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Theory of quenching quantum fluctuations of a laser system with a ladder-type configuration
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The theory of a laser system with a ladder-type configuration is studied in detail based on the quantum Langevin
approach. By using an external field to link the lower lasing level with another atomic level, whose decay rate
is much larger, laser intensity significantly increases and the quantum-limited linewidth can be quenched. We
also discuss the spectrum of fluctuations of the output field, and the result shows that the fluctuations at low
frequencies can be much suppressed too. On the other hand, this quenching approach can realize a laser output
between two atomic levels, whose decay rates do not satisfy the usual lasing condition that the decay rate of the
lower lasing level should be larger than that of the upper lasing level. It will be very useful to realize a laser
output with the wavelength we want. This quenching approach has been widely used in the absorption spectrum
of the ytterbium optical lattice clock and in the laser cooling approach for calcium atoms. Here we apply it in the
stimulated emission of lasers.
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I. INTRODUCTION

The quantum-limited linewidth of a single-mode laser with
homogeneously broadened medium was originally derived by
Schawlow and Townes [1] as

�νST = κ

2Io

, (1)

where κ is the cold-cavity loss rate and Io is the intracavity
intensity of laser light in units of photon number. However, the
result of Schawlow and Townes is only valid for a good-cavity
laser, for which the decay rate of the atomic polarization is
much larger than the cavity loss rate. Several authors [2–4]
have generalized the theory of Schawlow and Townes for
both good- and bad-cavity regimes, and the quantum-limited
linewidth of a bad-cavity laser has been experimentally
researched in Ref. [5]. In Ref. [6], the authors have investigated
the influence of the finite atom-field interaction time on the
laser linewidth with particular emphasis on the linewidth of
the active optical clock with atomic beam configuration [7].

How to exceed the quantum limit described by Eq. (1)
has played an important role in quantum optics. In every
laser the spontaneous emission, which inevitably occurs in
the gain medium, acts as a fundamental noise source due to
the random-phase diffusion process arising from the addition
of spontaneously emitted photons with random phases to the
laser field. References [8,9] show that the quantum noise can
be suppressed below the standard Schawlow-Townes limit by
preparing the atomic systems in coherent superposition of
states as in the Hanle effect and quantum beat experiments.
These lasers operating via such a phase coherence of atomic
ensemble are known as correlated spontaneous emission lasers
(CEL). An interesting aspect of CEL is that it is possible to
eliminate the spontaneous emission quantum noise in the rel-
ative linewidths by correlating the two spontaneous emission
noise events. In a two-photon CEL [10,11], a cascade transition
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involving three-level atoms is coupled to only one mode of the
radiation field. A well-defined coherence between the upper
and lower levels leads to a correlation of the light field.

There are many other schemes for quantum noise re-
duction. In Ref. [12], the authors have pointed out that
light transmitted through a resonant atomic system with
electromagnetically induced transparency displays reduced
phase-noise fluctuations. In Refs. [13–15], a scheme based
on the phase-matching effect of the nonadiabatic interaction
of two quasimonochromatic fields with �-type atoms has been
investigated, and the corresponding experimental verification
has been demonstrated in Ref. [16], in which the initial beat
linewidth of 1 MHz between two lasers can be reduced to
5 kHz.

In this article we theoretically investigate a method of
quenching laser linewidth in the three-level system with a
ladder-type configuration. As shown in Refs. [17–19], using
an additional laser field to link the target level with another
level can adjust the decay rate of the target level. If we apply
this method to the three-level laser system (as shown in Fig. 1)
by linking the lower lasing level |b〉 with another atomic level
|c〉, whose decay rate is much larger, the quantum-limited
laser linewidth of the corresponding two-level laser system
(|a〉 and |b〉) can be exceeded. We also discuss the spectrum
of fluctuations of the output field and show that fluctuations at
low frequencies can be strongly reduced too. This quenching
approach has been applied in the ytterbium lattice-based
optical clock [20,21], in which the optical transition line
1S0-3P0 is quenched by applying magnetic field to link levels
3P0 with 3P1, and in the laser cooling approach for calcium
atoms [17–19]. On the other hand, this quenching method can
also realize a laser output between two levels whose decay
rates do not satisfy the usual lasing condition, which requires
that the decay rate of the lower lasing level should be larger
than that of the upper lasing level (e.g., γb + γ ′

b > γa shown
in Fig. 1). It will be very useful for us to obtain a laser output
with the wavelength we want.

Our investigation is completely based on the standard
quantum Langevin approach [22–25]. In Sec. II, we establish
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FIG. 1. (Color online) Relevant atomic levels. The inserted
picture shows the scheme of a general laser system. Atoms with
the ladder-type configuration fly into the single-mode cavity. The two
lasing levels are |a〉 and |b〉. The pumping rate of the upper lasing
level is R, and the coupling strength of the lower lasing level with
another level |c〉 is gB .

the basic Heisenberg-Langevin equations for the single-atom
and macroscopic atomic variables and convert the quantum
Langevin equations into c-number stochastic differential
equations. In Sec. III, we discuss the steady-state solution.
In Sec. IV, we discuss the non-Markovian behavior of phase
fluctuations and the laser linewidth, and we use the helium-
neon (He-Ne) laser as an example to specifically discuss
this quenching method. We also calculate the spectrum of
fluctuations of field outside the cavity, and we investigate
the influence of fluctuations of the quenching field on the
laser linewidth. Finally, our conclusion is summarized in
Sec. V. All the diffusion coefficients for the single- and
macroscopic atomic Langevin noise operators and for the
c-number Langevin noise variables are listed in the Appendix.

II. QUANTUM LANGEVIN EQUATIONS

A. Physical model

In the two-level laser system, the quantum-limited laser
linewidth is given by [4]

D =
(

γab

γab + κ

)2
g2Nao

Ioγab

, (2)

where Nao is the steady-state value of the upper lasing level,
γab is the damping rate of atomic polarization, κ is the loss
rate of the cavity, g is the atom-cavity coupling constant, and
Io is the photon number inside the cavity. Here we have used
the same symbols as in Ref. [4]. From Eq. (2) one can see
that for a given system, the quantum-limited laser linewidth is
determined by the efficiency of atoms on the upper lasing level
to produce the coherent photons, Io/Nao. If this efficiency is
improved under the same pumping rate, the quantum-limited
laser linewidth can be quenched. This can be realized by
applying the similar approaches of Refs. [17–21], in which
the decay rate of a certain level can be adjusted by linking it
with another level.

