetic solitons can form even in defocusing

nonlinear material with normal GVD. Such counterintuitive
conditions obtained can be easily understood by noting that
the role of diffraction is equivalent to that of anomalous
dispersion in the positive-index region, whereas diffraction
plays the role of normal dispersion in the negative-index region
of MMs due to negative refraction. This leads to the fact
that self-defocusing nonlinearity acts in opposition not only
to normal dispersion but also to anomalous diffraction. As a
result, it is conceivable that a suitable defocusing nonlinearity
can delicately balance both normal dispersion and diffraction
simultaneously, resulting in spatiotemporal electromagnetic
soliton formation in MMs.

To better understand these results, here we borrow the
analytical solutions to the NLSE for conventional media
derived from the variational approach to further analyze the
existence of a spatiotemporal electromagnetic soliton and
the characteristics of its evolution in MMs. We assume the
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envelope of the electric field of the pulse in MMs retains
a Gaussian shape along the temporal and transverse spatial
directions and is written as

A(X, Y, T , Z) = a exp

[
−X2 + Y 2 + T 2

2w2

]
× exp[ib(X2 + Y 2 + T 2) + iφ], (11)

where the self-similar evolution of the beam is parametrized
by the Z-dependent amplitude a(Z), spatiotemporal radius
w(Z), wave-front curvature b(Z), and phase φ(Z). Using the
variational approach [35,36] and skipping the straightforward
details of the calculations, we present the following set of
conventional differential equations to govern the evolution of
parameters of ansatz (12):

d2w

dZ2
= 1

w3
− sgn (n)

I0p

2
√

2w4
, (12a)

b = sgn (n)

2w

dw

dZ
, (12b)

dφ

dZ
= −sgn (n)

3

2w2
+ 7I0p

8
√

2w3
, (12c)

where I0 = a2w3 is the “energy” which is conserved during
the pulse evolution. When Eq. (12a) is integrated once, we
easily obtain the potential-well description:

1

2

(
dw

dZ

)2

+ V (w) = 0, (13)

where the potential V is

V (w) = 1

2w2
− sgn (n)

I0p

6
√

2w3
+ sgn (n)

I0p

6
√

2
− 1

2
. (14)

Here, the initial curvature b(0) = 0 and the initial spatiotempo-
ral radius w(0) = 1 are assumed. Note that we do not specify
the sign of n in deriving Eqs. (12)–(14), so they are formally
applied to both conventional materials and MMs. It is easy to
infer from Eqs. (12)–(14) that a spatiotemporal soliton may
be excited when sgn (n) sgn (p) = 1 while an electromagnetic
pulse always spreads along the temporal and spatial directions
when sgn (n) sgn (p) = −1. In addition, we find that the phase
and the wave-front curvature of the soliton are negative in
the negative-index region of MMs, while they are positive in
the positive-index region. In particular, it is worth noting that,
although Eqs. (13) and (14) obtained by a variational approach
are approximate, they just resemble the equations describing
the dynamics of a particle in a one-dimensional potential well.
As a result, using this analogy we can acquire a deeper physical
understanding of the dynamics of electromagnetic pulse in
MMs. In Fig. 2(a) we plot the potential V as a function of
spatiotemporal radius w for different values of I0|p|, and
Fig. 2(b) illustrates the corresponding spatiotemporal ra-
dius w as a function of propagation distance Z. These
results presented by the variational approach clearly show
that the electromagnetic pulse will undergo diffraction
(I0|p| < 2

√
2), become a spatiotemporal electromagnetic

soliton (I0|p| = 2
√

2), or collapse (I0|p| > 2
√

2), depending
on competitions among the effects of nonlinearity and GVD
together with diffraction. In addition, we find that, since the
potential well cannot be created, as shown in Fig. 2(a), such

FIG. 2. Spatiotemporal electromagnetic soliton formation in the
defocusing MMs with normal dispersion or in the focusing MMs with
anomalous dispersion. (a) Qualitative plot of the potential function
V as the function of spatiotemporal radius w for different values of
I0|p|. (b) Spatiotemporal radius w as the function of propagation
distance Z for different values of I0|p|. (c) Comparison of the radial
profiles of spatiotemporal electromagnetic solitons for variational and
numerical solutions; the field is normalized to unity at R = 0.

an equilibrium solution in MMs with simultaneous cubic
electric and magnetic nonlinearity is unstable, and even a
small deviation from the ideal self-trapped solution will lead
to either divergence or collapse simultaneously along temporal
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and spatial directions. Further, we make the substitution
A → √|p|A in Eq. (5) and numerically solve it by using
Runge-Kutta arithmetic in the spherical symmetric coordinate
R = √

X2 + Y 2 + T 2 [3,35]. Figure 2(c) shows that the radial
field profile of the approximate solution predicted by the
variational approach agrees quite well with the exact numerical
solution.

