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Cavity cooling of an optically trapped nanoparticle
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We study the cooling of a dielectric nanoscale particle trapped in an optical cavity. We derive the frictional
force for motion in the cavity field and show that the cooling rate is proportional to the square of oscillation
amplitude and frequency. Both the radial and axial components of the center-of-mass motion of the trapped
particle, which are coupled by the cavity field, are cooled. This motion is analogous to two coupled but damped
pendulums. Our simulations show that the nanosphere can be cooled to e−1 of its initial momentum over time
scales of hundredths of milliseconds.
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The study of micro and nanomechanical oscillators [1–4]
and particularly their quantum mechanical motion [5–7] is
a rapidly developing field that promises insights into the
boundary between quantum and classical worlds. Also, their
sensitivity to the environment appears promising for the devel-
opment of chemical sensors with single-atom sensitivity [8].
Cavity optomechanics is an important area within this field
in which the mechanical motion of at least one degree of
freedom of an oscillator is damped or cooled by interaction
with the field of an optical cavity [4,9–12]. Cooling of
the mechanical motion works by coupling an optical cavity
to the oscillator so that it selectively scatters blue-shifted
photons of a probe beam out of the cavity with respect to the
incident photons. By conservation of energy, the mechanical
energy of the oscillator-cavity system is reduced. A range
of optomechanical oscillators and cooling schemes have now
been realized experimentally [9] and currently there is a strong
impetus toward reaching the quantum regime where only a few
of the quantized states of at least one degree of freedom are
occupied. The cooling of atomic species using laser cooling
is now well established with the creation of nanoKelvin
temperature gases, which has led to the realization of quantum
degeneracy in gases. For molecular and atomic species that
cannot be laser cooled, cavity cooling of a trapped species
appears attractive because it does not rely on the detailed
internal level structure [13–15]. This scheme was already
used to cool a trapped atom [16], an ion [17], and atomic
gases [18].

I. INTRODUCTION

In this article we consider the cavity cooling of a nanoscale
particle trapped at the center of a high-finesse Fabry-Perot
cavity in a vacuum. Here a center-of-mass oscillation occurs
due to trapping in the periodic potential of the interference
pattern created inside the cavity, while cooling occurs by
interaction with the field mediated by the cavity. Unlike
many optomechanical cooling schemes that utilize radiation
pressure, this scheme uses the dipole force. Cavity cooling
in this way is attractive because a trapped particle can be

effectively isolated from the environment. This is unlike the
cooling of many cavity optomechanical schemes such as
cantilever [4] or membranes [19], which are directly physically
connected to a large heat bath.

We consider cavity cooling of a large polarizable particle
that is trapped in the intracavity field of a high-finesse cavity
by modifying the model developed for a single atom in a
one-dimensional (1D) cavity [20]. Because we only consider
a single trapped particle, we are able to derive a velocity-
dependent frictional force for small oscillations around the
antinode of the intracavity field. We then consider cooling
in a realistic two-dimensional (2D) cavity that includes the
damping of the axial and radial motion. We show that both
degrees of freedom are coupled by the cavity field, which acts
to damp them. In addition to the dipole force due to the cavity
field, which acts to trap the particle, the nanoparticle is also
subject to gravity, which is chosen to be along the cavity axis
as shown in Fig. 1.

II. 1D COOLING OF A NANOSPHERE

To explore cavity cooling we assume a field of amplitude
ξext and frequency ωp incident on one of the two high-finesse
cavity mirrors of equal reflectivity R with conductivity σ . The
linewidth of the cavity is κ and the 1/e lifetime of a photon
in the cavity is 2π/κ . We assume that the light is impedance
matched to the cavity, that the cavity is stabilized such that only
the lowest order transverse electromagnetic mode (TEM00)
propagates, and that the nanoparticle is trapped by the field
at its beam waist at position xn. We first determine the field
within the cavity in the presence of the single dielectric particle
from the 1D wave equation given by