Here we consider the laser system shown in Fig. 1. Atoms
with a ladder-type structure fly into a single-mode cavity. The
cross section of the laser beam is so wide (or the speed of

the atom is so slow) that the atom-field interaction time is
determined by the lifetime of atomic levels, not the atomic
transit time. In this case, one need not consider the influence
of finite atom-field interaction time on laser linewidth [13].
Additionally, since the direction of atomic movement is
perpendicular to the transmission direction of the laser field, it
is unnecessary to consider the Doppler effect. Thus, what we
consider here is a homogeneously broadened laser system. The
laser transition is |a〉 ↔ |b〉, which is coupled with the cavity
mode with detuning � = ωL − ωab (ωL is the frequency of
cavity mode and ωab is the frequency of atomic transition
|a〉 ↔ |b〉). The atom-cavity coupling constant gA is given by

gA =
√

1

2h̄εoωLV
ωab|dab|,

where |dab| is the magnitude of the atomic dipole moment
corresponding to transition |a〉 ↔ |b〉. The lower lasing level
|b〉 is coupled with another level |c〉 (which is not the atomic
ground state) by an external field (laser field or magnetic field)
with the coupling strength gB . Before entering the cavity, all
atoms are pumped onto the upper lasing state |a〉. γ ′

a , γ ′
b,

and γc are the decay rates of atoms on levels |a, b, c〉 to
other levels; γa and γb are the spontaneous decay rates of
the transitions |a〉 ↔ |b〉 and |b〉 ↔ |c〉; and �A, �B , and �O

are the damping rates of atomic polarizations, which obey the
inequalities 2�A � γa + γ ′

a + γb + γ ′
b, 2�B � γb + γ ′

b + γc,
and 2�O � γa + γ ′

a + γc. Here we do not need to consider
the decay rate of the transition |a〉 ↔ |c〉 since for usual laser
systems it is forbidden to transition between |a〉 and |c〉.

As one knows, for a certain number of atoms on the upper
lasing level, a larger decay rate of the lower lasing level can
improve the efficiency of atoms to produce coherent photons.
In this case, the link between levels |b〉 and |c〉 is very important
here. Besides the spontaneous emission, atoms on state |b〉 can
also transit to state |c〉 via the stimulated emission transition,
for which atoms can be quickly reduced from state |b〉, and
consequently the photon number will increase under the same
pumping rate, especially if the damping rate of level |c〉 is much
larger than that of |b〉. Therefore, the external field used to link
|b〉 and |c〉 plays a major role in two terms: to introduce the
stimulated emission transition from |b〉 to |c〉, and to increase
the effective decay rate of level |b〉 (as shown in Ref. [26]).

Here we should note that laser systems with a ladder-type
configuration like that shown in Fig. 1 can be widely found
in nature, for example, He-Ne lasers, CO2 lasers, and argon
lasers. In this case, the physical model considered here is quite
a universal system.

B. Quantum Langevin equations for fields interacting
with single atom

In the interaction picture with the rotating wave approxi-
mation, the Hamiltonian of the laser system shown in Fig. 1 is
given by

H = h̄gA

∑
j

θ (t − tj )
(
a†σ j

Aei�t + σ
j†
A ae−i�t

)
+ h̄

∑
j

θ (t − tj )
(
g∗

Bσ
j

B + gBσ
j†
B

)
. (3)
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Here a† and a are the creation and annihilation operators for the
electromagnetic field. σ

j

A and σ
j

B are the atomic polarization
operators (|b〉〈a|)j and (|c〉〈b|)j for the j th atom. θ (t) is the
unit step function [θ (t) = 1 for t > 0, θ (t) = 1/2 for t = 0,
and θ (t) = 0 for t < 0]. The cavity loss and atomic decay
are modeled in the standard way by coupling the radiation
field and each atom to heat reservoirs. From this interaction
Hamiltonian, one can find the following quantum Langevin
equations of field and atomic operators,

ȧ(t) = −(κ/2)a(t) − igA

∑
j

θ (t − tj )σ j

A(t)ei�t + Fγ (t), (4)

σ̇
j
aa(t) = −(γa + γ ′

a)σ j
aa(t) − iθ (t − tj )gA

× [
σ

j†
A (t)a(t)e−i�t − a†(t)σ j

A(t)ei�t
] + f

j
aa(t), (5)

σ̇
j

bb(t) = −(γb + γ ′
b)σ j

bb(t) + γaσ
j
aa(t) + iθ (t − tj )gA

× [
σ

j†
A (t)a(t)e−i�t − a†(t)σ j

A(t)ei�t
]

− iθ (t − tj )
[
gBσ

j†
B (t) − g∗

Bσ
j

B(t)
] + f

j

bb(t), (6)

σ̇ j
cc(t) = −γcσ

j
cc(t) + γbσ

j

bb(t) + iθ (t − tj )

× [
gBσ

j†
B (t) − g∗

Bσ
j

B(t)
] + f j

cc(t), (7)

σ̇
j

A(t) = −�Aσ
j

A(t) + iθ (t − tj )gA

[
σ j

aa(t) − σ
j

bb(t)
]

× a(t)e−i�t + iθ (t − tj )g∗
Bσ

j

O(t) + f
j

A(t), (8)

σ̇
j

B(t) = −�Bσ
j

B(t) + iθ (t − tj )gB

[
σ

j

bb(t) − σ j
cc(t)

]
− iθ (t − tj )gAa†(t)σ j

O(t)ei�t + f
j

B (t), (9)

σ̇
j

O(t) = −�Oσ
j

O(t) + iθ (t − tj )gBσ
j

A(t)
− iθ (t − tj )gAσ

j

B(t)a(t)e−i�t + f
j

O(t), (10)

where the single-atom operators for the j th atom are
defined as σ

j
aa = (|a〉〈a|)j , σ

j

bb = (|b〉〈b|)j , σ
j
cc = (|c〉〈c|)j ,

σ
j

O = (|c〉〈a|)j , σ
j†
A = (|a〉〈b|)j , σ

j†
B = (|b〉〈c|)j , and σ

j†
O =

(|a〉〈c|)j . Above Heisenberg-Langevin equations have the
same structure,

ẋ(t) = Ax(t) + fx(t), (11)

where Ax(t) is the deterministic part of the equation and fx(t)
is the quantum noise operator. The noise operators for the
single-atom variables are δ-correlated in time,〈

f i
x (t)f j

y (t ′)
〉 = d(x, y)δij δ(t − t ′), (12)

where d(x, y) is the diffusion coefficient. δij makes only
correlations between noise operators corresponding to the
same atom be nonzero. Using the generalized dissipation-
fluctuation theorem,

d(x, y) = −〈xAy〉 − 〈Axy〉 + d

dt
〈xy〉, (13)

one can calculate the diffusion coefficients. The nonvanishing
terms are listed in the Appendix. Here we should denote that it
is unnecessary to consider the influence of noise fluctuations
of the external field, which is used to link state |b〉 with state
|c〉. Since the noise of the external field can be controlled much
lower than that of the atomic polarization σB , one can ignore
its influence. More discussion can be found in Sec. IV C.