For the creation of spatiotemporal electromagnetic solitons
in optical media, the ultimate goal of experimental and
theoretical arrangements is to achieve a delicate balance
among nonlinearity, diffraction, and dispersion. Therefore, the
search for a material with suitable dispersion, diffraction, and
nonlinearity is of the greatest importance. As is well known,
for typical experimental parameters in conventional materials,
one of the great challenges for realizing spatiotemporal
electromagnetic solitons is that diffraction usually is stronger
than dispersion (i.e., s � 1) [1–4]. The MMs, however, may
completely overcome this limitation. As shown in Fig. 1, large
GVD can be produced so that the dispersion effect can be
comparable to the diffraction effect in this situation, meaning
that we can facilitate matching of diffraction and dispersion
(i.e., s = 1). For instance, we clearly see that, for ω0/ωpe =
0.728 or ω0/ωpe = 1.169 in the case of ωpm/ωpe = 0.8,
spatiotemporal electromagnetic solitons can be excited in both
positive- and negative-refractive index regions by adjusting
the strength of nonlinearity. Most importantly, the lengths for
dispersion, diffraction, and electric and magnetic nonlinearity
are dependent on the structural parameters of MMs, indicating
that we can engineer the balance among them by adjusting the
sizes of the typical constitutive elements of MMs. As a result,
compared with conventional materials, MMs can be designed
to have more desirable linear and nonlinear electromagnetic re-
sponses for creating spatiotemporal electromagnetic solitons;
thus they will become a promising candidate for generating
and manipulating multidimensional solitons.

B. Spatial ring formation of electromagnetic
pulses in metamaterials

In this section, we will unfold an interesting pulse prop-
agation phenomenon associated with the negative refractive
index of the MM, that is, the spatial ring formation of an
electromagnetic pulse in the MM. The symmetry between time
and space in Eq. (5) shows, when refractive index, dispersion,
and nonlinearity meet the conditions sgn (β2) sgn (p) < 0 and
sgn (n) sgn (p) < 0, we can deduce that a spatial splitting of
the pulse will occur in the optical media; especially for a
circular beam, a spatial ring formation may appear in the
transverse spatial direction. In conventional materials, because
sgn (n) > 0, a light pulse will undergo spatial splitting for
sgn (β2) > 0 and sgn (p) < 0, namely, in defocusing nonlinear
materials with normal GVD. Similar phenomena have been
reported in saturating nonlinear optical media [7]. However, for
the negative-index region of MMs, due to sgn (n) < 0, a spatial
ring formation of an electromagnetic pulse may take place for
sgn (β2) < 0 and sgn (p) > 0, namely, in focusing nonlinear
materials with anomalous GVD. In order to get better insight
into the physical mechanism for the spatial ring formation of
the pulse in the negative-index region of MMs, we will have
to solve Eq. (5) by employing the split-step Fourier method,

inasmuch as it has no analytic solution in this situation. Here,
it is assumed that the initial envelope of the electric field of
the pulse retains a Gaussian shape along temporal and spatial
directions and is written as

A(X, Y, T , Z = 0) = exp

(
−X2 + Y 2 + T 2

2

)
. (15)

We summarize the typical evolutions of the pulse in Fig. 3.
Figures 3(a) and 3(b) show the space-time profile and ring
formation at Z = 0.1LDF, respectively, and the corresponding
detailed evolutions for temporal and spatial profiles with
propagation distance are illustrated in Figs. 3(c) and 3(d),
respectively. In the numerical simulations, we set ω0/ωpe =
0.632, L0