∂2E(x, t)

∂t2
+ 2κ

∂E(x, t)

∂t
− c2 ∂2E(x, t)

∂x2

= 1

ε0

∂2P (x, t)

∂t2
+ 2κext ∂E(x, t)ext

∂t
, (1)

where κ = σ
2ε0

and κext = σ
2ε0

ext.
Here E(x, t) and P (x, t) represent the sum of all possible

allowed electric field and polarization modes for the cavity,
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FIG. 1. (Color online) Schematic diagram for cooling a small
dielectric nanoscale particle in a high-finesse cavity.

respectively. We assume that the cavity only operates on
one of these modes where the electric field is Em(x, t) =
ξ (t)(e−iωpt + c.c.) cos(kx) and the polarization is given by
Pm(x, t) = p(t)e−iωpt + c.c. in the cavity. We assume the
nanoparticle is a point-like spherical particle with Pm(x, t) =
αEm(xn, t)δ(x − xn)/A where α is the polarizability of the
particle and A is the cross-sectional area of the field in the
cavity. The external field that couples to this cavity mode
is given by Eext

m = ξ ext(t)e−iωpt + c.c. We find the equation
for the evolution of field amplitude of this mode by utilizing
the orthogonality of cavity modes and multiplying Eq. (1) by
Em(x, t) and averaging over the cavity volume V .

Under the slowly varying envelope approximation, we
obtain the 1D equation of motion for the amplitude of the
single-mode field as

∂ξ

∂t
= −{κ − i[U (xn) + 
]}ξ + κextξext, (2)

where U (xn) = αωp cos2 kxn

ε0V
is the position-dependent shift in

cavity frequency induced by the polarizable particle and

 = ωp − ωc is the cavity detuning from resonance.

The equation of motion for the momentum is simply the
dipole force that results from the intracavity field acting against
gravity

dPxn

dt
= −α|ξ |2k sin 2kxn − mg, (3)

and the particle position is given by

dxn

dt
= Pxn

/m. (4)

It is not clear from the coupled Eqs. (2), (3), and (4)
that there is a dissipative force on the trapped particle in
the intracavity field. To understand the damping or heating
of the trapped nanoparticle we derive an equation of motion
with a velocity-dependent frictional force. As we are only
interested in trapped motion, we need only consider small
amplitude oscillations when kxn � 1. Additionally, because
the center-of-mass motion is much smaller than the round-trip
time for light in the cavity, we average Eqs. (2), (3), and (4)
over a time 
t from t − 
t to t . A suitable 
t is the cavity
decay time 2π/κ . The averaged field ξ over 2π/κ is given by

ξ = κextξ ext

κ − i
[

 + αωp

ε0V
+ αωpk2

ε0V

(
v 2πxn

κ
− x2

n

)] , (5)

where we now omit for convenience the subscript n for the
position of the particle and the position-dependent expression
for the frequency shift, now given by U (x), is expanded around

the nanoparticle position at x = 0 so that U (x) ≈ αωp[1−(kx)2]
ε0V

and x(t − 
t) = x(t) − 2vπ/κ , where v = dx/dt .
This enables us to find a time-averaged equation of

motion for momentum. This is given by dpx

dt
= md2x

dt2 ≈
−2αk2ξ

2
x, which leads to an equation of motion of the

trapped nanosphere, which is a type of Liénard differential
equation [21]. This is given by

d2x

dt2
= −�2

(
x + βx3 − 2πβ

κ
x2v

)
− g, (6)

where � =
√

2αδk2

m
, δ = |κextξ ext|2

κ2+(
+ αωp

ε0V
)2 , and β =

αωpk2(
+ αωp

ε0V
)

ε0V [κ2+(
+ αωp

ε0V
)2]