C. Quantum Langevin equations for fields interacting
with macroscopic atoms

The macroscopic atomic operators can be defined by adding
up all the individual atomic operators and taking into account
the corresponding injection times into the cavity. Then, we
have

Naa(t) =
∑

j

θ (t − tj )σ j
aa(t), (14)

Nbb(t) =
∑

j

θ (t − tj )σ j

bb(t), (15)

Ncc(t) =
∑

j

θ (t − tj )σ j
cc(t), (16)

MA(t) = −i
∑

j

θ (t − tj )σ j

A(t), (17)

MB(t) = −i
∑

j

θ (t − tj )σ j

B(t), (18)

MO(t) =
∑

j

θ (t − tj )σ j

O(t). (19)

The additional factor (−i) is introduced for mathematical
convenience. Operators MA(t), MB(t), and MO(t) represent
the macroscopic atomic polarizations, and Naa(t), Nbb(t),
and Ncc(t) represent the macroscopic populations of levels
|a, b, c〉, respectively. With the aforementioned definitions
and Eqs. (4)–(10), quantum Langevin equations for the
electromagnetic field and macroscopic atomic operators can
be expressed as

ȧ(t) = −(κ/2)a(t) + gAMA(t)ei�t + Fγ (t), (20)

Ṅaa(t) = R − (γa + γ ′
a)Naa(t) − gA[M†

A(t)a(t)e−i�t

+ a†(t)MA(t)ei�t ] + Faa(t), (21)

Ṅbb(t) = −(γb + γ ′
b)Nbb(t) + γaNaa(t)

+ gA[M†
A(t)a(t)e−i�t + a†(t)MA(t)ei�t ]

− [gBM
†
B(t) + g∗

BMB(t)] + Fbb(t), (22)

Ṅcc(t) = −γcNcc(t) + γbNbb(t)

+ [gBM
†
B(t) + g∗MB(t)] + Fcc(t), (23)

ṀA(t) = −�AMA(t) + gA[Naa(t) − Nbb(t)]a(t)e−i�t

+ g∗
BMO(t) + FA(t), (24)

ṀB(t) = −�BMB(t) + gB[Nbb(t) − Ncc(t)]

− gAa†(t)MO(t)ei�t + FB(t), (25)

ṀO(t) = −�OMO(t) + gAMB(t)a(t)e−i�t

− gBMA(t) + FO(t), (26)

where the total noise operators for the macroscopic atomic
operators are given by

Faa(t) =
∑

j

δ(t − tj )σ j
aa(tj ) +

∑
j

θ (t − tj )f j
aa(t) − R,

(27)

Fbb(t) =
∑

j

δ(t − tj )σ j

bb(tj ) +
∑

j

θ (t − tj )f j

bb(t), (28)
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Fcc(t) =
∑

j

δ(t − tj )σ j
cc(tj ) +

∑
j

θ (t − tj )f j
cc(t), (29)

FA(t) = −i
∑

j

δ(t − tj )σ j

A(tj ) − i
∑

j

θ (t − tj )f j

A(t),

(30)

FB(t) = −i
∑

j

δ(t − tj )σ j

B(tj ) − i
∑

j

θ (t − tj )f j

B (t),

(31)

FO(t) =
∑

j

δ(t − tj )σ j

O(tj ) +
∑

j

θ (t − tj )f j

O(t), (32)

and the average of each macroscopic noise operator is zero.
In deriving these macroscopic noise operators, we have
used

〈δ(t − tj )〉S = R

∫ +∞

−∞
dtj δ(t − tj ) = R, (33)

where R is the mean pumping rate and 〈· · ·〉S denotes the
classical average over the injection times and the fact that each
atom was on the upper lasing state |a〉 at its injection time. The
correlation function between two quantum Langevin forces
Fα(t) and Fβ(t) can be expressed as

〈Fα(t)Fβ(t)〉 = D(α, β)δ(t − t ′), (34)

where the diffusion coefficients D(α, β) are listed in
Appendix.

D. Equivalent c-number stochastic Langevin equations
for a normally ordered product of operators

Now we derive the stochastic c-number Langevin equa-
tions, which are equivalent to the quantum Langevin equations.
For this we should choose some particular ordering for
products of atomic and field operators, because the c-number
variables commute with each other while the operators do
not. Here we choose the normal ordering of atomic and
field operators, that is, a†(t), M

†
A(t), M

†
B(t), M

†
O(t), Naa(t),

Nbb(t), Ncc(t), MO(t), MB(t), MA(t), a(t). The stochastic
c-number variables corresponding to the operators a(t), MA(t),
MB(t), MO(t), Naa(t), Nbb(t), and Ncc(t) are denoted by
A(t), MA(t), MB(t), MO(t), Naa(t), Nbb(t), and Ncc(t),
respectively. Equations (20)–(26) are already written in normal
order and one can directly obtain the equations for the
corresponding c-number variables. Here we do not list them.
The stochastic c-number Langevin forces of the corresponding
quantum noise operators are denoted by Fµ(t) with µ = γ ,
aa, bb, cc, A, B, and O, and we have the properties
〈Fµ(t)〉 = 0 and 〈Fµ(t)Fν(t ′)〉 = Dµνδ(t − t ′). The c-number
diffusion coefficients Dµν can be obtained from the quantum
diffusion coefficients by transforming the expressions in the
fluctuation-dissipation theorem of Eq. (13) into the normally
ordered operator products. If the operator product x̂ŷ is
normally ordered, its expectation value is equal to the expec-
tation value of the corresponding c-number product. Hence
we have

d

dt
〈x̂ŷ〉 = d

dt
〈xy〉 . (35)

Using again the generalized dissipation-fluctuation theorem,
we find that

Dxy = Dxy + 〈x̂Ây〉 + 〈Âx ŷ〉 − 〈xAy〉 − 〈Axy〉. (36)

Thus one could derive the c-number diffusion coefficients, and
all the nonvanishing ones are listed in the Appendix.

III. STEADY-STATE SOLUTION

The steady-state solution for the mean values of the field and
atomic variables can be obtained from the c-number dynamic
equations. These solutions are denoted by the subscript
“o”. Here, for the sake of simplicity, we only consider the
resonant case � = 0. In this case, the steady-state value of
the field amplitude can be expressed as Ao = 2gA

κ
MAo, which

denotes that the field is completely determined by the atomic
polarization MAo. As we know, the optical phase is randomly
distributed between 0 and 2π in the stationary state. Therefore,
we can choose the arbitrary mean value of the optical phase
to be zero, which is quite convenient since then both field Ao

and polarization MAo become real, and further gB , MBo, and
MOo are also real. The photon number inside the cavity is
given by Io = A2

o.