DF = 24L0
ENL, and sgn (χ (3)

m ) = sgn (χ (3)
p ) = 1, which

correspond to s = 3.0 and p = 50.5 for ωpm/ωpe= 0.8. We
choose the parameters for the purpose of satisfying the condi-
tion for spatial splitting of the pulse to occur, that is, s > 1 (to
be given in the following), sgn (β2) < 0, and sgn (p) > 0. The
results observed in Fig. 3 clearly show that the peak intensity
first increases, then decreases with increasing propagation
distance. In particular, at the position of the maximum peak
intensity, pulse splitting along the spatial direction begins
to appear. In addition, we find that the compression in the
temporal domain can be prevented by the spatial splitting
at relatively larger propagation distance. Obviously, such an
evolution for an electromagnetic pulse in the negative-index
region of the MM is quite different from its counterpart in
conventional materials under the same condition [3]. From a
simple physical standpoint, we can understand the anomalous
phenomena of electromagnetic pulse evolution as follows. It is
well known that both focusing nonlinearity-induced self-phase
modulation (SPM) and anomalous dispersion together act to
compress the pulse, yet the effect of anomalous diffraction
interacting with focusing nonlinearity always brings about
beam spreading in MMs. As a result, when dispersion is
stronger than diffraction (i.e., s > 1), under the action of strong
enough SPM the electromagnetic pulse is initially compressed
along the temporal direction faster than the spreading along
the spatial direction, resulting in a rapid increase of the peak
intensity. Subsequently, the spatial focusing nonlinearity will
become relatively important with peak intensity increasing, so
that the combined action of spatial focusing nonlinearity and
diffraction makes the electromagnetic pulse spatial splitting
occur, resulting in the spatial ring formation.

C. Temporal splitting of electromagnetic pulses
in metamaterials

As is well known, temporal splitting of light pulses in
conventional materials may occur for focusing nonlinearity
and normal GVD [5,6]. In MMs, however, the condition is
changed in the negative-index region. The symmetry between
space and time in Eq. (5) shows that the signs of nonlinearity
and dispersion will be reversed due to the negative index
of refraction in the negative-index region of MMs. Typical
evolutions of electromagnetic pulses in the defocusing MM
with anomalous GVD are summarized in Fig. 4 by solving
numerically Eq. (5). Figure 4(a) shows the space-time profile at
Z = 1.15LDF, and Figs. 4(b) and 4(c) illustrate the correspond-
ing evolutions of temporal and spatial profiles with propagation
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FIG. 3. Spatial ring formation of an electromagnetic pulse in focusing MMs with anomalous GVD. (a) Space-time profile (Y = 0).
(b) Spatial ring formation (T = 0) at Z = 0.1LDF. (c) Evolution of on-axis temporal profile (X = Y = 0) as a function of propagation distance
Z. (d) Evolution of on-axis spatial profile (Y = T = 0) as a function of propagation distance Z.

distance, respectively. To obtain typical results, the parameter
values for the simulations are taken as ω0/ωpe = 0.699, L0

DF =
2.5L0

ENL, and sgn (χ (3)
m ) = sgn (χ (3)

p ) = −1, which correspond
to s = 0.33 and p = −3.39 for ωpm/ωpe = 0.8. From the
results in Fig. 4, for the case of defocusing nonlinearity and
anomalous GVD, the temporal splitting of the electromagnetic
pulse is clearly observed in the negative-index region of MMs
during the propagation, while the light pulse in conventional
materials will always spread along temporal and spatial
directions under the same conditions. Here, we present some
qualitative explanation of the underlying physics as follows.
Both defocusing nonlinearity-induced SPM and anomalous
dispersion act to lead to a monotonic pulse spreading;
however, the interaction of negative diffraction and defocusing
nonlinearity tends to compress the beam in MMs. As a result,
when diffraction is stronger than dispersion (i.e., s < 1), the
strong enough self-defocusing nonlinearity can initially move
energy toward the peak of the pulse from the off-axis spatial
field faster than the anomalous dispersion can move it to the
off-axis temporal field, thus leading to a rapid increase of
peak intensity. As the peak intensity continues to increase,
the impact of SPM on the pulse evolution will become more
pronounced. As a result, at a relatively larger propagation
distance the combination of SPM and GVD will be enough to
push the energy away from T = 0, initiating the pulse splitting
along the temporal direction, As this process continues, the
peak intensity drops, and stops the spatial collapse.