. This equation differs from conventional

oscillators such as the van der Pol or Duffing type in that
the friction term β

κ
x2 is position dependent. When β < 0 the

oscillatory motion of the sphere is damped and therefore the
cavity detuning is 
 < −αωp/ε0V . Optimal damping or
cooling of the sphere occurs when


op = −αωp/ε0V − κ. (7)

Optimal heating occurs when 
 = −αωp/ε0V + κ .
An approximate expression for the energy loss rate, aver-

aged over an oscillation period 2π/�, can also be determined.
The rate of change in the total energy E of the particle can
be determined from the power by multiplying the equation
of motion (6) by mv to give dE

dt
= mv d2x

dt2 = −m�2xv −
m�2βx3v + 2πβ

κ
m�2v2x2 − mg. When averaged over an

oscillation period, assuming the damping is slow enough not
to significantly change the amplitude of oscillations during a
cycle such that x ≈ x0 sin(�t), we determine a time-averaged
exponential energy damping rate of

 = πβ

2κ
�2x2

0 , (8)

where x0 is the amplitude of the oscillation. Note again that
damping or cooling results when β < 1. Because the amplitude
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FIG. 2. A plot of the particle (a) position, (b) velocity, (c) square
of field amplitude [Eq. (5)], and (d) the friction force 2πmβ

κ
�2x2v

derived from Eq. (6). These values are derived from the numerical
solution of Eq. (6) for optimal detuning and initial particle position
of 100 nm and velocity of 3 cm/s over a time of scale 40 µs.

will decrease as the particle cools at a fixed input intensity, so
the damping rate also decreases, as was previously noted [22].
However, the cooling rate is proportional to the square of the
oscillation frequency.

To study the cooling of nanoscale polarizable particles,
we consider a SiO2 nanosphere of radius r = 100 nm and
refractive index of n = 1.45 trapped in an antinode of the
intracavity field. A sphere of this size within the Rayleigh
regime when r � λ and can be treated as a dipole scatterer
with polarizability α = 4πε0

n2−1
n2+2 r3 was determined to be

2.98 × 10−32 Cm2 V−1. Its mass, determined from its density
(ρ = 2198 Kg m−3), is m = 9.2 × 10−18 kg. We consider a
cavity of length L = 10 cm with mirrors of reflectivity R =
0.99995 resulting in κ = 4.71 × 105 rad/s. The intracavity
field has a wavelength of 1064 nm with an input intensity of 1
mW and a beam radius of 50 microns in the cavity. The axial
oscillation frequency for these parameters is 4.65 × 105 rad/s.
The optimal detuning of the cavity from resonance is calcu-
lated from the previous parameters to be −5.0 × 105 rad/s for
cooling and 4.4 × 105 rad/s for heating.

Figure 2 is a plot of the particle position and velocity
as well as the square of field amplitude [Eq. (5)] and the

friction force m
2πβ

κ
�2x2v derived from Eq. (6). These values

are derived from the numerical solution of Eq. (6) for the
optimal detuning and initial particle position of 100 nm and
velocity of 3 cm/s over a short time of scale 40 µs. From
these plots the cooling process can be clearly understood as
the trapped particle oscillates in the standing-wave field of the
cavity. When the particle moves into the high intensity region
(antinode) of the cavity field toward x = 0 there is a slight
increase of the optical path length in the cavity and an increase
in the position-dependent frequency shift U (x). For an input
field that is red-detuned from the cavity resonance, this effect
pushes the cavity closer to resonance and acts to increase
the intracavity intensity and thus also the dipole force on the
particle. For a cavity there is a delay in the time the intracavity
intensity reaches it maximum due to the motion of the particle.
This difference is shown by the two vertical lines of Fig. 2. The
first line marks the time when the particle reaches an antinode
at x = 0 [Fig. 2(a)] and the second gray line when the square
of the field reaches a maximum [Fig. 2(c)]. This delay has
the effect of increasing the frictional force after the particle
has moved past the antinode and acts to slow the particle.
The same process also occurs as the particle moves in the
opposite direction. Note that the frictional force is always zero
at the antinode. Although not shown here, for positive detuning
the effect of the position-dependent frequency shift is to tune
the cavity further away from resonance. Here the lag in time
for the intensity to decrease leads to heating on each half of
the oscillation. It is interesting to note that for the parameters
that we consider some weak cooling occurs for zero cavity
detuning.