A. Special case gB = 0

In the special case, gB = 0, we have populations of levels
|a, b, c〉,

Naao = 1

γa + γb + γ ′
b

[
R + (γb + γ ′

b)
�Aκ

2g2
A

]
, (37)

Nbbo = 1

γa + γb + γ ′
b

(
R − γ ′

a

�Aκ

2g2
A

)
, (38)

Ncco = γb

γc

1

γa + γb + γ ′
b

(
R − γ ′

a

�Aκ

2g2
A

)
, (39)

and the photon number Io is given by

Io = IS(R/RTH − 1), (40)

where IS is the saturation intensity,

IS = γa + γ ′
a

γ ′
a + γb + γ ′

b

�A(γb + γ ′
b)

2g2
A

, (41)

and RTH is the threshold pumping rate,

RTH = γa + γ ′
a

γb + γ ′
b − γa

�Aκ(γb + γ ′
b)

2g2
A

. (42)

From (38) and (42) one can derive the necessary conditions
for laser oscillation: γb + γ ′

b > γa and R > γ ′
a

�Aκ

2g2
A

. From (37)–
(39) we have the relationship

γ ′
aNaao + γ ′

bNbbo + γcNcco = R, (43)

which denotes that the loss rate of the atomic population is
equal to the pumping rate. When R � RTH and Io � IS ,
the populations of upper and lower lasing levels approach
each other and the inversion goes to zero, corresponding to
saturation.
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B. General case

For the general case, gB �= 0, the steady-state values of
atomic variables can be expressed in terms of the yet unknown
photon number Io,

Naao = R − κIo

γa + γ ′
a

, (44)

Nbbo = η1(γc + 2�OC)

(γb + γ ′
b)γc + (γ ′

b + γc)2�OC
R

+ (η2 − C)γc + η22�OC

(γb + γ ′
b)γc + (γ ′

b + γc)2�OC
κIo,

(45)

Ncco = η1 (γb + 2�OC)

(γb + γ ′
b)γc + (γ ′

b + γc)2�OC
R

+ γ ′
bC + η2 (γb + 2�OC)

(γb + γ ′
b)γc + (γ ′

b + γc)2�OC
κIo,

(46)

and the photon number inside the cavity Io can be obtained
from the following equation

C

2
+ �O

κIo

[Naao − (1 − C)Nbbo − CNcco] = �O�A + g2
B

2g2
AIo

,

(47)

where the dimensionless parameter,

C ≡ g2
B

�B�O + g2
AIo

, (48)

is also related to Io, and

η1 ≡ γa

γa + γ ′
a

, η2 ≡ γ ′
a

γa + γ ′
a

.

From Eqs. (44)–(47), one can numerically calculate Naao,
Nbbo, Ncco, and Io (or Ao), and further obtain MAo, MBo,
andMOo. In the linear approximation �B�O � g2

AIo, Eq. (47)
can be expressed in the same form as Eq. (40), of which the
photon number Io is proportional to the pumping rate R.

For simplicity, we introduce the dimensionless parameters

a ≡ γa/κ, a′ ≡ γ ′
a/κ, b ≡ γb/κ, b′ ≡ γb/κ, c ≡ γc/κ,

A ≡ �A/κ, B ≡ �B/κ, O ≡ �O/κ, g ≡ gA/κ.

In Fig. 2, we show the dependence of the photon number Io

on the pumping rate R and the coupling strength gB calculated

from Eqs. (44)–(47). The boundary of the contour lines in
Fig. 2(a) gives the laser threshold, and photon number Io as
a function of gB under different pumping rates R is shown
in Fig. 2(b). One can see that for a certain pumping rate R

photon number Io increases for suitable gB and decreases
for larger gB . This is because under suitable gB the atomic
population of level |b〉 can be reduced via the stimulated
emission transition to level |c〉, and since the decay rate of
level |c〉 is larger than that of |b〉 (c > b + b′), atoms on state
|b〉 can be further decreased. However, for larger gB , we are
left with Nbbo < Ncco and the stimulated absorption transition
from |c〉 to level |b〉 plays a major role, which can suppress the
stimulated emission transition from |a〉 to level |b〉. All these
can be found in Fig. 2(c), which shows the atomic populations
of levels |a, b, c〉 as functions of gB under a certain pumping
rate R. One can see that Nbbo is larger than Ncco for small gB ,
and as a result atoms on level |b〉 can transit to level |c〉 via
the stimulated emission with transition rate gB and the photon
number Io increases. The population of level |a〉 also decreases
for small gB . However, for much larger gB , the populations of
levels |b〉 and |c〉 approach each other and atoms accumulate on
the upper lasing level |a〉. In this case, laser output is quenched.
Equation (44) gives the opposite changing trend between Naao

and Io.
There are two ways to reduce the atoms on state |b〉: (i) go

back to the ground state via state |c〉 for small gB ; (ii) stimulate
absorption of laser photons and transition back to state |a〉 for
large gB . The former process will enlarge the laser field, while
the latter reduces the laser photons inside the cavity. From the
steady-state equation of MOo

MOo = 1

�O

(gAAoMBo − gBMAo) , (49)

one can see that MOo is negative for larger gB , while it
is positive for small gB . MOo can strongly influence the
polarizations of MAo and MBo. Positive MOo will enhance
MAo, increase the coherence between two lasing levels, and
enlarge the photon number Io, while negative MOo can reduce
the photon number.

C. Laser with γb + γ ′
b < γa

As concluded in Sec. III A, the lasing condition for the
case of gB = 0, is given by γb + γ ′

b > γa . However, it is
unnecessary for the case of gB �= 0. As we have pointed out
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FIG. 2. (Color online) Dependence of photon number Io on pumping rate R and coupling strength gB . (a) The contour lines of photon
number Io. (b) Io as a function of gB under different pumping rates R [R/κ = 2.5 × 103 for the green line (bottom line); 5 × 103 for the red line
(second line from the bottom); 7.5 × 103 for the blue line (third line from the bottom); 104 for the black line (top line)]. (c) Atomic populations
on difference levels with pumping rate R/κ = 5000. Naao, top line; Nbbo, second line from the top; Ncco, bottom line. For all curves a = 5,
a′ = 5, b = 10, b′ = 10, g = 0.5, c = 50, A = 17, B = 40, and O = 30.
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FIG. 3. (Color online) Dependence of photon number Io on
pumping rate R and coupling strength gB for the case of γb + γ ′

b <

γa with a = 20, a′ = 0, b = 5, b′ = 5, g = 0.5, c = 50, A = 30,
B = 40, and O = 50.

previously, the coupling strength gB can change the decay rate
of lower lasing state |b〉. The laser field can be produced if we
use an external field to link states |b〉 and |c〉 with a suitable
strength gB , despite γb + γ ′

b < γa . In this case, this quenching
method is an effective way to realize a laser generation with
the wavelength we want, since for a certain atomic transition
line the common lasing condition γb + γ ′

b > γa may not be
satisfied.