D. The switchable sign of nonlinearity and its role in the
propagation of electromagnetic pulses in metamaterials

Finally, let us analyze the switchable sign of the nonlinear
term in Eq. (5) by adjusting the structural parameters of the

MM and its role in the propagation of electromagnetic pulses.
As Eq. (6) shows, the sign of the nonlinearity parameter p is
determined by the combined effect of electric susceptibility
χ (3)

p and magnetic susceptibility χ (3)
m . In particular, for χ (3)

p

and χ (3)
m having different signs [i.e., sgn (χ (3)

m /χ (3)
p ) = −1], the

sign of p can be engineered by varying the ratio between the
electric and magnetic plasma frequencies. For sgn (χ (3)

p ) = −1
and sgn (χ (3)

m ) = 1, if ωpm/ωpe> 1 and sgn (n) < 0, or if
ωpm/ωpe< 1 and sgn (n) > 0, the MM will exhibits defocusing
nonlinear characteristics (p < 0), while if ωpm/ωpe< 1 and
sgn (n) < 0, or if ωpm/ωpe> 1 and sgn (n) > 0, the MM
will exhibit focusing nonlinear characteristics (p > 0). For
sgn (χ (3)

p ) = 1 and sgn (χ (3)
m ) = −1, the opposite situation will

occur. As a consequence, due to the switchable sign of
nonlinearity, the propagation of the electromagnetic pulse
in the MM will become much richer and more interesting.
For instance, according to the preceding discussions, if
sgn (χ (3)

p ) = −1 and sgn (χ (3)
m ) = 1, the spatial ring formation

and temporal splitting of the electromagnetic pulse may occur
for ωpm/ωpe< 1 and ωpm/ωpe> 1, respectively, for sgn (n) <

0. In the opposite situation [i.e., sgn (χ (3)
p ) = 1 and sgn (χ (3)

m ) =
−1], the spatial ring formation and temporal splitting of
the electromagnetic pulse may occur for ωpm/ωpe> 1 and
ωpm/ωpe< 1, respectively, for sgn (n) < 0. On the other hand,
spatiotemporal electromagnetic solitons can be excited in both
positive-index and negative-index regions. For sgn (χ (3)

p ) =
−1 and sgn (χ (3)

m ) = 1, a spatiotemporal electromagnetic
soliton can form when ωpm/ωpe> 1, while for sgn (χ (3)

p ) = 1
and sgn (χ (3)

m ) = −1, it can only appear when ωpm/ωpe< 1.
To sum up, we can conclude that, when the sign of the
normalized nonlinear parameter p satisfies the corresponding
conditions given here by adjusting the structural parameters of
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FIG. 4. Temporal splitting of an electromagnetic pulse in defo-
cusing MMs with anomalous GVD. (a) Space-time profile (Y = 0) at
Z = 1.15LDF. (b) Evolution of on-axis temporal profile (X = Y = 0)
as a function of propagation distance Z. (c) Evolution of on-axis
spatial profile (Y = T = 0) as a function of propagation distance Z.

MMs, a spatiotemporal electromagnetic soliton, a spatial ring,
and temporal splitting of the electromagnetic pulse can occur
regardless of the individual signs of the electric and magnetic
nonlinearity. The switchable sign of the nonlinearity allows
us to manipulate the dynamical behaviors of electromagnetic
pulses in MMs more freely.

IV. CONCLUSIONS

In this paper, we provide a comprehensive investigation
of the nonlinear dynamics of spatiotemporal electromagnetic
pulses in MMs with simultaneous cubic electric and magnetic
nonlinearity. Referring to the theoretical analysis of the pulsed
beam propagation in conventional nonlinear optics, we try
to disclose some unusual propagation properties of the spa-
tiotemporal pulses associated with the unique electromagnetic
properties of MMs, and we discuss the manipulation of
the dynamical behaviors of electromagnetic pulses in MMs.
We predict the existence of spatiotemporal electromagnetic
solitons not only for the case of focusing nonlinearity with
anomalous dispersion but also for the case of defocusing
nonlinearity with normal dispersion. Especially, it is found
that MMs can be exploited to create appropriate experimental
circumstances for generating and manipulating spatiotemporal
electromagnetic solitons. In addition, we demonstrate that spa-
tial ring formation and temporal splitting of electromagnetic
pulses may occur for the case of focusing and defocusing
nonlinearity with anomalous dispersion, respectively. Finally,
we find that the sign of nonlinearity for MMs can be engineered
by varying the ratio between the electric and magnetic
plasma frequencies, allowing us to manipulate the dynamical
behaviors of electromagnetic pulses in MMs more freely.
We hope that our findings will be helpful in manipulating
electromagnetic pulse at will through the controllable linear
and nonlinear properties of MMs and in stimulating further
investigations on the nonlinear interaction of ultrashort elec-
tromagnetic pulses with MMs.
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