It is instructive to plot the energy damping or heating rate
as a function of both detuning and position, as shown in Fig. 3.
Peak negative values correspond to maximal cooling and peak
positive values for maximal heating. Figure 3 also shows that
the damping or heating is larger when the particle is further
from the antinode of the interference pattern of the intracavity
field, which has important consequences for cooling because
it implies that the best damping will occur when the particle is
not strongly confined and will undergo larger oscillations.

To illustrate the damped oscillatory motion of the trapped
nanosphere, we plot its velocity and position for an initial

FIG. 3. (Color online) A three-dimensional plot showing the
variation of the energy damping rate as a function of cavity detuning

 and oscillation amplitude of nanosphere position x0. Maximal
cooling occurs at negative detuning.
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FIG. 4. A phase-space plot showing damped motion in position
over 1 ms. Note that the cooling rate decreases as the particle becomes
localized in the lattice potential.

velocity of v = 3 cm s−1, corresponding to an initial kinetic
energy of E/kb = 300 K and x = 100 nm from the trap center
with optimal cavity detuning for damping. The equations of
motion were integrated in time using a fourth-order Runge-
Kutta method. The damped oscillatory motion is clearly
shown, even for this short time period t = 1 ms and there
is good agreement between the simplified time-averaged
equation of motion (6) and the exact model of Eqs. (2),
(3), and (4). The oscillation frequency, largely determined
by the input intensity, was chosen to be smaller than the
cavity linewidth. However, an increase in intensity and thus
oscillation frequency can be used to cool the particle in the
resolved-sideband limit, which is of importance for cooling to
the quantum ground state [23]. Figure 4 shows a phase-space
plot of the velocity and position trajectory of the particle
trapped in a single antinode. The inward spiral indicates
damping with a much tighter spiral as the particle approaches
x = 0, indicating a weaker frictional force as the particle
approaches the antinode. It was shown previously through
simulations that atoms can be cooled more rapidly in cavity
cooling schemes if the laser input intensity is lowered as
the particle is cooled [22]. This can now be seen to be due
to the position dependence of the damping rate. For high
intensities the particle is tightly confined and the amplitude of
the oscillations are small resulting in a lower cooling rate. To
illustrate the differences in cooling time for a constant intensity
field, we plot the amplitude of the oscillating kinetic energy
of the particle as a function of time for a constant intensity of
1 mW input into the cavity and for an exponentially decaying
input field, initially at 1 mW, with a time constant of 50 ms.
We note that the lowest intensity that can be used is limited by
gravity since eventually the well depth of the intracavity field
becomes less than the gravitational potential. This occurs in
Fig. 5 at approximately 0.35 s. Here, the cavity intensity must
be held constant and the cooling rate will be slower.

III. COOLING IN 2D

We now consider the experimentally more realistic situation
of cooling in a cavity that has field variations in the axial and

72
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FIG. 5. (Color online) Plot of the amplitude of the oscillatory
energy as a function of time to compare of cooling times for a
constant input intensity into the cavity of 1 mW (solid line) and
an exponentially decreasing input intensity with a e−1 decay constant
of 50 ms (dashed).

in the radial directions. We now must also consider motion
in the radial direction as well. For this case we assume the
field input into the cavity is that of the lowest-order transverse
electromagnetic mode