Figure 3 displays the dependence of photon number Io on
pumping rate R and coupling strength gB , and the boundary
of the contour lines gives the laser threshold. One can see that,
due to the coupling between |b〉 and |c〉, laser output can be
realized for nonzero gB , although the common lasing condition
(γb + γ ′

b > γa) is not satisfied.
Here we have discussed the steady-state solutions of the

laser system. Next, we investigate the evolution of the quantum
fluctuations around the steady-state solutions.

IV. QUANTUM FLUCTUATIONS OF THE LASER FIELD
AROUND STEADY STATE

To investigate the small fluctuations of the laser field and
atomic variables around steady states we consider all the
variables, as usual, as the sum of the steady-state solution
and a small fluctuating term. For example, for Naa(t) we
set Naa(t) = Naao + δNaa(t) and in the same way for the
other variables. Based on Eqs. (20)–(26), one can obtain a
set of linear equations. Here, we have expressed the dynamic
variables as a sum of the steady-state values and small
fluctuations. It should be assumed that the laser is operating
sufficiently above threshold so that the fluctuations of dynamic
variables are much smaller than their steady-state values. Next,
we take the Fourier transform of all variables and convert the
differential equations into algebraic equations, for example,

δNaa(ω) = 1√
2π

∫ +∞

−∞
dtδNaa(t)eiωt .

In order not to overcharge the notation, we adopt the same
symbol for both members of a Fourier-transform pair, which
will therefore get distinguished through the time or frequency
argument. We may set Fγ (t) = 0 since the mean value and the
correlation functions of this force with all the other variables,
as well as the autocorrelation function, are zero. Here, for
simplicity, we do not list the linear equations for the Fourier
amplitudes. The Fourier-transformed fluctuation forces satisfy
the equation

〈Fα(ω)Fβ(ω′)〉 = 2Dαβδ(ω + ω′). (50)

The solution of this linear system is straightforward.
The field phase quadrature component of field fluctu-
ations inside the cavity, which is defined as δY (ω) ≡
1
2i

[δA(ω) − δA∗(−ω)], can be expressed as

δY (ω) = gA

2i

gAgBAo[FB(ω) − F∗
B(−ω)] + gB�̃B(ω)[FO(ω) − F∗

O(−ω)] + �(ω)[FA(ω) − F∗
A(−ω)]

(κ/2 − iω)
[
�̃A(ω)�(ω) + g2

B�̃B(ω)
] − g2

A�(ω)
, (51)

with the following shorthand,

�(ω) = �(ω)(Naao − Nbbo) + gAgBAoMOo

+ gBMBo�̃B(ω), (52)

�(ω) = �̃O(ω)�̃B(ω) + g2
AA2

o, (53)

and �̃A,B,O(ω) = (�A,B,O − iω). From Eq. (51) one can see
that the field phase fluctuation comes from all the noises of
atomic polarizations FA(t), FB(t), and FO(t). In the special
case gB = 0, we obtain

δY (ω) = gA

2i

[FA(ω) − F∗
A(−ω)]

(κ/2 − iω)�̃A(ω) − g2
A(Naao − Nbbo)

, (54)

which is the same as the result of the two-level laser system [4].
The field phase fluctuation completely comes from the noise
of atomic polarizations FA(t).

A. Laser linewidth

The quantum-limited laser linewidth is also called the
intrinsic or natural linewidth, which originates from the
quantum fluctuations of field around its mean value. The usual
treatment rests on the approximation that linewidth arises from
fluctuations of the field phase described by phase diffusion.
The autocorrelation function of phase quadratures is δ function
correlated,

〈δY (ω)δY (ω′)〉 = (δ2Y )ωδ(ω + ω′). (55)

For a small fluctuation of the field phase, the spectrum of
phase fluctuations is simply related to the spectrum of the
phase quadrature component of field fluctuations, namely,

(δφ2)ω = 1

Io

(δY 2)ω. (56)

Based on Eq. (56) one can directly calculate the cor-
relation function of the time derivative of field phase
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fluctuation:

〈δϕ̇(t)δϕ̇(t ′)〉 = 1

2π

∫ +∞

−∞
dωe−iω(t−t ′)ω2(δφ2)ω. (57)

When |t − t ′| is much shorter than all the other char-
acteristic times of the laser system, this expression

becomes

〈δϕ̇(t)δϕ̇(t ′)〉 = Dδ(t − t ′), (58)

which corresponds to a Markovian time evolution for the field
phase, and D gives the laser linewidth [27]. From Eq. (51), we
obtain

D = g2
A

Io

× g2
Ag2

BIo�BNbbo + [
g2

B�2
B�O + �(ω = 0)2�A

]
Naao + g2

BgAAo�B�AMAo + gAAogB�(ω = 0)�AMOo{
κ
2 (�B�O + �A�B + �A�O) + �A�B�O + (

κ
2 + �A

)
g2

AIo + (
κ
2 + �B

)
g2

B − g2
A[(�O + �B)(Naao − Nbbo) + gBMBo]

}2 ,

(59)

which is unrelated to the pumping statistics.

1. Special case: gB = 0

In this special case, laser linewidth can be simplified as

D =
(

�A

�A + κ/2

)2

DST, (60)

where DST is the usual Schawlow-Townes diffusion coefficient
[22]

DST = g2
ANaao

Io�A

. (61)

This expression coincides with the one given in Refs. [2,3].
If the atomic polarization decay rate is much faster than
the cavity loss rate, that is, �A � κ/2, the additional factor
[�A/(�A + κ/2)]2 is close to unity and we are left with
the usual Schawlow-Townes diffusion coefficient. But in the
opposite case, �A � κ/2, we have D � DST. Figure 4 shows
the dependence of laser linewidth D on the pumping rate R.
One can see that laser linewidth decreases with increasing R

(actually, increasing the photon number Io).
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FIG. 4. (Color online) Dependence of laser linewidth D on
pumping rate R in the special case gB = 0 with the same parameters
as in Fig. 2.

2. General case: gB �= 0

In Fig. 5, we show the dependence of laser linewidth D on
the pumping rate R and coupling strength gB . As shown in
Fig. 5(a), laser linewidth close to threshold is much larger than
that far away from threshold. Thus, increasing the pumping
rate R (in fact increasing the photon number Io) can reduce
the laser linewidth, but what we are mostly concerned about is
the influence of the coupling strength gB on the laser linewidth
D under a certain pumping rate R. As shown in Fig. 5(b),
laser linewidth D decreases for suitable gB and increases for
larger gB .

Generally, laser linewidth D is inversely proportional to the
efficiency of atoms on the upper lasing level to produce the
coherent photons, Io/Naao. As shown in Fig. 2(c), for lower
coupling strength gB , we haveNbbo > Ncco, and the stimulated
emission transition from |b〉 to |c〉 plays a major role in the
atom-field interaction. In this case, besides the spontaneous
emission the atomic population of level |b〉 can be reduced via
the stimulated emission transition from |b〉 to |c〉. On the other
hand, for the nonzero gB , atoms will be on a superposition state
of |b〉 and |c〉, whose damping rate can be adjusted by turning
the coupling strength gB . If γc > γb + γ ′

b, the decay rate of
atoms on the lower lasing level can be enhanced. Thus, the
atomic population of level |a〉 can be further decreased via the
stimulated emission transition from |a〉 to |b〉 and the photon
number can greatly increase. For both reasons, the efficiency of
atoms on the upper lasing level in producing photons Io/Naao

can increase under the same pumping rate R, and the laser
linewidth can be quenched, as shown in Fig. 5(b). However,
with a further increase in the coupling strength gB , we have
Nbbo < Ncco, and the stimulated absorption transition from |c〉
to |b〉 plays a major role in the atom-field interaction, which
can suppress the stimulated emission from |a〉 to |b〉. Atoms
will accumulate on level |a〉, and the intensity of the laser field
will decrease to zero, which reduces the efficiency of atoms
to produce coherent photons. Therefore, the laser linewidth
reaches a minimum and then increases again.

As we have said before, the positive MOo denotes that
atoms on level |b〉 can be reduced via the stimulated emission
transition from |b〉 to |c〉, while the negative MOo denotes that
atoms on level |b〉 can be reduced by the stimulated absorption
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FIG. 5. (Color online) Dependence of laser linewidth D on pumping rate R and coupling strength gB . (a) The contour lines of laser linewidth
D. (b) D as a function of gB under different pumping rates R [R/κ = 2.5 × 103 for the green line (top line); 5 × 103 for the red line (second
line from the top); 7.5 × 103 for the blue line (third line from the top); 104 for the black solid line (bottom line)]. All parameters are the same
as in Fig. 2.

transition (absorb the laser photons inside the cavity) from |b〉
to |a〉. From Eq. (49) one can see that for the small photon
number Io (corresponding small pumping rate R), MOo can
easily change from the positive value to the negative one
by the lower coupling strength gB . Thus, the laser linewidth
cannot be much quenched, such as the green line (top line) in
Fig. 5(b). However, for the larger photon number Io (corre-
sponding large pumping rate R), MOo is still positive under
the larger coupling strength gB , and the laser linewidth can be
much quenched. Therefore, increasing the pumping rate R is
a good way to quench the laser linewidth.

3. Example: Helium-neon laser

Here we take a helium-neon (He-Ne) laser as an example
to show the approach of quenching laser linewidth. Figure 6
displays the level configuration of a He-Ne laser expressed in
Paschen notation. Although a He-Ne laser usually operators
with inhomogeneous broadening, one can always use some
methods (e.g., the external-cavity feedback induced by an
external optical grating) to realize the homogeneous output.
Thus, we only consider the homogeneously broadened case.
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FIG. 6. (Color online) The level configuration of a He-Ne laser
expressed in Paschen notation.

Atomic pumping can be realized by the energy transfer from
He atoms to Ne atoms. We only consider the laser transition
line 2s2-2p4 (wavelength 1152.3 nm) of the Ne atom with the
upper lasing level 2s2 (γa = 2π × 1.65 MHz, γa � γ ′

a) and the
lower state 2p4 (γb = 2π × 13.27 MHz, γb � γ ′

b) [28]. Atoms
on the lower lasing state can transit to state 1s2 via spontaneous
emission transition. Level 1s2 is a metastable state and must
be destroyed by the collisions with the discharge tube walls.
Therefore, the damping rate of state 1s2 (γc) can be larger than
γb (here we assume γc ≈ 10γb) and atoms on state 1s2 can
quickly go back to the ground state 1S0. The typical cavity
length (L) and laser diameter are about 20 cm and 4 mm,
respectively. It is easy to obtain the atom-photon coupling
strength gA = 2π × 4.5 kHz. The intensity reflectivity of the
output cavity mirror is about 99%. In this case, the loss rate
of photons inside the optical resonator is about κ = 2π ×
24 MHz. The relaxation rates for the polarization between two
lasing states �A is much larger than that for the population
inversion [4]. Here we assume �A = 2π × 75 MHz and the
other two relaxation rates, �B = 2π × 90 MHz and �O =
2π × 80 MHz. Additionally, we use an external laser field to
couple the atomic transition 2p4-1s2 with the coupling strength
gB , as in the same method discussed previously. In this case
the quantum-limited laser linewidth can be quenched.

Figure 7 displays the dependence of intensity and linewidth
of a He-Ne laser on the coupling strength gB . All curves
are calculated based on the laser transition line 2s2-2p4. For
suitable gB , the laser intensity can be strongly enhanced (from
10.5 to 16 mW with R = 1016 s−1) with the laser linewidth
decreasing (from 6.4 to 1.6 rad/s with R = 1016 s−1). If we
further increase the pumping rate R, the laser linewidth can
be strongly reduced (from 4 to 0.1 rad/s with a factor of 40 as
shown in Fig. 7).

We have shown that the quantum-limited linewidth of a
two-level laser system can be quenched by linking the lower
lasing level |b〉 with another level |c〉, whose decay rate is
much larger than that of |b〉. Next, we consider the spectrum
of amplitude fluctuations of the output field.

B. Spectrum of the output field

We have discussed the laser field inside the cavity. More-
over, one is interested in the output field. The relation between
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FIG. 7. (Color online) Dependence of intensity (a) and linewidth (b, c) of a He-Ne laser on the coupling strength gB with different pumping
rates R.

fields inside and outside the cavity has been established in
Refs. [29–32]. Now we investigate the spectrum of fluctuations
for the field transmitted through the cavity port. From Ref. [4],
the spectrum of the output field can be expressed as

VA(ω) = 1 + 4κ(δX2)ω, (62)

where (δX2)ω is the spectrum of the amplitude quadrature
component and can be derived from the autocorrelation
function of the amplitude quadrature,

〈δX(ω)δX(ω′)〉 = (δX2)ωδ(ω + ω′), (63)

where the amplitude quadrature is defined as

δX(ω) = 1
2 [δA(ω) + δA∗(ω)]. (64)

The first term on the right-hand side of Eq. (62) corresponds
to the shot-noise contribution. For a coherent state, we have
VA = 1. Therefore, VA < 1 means squeezing in a quadrature
component, and VA(ω) = 0 denotes the complete squeezing at
some frequency ω [33]. Actually, this spectrum defined in this
way corresponds to the normalized photocurrent obtained in
a homodyne measurement of the field quadrature component.
Since the expression of VA(ω) is very complicated, we do not
list it here and only show the consequences.