E(r, x, t) = A(t)
ω0

ω(x)
e
− r2

ω(x)2 e
−i[ kr2

2R(x) +kx−η]
, (9)

where ω0 = √
L/k, R(x) = 1

x
(x2 + x2

0 ), η = arctan x
x0

, and

ω(x) = ω0

√
1 + ( x

x0
)2. We require that the nanosphere is

trapped at the center of the cavity where the intracavity
intensity is highest. At this position (x0 = L/2) ω(x) ≈ √

2ω0,
R(x) ≈ 2x0 and η ≈ π

4 . It is useful to recast this in trigono-

metric form as E(r, x, t) = ξ

2 exp(− r2

�2 )[cos kx(cos r2

�2 +
sin r2

�2 ) − sin kx(sin r2

�2 − cos r2

�2 )]e−iωpt + c.c., where � =
(2L/k)1/2.

The temporal evolution of the field amplitude within a
cavity for a particle at coordinates (xn, rn) is then determined
from the 2D wave equation under the slowly varying envelope
approximation as for the previous 1D case. This is now given
by

∂ξ

∂t
= −{κ − i[U (xn, rn) + 
]}ξ + κext

�2
ext

�2
ξext. (10)

All other variables are the same as for the 1D case
except that U (xn, rn) = αωpF (xn,rn)

πε0�2L
and F (xn, rn) = e

− r2

�2

[cos2 kxn(cos r2
n

�2 + sin r2
n

�2 ) − 1
2 sin 2kxn(cos r2

n

�2 −sin r2
n

�2 )].
The rate of change of the momentum and position in the

axial and radial directions within the cavity, again omitting for
convenience the subscript n, is given as

dPx

dt
= −αk|ξ |2e− 2r2

�2

[
sin (2kx) sin

2r2

�2

− cos (2kx) cos
2r2

�2

]
− mg,

(11)
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FIG. 6. (Color online) Plots illustrating the evolution in the axial
and radial velocity of the trapped sphere. The axial velocity has a
period of 8.2 microseconds and the radial velocity a period of 2.2 ms.
The reduction in the amplitude of the axial oscillation indicates
cooling over this small time period.

dPr

dt
= −2α|ξ |2 r2

�2
e
− 2r2

�2

[
1 + cos (2kx)

(
sin

2r2

�2

− cos
2r2

�2

)
+ sin (2kx)

(
sin

2r2

�
+ cos

2r2

�2

)]
,

(12)
dx

dt
= Px/m, (13)

dr

dt
= Pr/m. (14)

These equations describe the axial and radial oscillations of
the nanosphere coupled by the intracavity field, which also acts
to damp the motion in both directions. We integrate these equa-
tions in time using the Runga-Kutta scheme for a nanosphere
(r = 100 nm) trapped in a cavity operating in the fundamental
TEM00 mode. An optical field of wavelength 1064 nm and
power of 1 mW is input into the cavity with a cavity spot
size of � = 58 µm. The cavity has κ = 4.7 × 106 rad/s
and a length of 1 cm. Figure 6 is a plot of the axial and radial
velocities of the nanosphere as a function of time with initial
conditions of x = 100 nm, r = 15 µm, and vx = vr = 3 cm/s.
Oscillation frequencies of 476 Hz (radial) and 122 kHz (axial)
result from this fixed intracavity intensity (3.8 × 109 Wm−2)
and cavity geometry. The very different frequencies result from
the large difference in the axial and radial field gradients at the
center of the cavity. Note that in this figure the fast axial motion
is modulated by the slower radial motion via the cavity field.
This small modulation of the cavity field by this motion is
shown in Fig. 7. The cavity detuning for these simulations was
chosen to be 
c = −αωp/ε0V − κ , optimized for cooling of
the axial motion. The radial motion can be more effectively
cooled by a smaller detuning.

Figure 8 is a plot of the absolute value of the envelope
of the oscillatory velocity of each degree of freedom as a
function time. Note that the radial cooling is much slower than
in the axial direction. This is as expected from the simple 1D
analysis, which shows that the damping rate is proportional
to the square of the oscillation frequency. Here the radial
frequency is more than two orders of magnitude less than

FIG. 7. (Color online) A plot of intracavity intensity calculated
for the first 3 ms of cooling. The fast modulation of intensity with a
period of 4.1 microseconds (not resolved) is due to the axial motion
of the particle in the cavity field. The slower modulation with a period
of 1.1 ms is due to the radial motion of the particle. The axial and
radial motion as shown in Fig. 6. oscillates at the half the frequency
of the intensity modulation.

the axial frequency. To verify this we artificially increased the
radial gradient while keeping the intensity constant so that the
radial frequency is the same as the axial frequency. In this
case both degrees of freedom cool at approximately the same
rate. It is well known that coupled oscillators or pendulums
typically establish a constant phase difference depending on
whether the coupling is damped or undamped. We simulated
the cooling of the nanosphere for both a fixed input intensity
and with a decaying intensity with a time constant of 50 ms.
The cooling of both degrees of freedom is shown in a plot of
the total kinetic energy as a function of time in Fig. 9. This
figure clearly demonstrates that the nanosphere can be cooled
with a decaying input intensity and constant input intensity. As
before, the cooling rate is faster with a decaying intracavity

FIG. 8. (Color online) A plot of the amplitude of the oscillatory
velocity of the particle for both the axial (vx ) and radial (vr ) oscillatory
motion as a function of time for an input field of constant intensity.
The lower curve which more rapidly decays is the axial velocity while
the upper curve is the radial velocity.
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FIG. 9. (Color online) Plots of the decay of the amplitude of
oscillating total kinetic energy in the cavity as a function of time,
including both axial and radial motions. The upper curve, which
slowly decays, is for a fixed input intensity while the lower curve is
for an exponential decaying input intensity with a time constant of
50 ms.

intensity until the particle can no longer be trapped by the
field, at t = 0.2 s in this case. An external potential, which
supports the particle against gravity, will allow more rapid
cooling to lower temperatures. This can be another optical
field that is not resonant with the cavity field or a nanoscale
charged particle within an ion trap [24,25]. The cooling of the
particle can be monitored by observing scattered light or the
light transmitted through the cavity. A Fourier transform of
the light will show the motional sidebands for both degrees of
freedom, the amplitude of which will decrease as the particle
cools.

IV. CONCLUSION

We show that cooling nanoscale dielectric particles is
feasible in the classical regime using cavity cooling. Such
a scheme is attractive because it only relies on the optical
path length change induced by a polarizable particle in the
cavity and since all particles are polarizable, the scheme is
potentially amenable to more complex massive particles and
requires no detailed knowledge of the internal structure. The
interaction between the light and the particle must be strong
enough to appreciably detune the cavity. For single atoms and
ions the enhanced interactions were achieved by operating near
an internal electronic resonance. Although larger nanoscale
particles usually do not have discrete internal energy levels,
they do have large static polarisabilities, which scale with
particle volume. It is precisely this feature that allows a
single nanoscale particle to be cooled in high-finesse cavities
(F ≈ 104) using fields that are not near a resonance. We show
cooling times on the order of seconds to minutes appear
feasible for both axial and radial center-of-mass motions.
While we do not include the effects of absorption of light,
which will heat the particle, early experiments by Ashkin
suggested that microscale dielectric particles can be held for
durations of 30 min before they are expelled from the field
by radiometric forces [24]. These forces will be much less
important in nanoscale dielectric particles since the particle
will have a more uniform temperature. The effects of gas
collisions must also be included in future work, as well as
the finite size of the particle. The latter will slow the cooling
process because the effective gradient in the axial potential
will be smaller. Finally, these particles can also be cooled in
the resolved-sideband limit, which for a fixed cavity geometry
and reflectivity can be controlled by laser input intensity. In
this regime cooling to the quantum limit is feasible and will
be the goal of future work.
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