Figure 8 displays the spectrum of amplitude fluctuations
for different statistical parameters p and coupling strength gB ,
for operation far above threshold. As shown in Fig. 8(a), for
gB = 0 amplitude noise at low frequencies is reduced with
increasing parameter p, and for a regular statistics p = 1 we
obtain the limited noise reduction. The influence of coupling
strength gB on the spectrum of amplitude fluctuations for
p = 1 has been shown in Fig. 8(b). One can see that the limited
noise reduction for p = 1 and gB = 0 is much exceeded with

suitable gB �= 0 since the efficiency of atoms on the upper
lasing level in producing photons increases for suitable gB .
However, for larger gB , noise reduction at low frequencies
increases again because of the saturation of |b〉 and |c〉.

C. Quantum fluctuations of the quenching field

In Sec. II, we ignore the influence of fluctuation of the
quenching field on the laser field and assume the coupling
strength gB is constant in the case where the linewidth of the
quenching field is smaller than the relaxation rate between
levels |b〉 and |c〉. In this section, we discuss in detail the
influence of fluctuation of the quenching field. Our present
goal is to make sure that not too much effect is introduced into
the laser linewidth when the two lower levels are linked by a
fluctuation laser field.

As an admitted model [34] we elevate the Rabi frequency
(coupling strength) gB to an operator,

ĝB = gB + G(t), (65)

where gB is a stationary real classical amplitude as before and
G(t) is a noise operator with the properties

[G(t),G†(t ′)] = 〈G(t)G†(t ′)〉 = �G

2
δ(t − t ′),

(66)
〈G(t)〉 = 〈G†(t)〉 = 〈G†(t)G(t ′)〉 = 0.

Here, the effective bandwith �G denotes the linewidth of the
quenching field. Thus, the quenching field is treated not as
a dynamical variable but as an externally imposed quantity
with prescribed quantum statistics. Inserting the operator ĝB

into Eqs. (22)–(26), we get the new terms in the evolution

FIG. 8. (Color online) Spectrum of amplitude fluctuations with pumping rate R/κ = 104. (a) For different statistical parameters p with
gB = 0. (b) For different coupling strength gB with p = 1. All the other parameters are the same as in Fig. 2.
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equations of atomic variables:

[Ṅbb(t)]ad = −[G(t)M†
B(t) + G†(t)MB(t)], (67)

[Ṅcc(t)]ad = [G(t)M†
B(t) + G†(t)MB(t)], (68)

[ṀA(t)]ad = G†(t)MO(t), (69)

[ṀB(t)]ad = G(t) [Nbb(t) − Ncc(t)] , (70)

[ṀO(t)]ad = −G(t)MA(t). (71)

Following the same calculating approach, one obtains an
expression similar to Eq. (51) for the laser field phase
quadrature δY (ω), but an additional term,

W(ω) =
[
gAgBAo (Nbbo − Ncco) + gB

g2
AIo

�̃O

MAo − �(ω)

×
(
MOo + gB

�̃O

MAo

)] [
G(ω) − G∗(−ω)

]
, (72)

is presented in the numerator. Here we have used the symbol
G(ω) to denote the c-number frequency variable corresponding
to the noise operator G(t).

Since the correlation functions of W(ω) with all the other
noise operatorsFA,B,O(ω′) are zero, the additional term, which
comes from the fluctuations of the quenching field and appears
in the numerator of Eq. (59), is only 〈W(ω)W(ω′)〉ω→0. By
using Eqs. (49) and (53) we have

〈W(ω)W(ω′)〉ω→0 = 0, (73)

which is to say that the fluctuations of the quenching field do
not influence the laser linewidth. It can be easily understood
since the laser linewidth defined by Eq. (58) is the quantum-
limited linewidth, which is also called the intrinsic linewidth
and is certainly completely determined by the atomic system,
not the fluctuations of external fields. This is also why the laser
linewidth is unrelated to the pumping statistics, as discussed
in Ref. [4]. However, that is not to say that the fluctuations of
external fields do not influence the phase-noise spectrum of the
laser field. One can see that the quantum-limited linewidth is
defined around the lower frequency region of the phase-noise
spectrum of the laser field. The fluctuations of external fields
can influence the higher frequency region of a laser phase-noise
spectrum, but not the lower frequency region. However, in
the case of �G < �B , one can still ignore the influence of
fluctuations of the quenching field.

From Eq. (51) of the field phase quadrature δY (ω), one
can obtain the noise contribution from the damping relaxation
between levels |b〉 and |c〉 as

V(ω) = gAgBAo[FB(ω) − F∗
B(−ω)], (74)

and the contribution to the phase-noise spectrum of the laser
field can be expressed as

〈V(ω)V(ω′)〉 = DV (ω)δ(ω + ω′), (75)

where DV (ω) is the corresponding diffusion coefficient. The
contribution to laser phase-noise spectrum from the fluctua-
tions of quenching field is given by

〈W(ω)W(ω′)〉 = DW (ω)δ(ω + ω′), (76)

where DW is the corresponding diffusion coefficient. Figure 9
displays DV and DW as a function of noise frequency ω with

FIG. 9. (Color online) The diffusion coefficients of DV (ω) and
DW (ω) as a function of noise frequency ω with gB/κ = 30 and R/κ =
104. All the other parameters are the same as in Fig. 2.

gB/κ = 30 and R/κ = 104. One can see that in the case of
�G < �B , the influence of fluctuation of the quenching field is
much smaller than that of the intrinsic damping relaxation of
the atomic polarization between levels |b〉 and |c〉. Therefore,
one can always ignore the influence of fluctuations of the
quenching field if �G < �B , which is also suitable to the
amplitude noise spectrum of the laser field, and we do not need
any other conditions, such as �G < �A,O , �G < γa,b, γ

′
a,b, or

even that �G should be smaller than the laser linewidth D, since
�B is the largest intrinsic relaxation rate in a laser system.

V. CONCLUSION

Up to now, great theoretical and practical interest has
been focused on the problem of quenching quantum noise in
lasers, and many approaches have been proposed, including the
regularization of pumping [25], CEL [8,9], and the reduction
of spontaneous-emission noise for short measurement times
due to the atomic memory effects [35].

Here we propose an approach to reduce the quantum noise
in lasers by quenching the atomic population of the lower las-
ing level. The result shows that the standard quantum-limited
linewidth for the two-level laser system can be exceeded and
the amplitude fluctuations of the output field are also strongly
reduced. On the other hand, this quenching approach can
realize a laser output between two levels, whose decay rates do
not satisfy the usual lasing condition γb + γ ′

b > γa . It is very
useful for us to obtain a laser generation with the wavelength
we want.

Besides quenching the atomic population of the lower lasing
level, this approach can also be used to quench the upper lasing
level |a〉 by applying an external field to link |a〉 with another
atomic level (e.g., |d〉), whose decay rate is smaller than
|a〉. In this case, the damping rate of the atomic polarization
between two lasing levels |a〉 and |b〉 could be smaller than
the inherent value �A. However, the pumping rate R will also
be reduced since many atoms on the upper lasing level |a〉 are
transferred to level |d〉, and the field intensity (photon number)
will decrease. Therefore, we only apply this quenching method
to the lower lasing level.

This quenching approach has been widely applied in
experiments, such as laser cooling for calcium atoms [17,18]
and the optical lattice ytterbium atomic clock [20,21]. Here
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we apply it in a laser system to reduce the laser noise. The
laser system with a ladder-type configuration considered in
this article is a universal physical model, which can be widely
found in nature, for example, He-Ne gas lasers, CO2 lasers, and
argon lasers. This approach can also be used in other atomic
configurations, for example, a V -type atomic system.
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APPENDIX: DIFFUSION COEFFICIENTS

A. Diffusion coefficients of the single-atom noise operators

Here we list the nonvanishing diffusion coefficients of the
single-atom noise operators calculated from Eq. (13):

d(σaa, σaa) = (γa + γ ′
a)〈σaa(t)〉,

d(σaa, σbb) = −γa〈σaa(t)〉,
d(σbb, σbb) = (γb + γ ′

b)〈σbb(t)〉 + γa〈σaa(t)〉,
d(σbb, σcc) = −γb〈σbb(t)〉,

d(σbb, σA) = (γb + γ ′
b)〈σA(t)〉,

d(σcc, σcc) = γc〈σcc(t)〉 + γb〈σbb(t)〉,
d(σcc, σA) = −γb〈σA(t)〉,
d(σcc, σB ) = γc〈σB(t)〉,
d(σcc, σO ) = γc〈σO(t)〉,

d(σ †
A, σA) = (2�A − γa − γ ′

a)〈σaa(t)〉,
d(σ †

A, σ
†
B) = (�A + �B − �O)〈σ †

O(t)〉,
d(σ †

B, σB ) = (2�B − γb − γ ′
b)〈σbb(t)〉 + γa〈σaa(t)〉,

d(σ †
B, σO) = (�O + �B − �A)〈σA(t)〉, a

d(σ †
O, σO) = (2�O − γa − γ ′

a)〈σaa(t)〉.
All the other diffusion coefficients are zero.

B. Diffusion coefficients of the macroscopic
atomic noise operators

Using the definitions of macroscopic Langevin forces
defined by Eqs. (27) to (32), one can derive the following
nonvanishing diffusion coefficients:

D(Naa,Naa) = (γa + γ ′
a)〈Naa(t)〉 + R(1 − p),

D(Naa,Nbb) = −γa〈Naa(t)〉,
D(Nbb,Nbb) = (γb + γ ′

b)〈Nbb(t)〉 + γa〈Naa(t)〉,
D(Nbb,Ncc) = −γb〈Nbb(t)〉,

D(Nbb,MA) = (γb + γ ′
b)〈MA(t)〉,

D(Ncc,Ncc) = γc〈Ncc(t)〉 + γb〈Nbb(t)〉,
D(Ncc,MA) = −γb〈MA(t)〉,
D(Ncc,MB) = γc〈MB(t)〉,
D(Ncc,MO) = γc〈MO(t)〉,

D(M†
A,MA) = (2�A − γa − γ ′

a)〈Naa(t)〉 + R,

D(M†
A,M

†
B) = −(�A + �B − �O)〈M†

O(t)〉,

D(M†
B,MB) = (2�B − γb − γ ′

b)〈Nbb(t)〉 + γa〈Naa(t)〉,
D(M†

B,MO) = −(�O + �B − �A)〈MA(t)〉,
D(M†

O,MO) = (2�O − γa − γ ′
a)〈Naa(t)〉 + R.

In deriving we have used

〈∑
j �=k

δ(t − tj )δ(t ′ − tk)

〉
S

= R2 − pRδ(t − t ′),

where p is a parameter which characterizes the pumping
statistics: Poissonian excitation statistics correspond to p = 0,
and for regular statistics we have p = 1. The intermediate
cases between these two extremes are described by values of
p between 1 and 0.

C. Diffusion coefficients of the c-number macroscopic
atomic noise variables

Following Eq. (36), one can find all the nonvanishing
c-number diffusion coefficients as follows:

D(M∗
A,M∗

A) = 2gA〈A∗(t)M∗
A(t)〉,

D(M∗
A,M∗

B ) = −(�A + �B − �O)〈M∗
O(t)〉

− gA〈A∗(t)M∗
B(t)〉,

D(M∗
A,M∗

O ) = gA〈A∗(t)M∗
O(t)〉,

D(M∗
A,Nbb) = (γb + γ ′

b)〈M∗
A(t)〉,

D(M∗
A,Ncc) = −γb〈M∗

A(t)〉,
D(M∗

A,MA) = (2�A − γa − γ ′
a)〈Naa(t)〉 + R,

D(M∗
B,M∗

B ) = 2g∗
B〈M∗

B(t)〉,
D(M∗

B,Naa) = −gA〈M∗
O(t)A(t)〉,

D(M∗
B,Nbb) = gA〈M∗

O(t)A(t)〉,
D(M∗

B,Ncc) = γc〈M∗
B(t)〉,

D(M∗
B,MO ) = −(�O + �B − �A)〈MA(t)〉,

D(M∗
B,MB) = (2�B − γb − γ ′

b)〈Nbb(t)〉 + γa〈Naa(t)〉,
D(M∗

O,Ncc) = γc〈M∗
O(t)〉,

D(M∗
O,MO ) = (2�O − γa − γ ′

a)〈Naa(t)〉 + R,

D(Naa,Naa) = (γa + γ ′
a)〈Naa(t)〉 + R(1 − p)

− gA〈M∗
A(t)A(t)〉 − gA〈A∗(t)MA(t)〉,

D(Naa,Nbb) = −γa〈Naa(t)〉 + gA〈M∗
A(t)A(t)〉

+ gA〈A∗(t)MA(t)〉,
D(Nbb,Nbb) = (γb + γ ′

b)〈Nbb(t)〉 + γa〈Naa(t)〉
−gA〈M∗

A(t)A(t)〉 − gA〈A∗(t)MA(t)〉
−gB〈M∗

B(t)〉 − g∗
B〈MB(t)〉,

D(Nbb,Ncc) = −γb〈Nbb(t)〉 + gB〈M∗
B(t)〉 + g∗

B〈MB(t)〉,
D(Nbb,MA) = (γb + γ ′

b)〈MA(t)〉,
D(Nbb,MB ) = gA〈A∗(t)MO(t)〉,

D(Ncc,Ncc) = γc〈Ncc(t)〉 + γb〈Nbb(t)〉
− gB〈M∗

B(t)〉 − g∗
B〈MB (t)〉.

All the c-number diffusion coefficients are calculated in the
resonant case.
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