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All-fiber ring Raman laser generating parabolic pulses
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We present theoretical and numerical results for an all-fiber laser using self-similar parabolic pulses
(“similaritons”) designed to operate using self-similar propagation regimes. The similariton laser features a
frequency filter and a Sagnac loop which operate together to generate an integrated all-fiber mode-locked laser.
Numerical studies show that this laser generates parabolic pulses with linear chirp in good agreement with
analytical predictions. The period for propagating similariton pulses in stable regimes can vary from one to two
round trips for different laser parameters. Two-round-trip-period operation in the mode-locked laser appears at
bifurcation points for certain cavity parameters. The stability of the similariton regimes has been confirmed by
numerical simulations for large numbers of round trips.
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I. INTRODUCTION

Pulse formation in modern femtosecond lasers is generally
mediated by the interplay between dispersion and nonlinearity.
In these cases, a self-focusing nonlinearity is balanced by
anomalous group velocity dispersion (GVD) [1,2]. Such lasers
have segments of normal and anomalous GVD and the net
or path-averaged cavity dispersion can be normal, zero, or
anomalous. In the cases when the net GVD approaches
zero, stretched-pulses can occur [3], described by breathing
solutions. Such fiber lasers can have pulse energies an order
of magnitude higher than soliton lasers. More complex pulse
formation and pulse evolution occurs when the cavity GVD
approaches zero and finally becomes normal. It has been
demonstrated [4] that the resulting lengthy pulses are highly
chirped, in agreement with the theory [2]. Pulse shaping in
such a laser is based on spectral filtering of the chirped pulse,
which cuts off the temporal wings of the pulse. Mode-locked
laser operation with large net normal GVD is expected to lead
to stable high-energy pulses [5].

Self-similar parabolic pulses (“similaritons”) with a lin-
ear chirp generated in optical-fiber amplifiers with normal
GVD have generated considerable interest in recent years.
Asymptotically exact similaritons have been found and exper-
imentally observed for propagation in optical-fiber amplifiers
[6–9]. The results of these theoretical, experimental and
numerical studies have recently found increasing practical
application in high-power amplifier systems, efficient temporal
compressors [10–16], and similariton lasers. The similariton
solution also has been found in the growth of trapped Bose-
Einstein condensates (BECs) [17] and for trapped BECs in
3 + 1 dimensions [18]. Recently, the self-similar laser [19]
and so-called chirped-pulse oscillator (CPO) [20] have been
investigated for large net normal GVD to achieve higher
pulse energies [21,22]. Both self-similar and CPO lasers
generate high pulse energies with femtosecond dechirped
pulse durations [23–25]. The pulses propagating in self-similar
lasers are parabolic and highly chirped.
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The stability of the pulse generation from one round trip
to another in a laser is an important quantity for applications
in optics and telecommunications [26–28]. Pulse evolution
with periodic changes of the pulse energy from one round trip
to another can also yield stable [29] and useful devices. The
impact of amplified spontaneous emission noise and Raman-
induced imperfections in amplification where calculated for
optical-fiber communication systems in Refs. [30–32].

We report here theoretical and numerical predictions for
the generation of parabolic pulses in an all-fiber ring laser
with Raman amplification. These similariton pulses tend
toward a parabolic shape and accumulate a linear chirp, in
agreement with theoretical predictions. We have observed that
the frequency filter and Sagnac loop operating as one integrated
unit can yield mode-locked laser operation for this similariton
laser. The all-fiber similariton laser presented here (Fig. 1),
supported by a full analytical model, is designed to operate
using self-similar propagation regimes. For appropriate laser
parameters, it demonstrates stable operating regimes with
period-one and period-two round-trip operation. We call such
stable regimes similariton period-one (SP1) and similariton
period-two (SP2). The new period-two operation in the mode-
locked laser regime appears at bifurcation points for certain
lengths of the second compression segment of the cavity. We
have confirmed the stability of the similariton regimes by direct
numerical simulations for large numbers of round trips.

II. DESIGN AND THEORY OF A SIMILARITON LASER
WITH RAMAN GAIN

The schematic diagram of the laser is shown in Fig. 1.
The operating wavelength of the laser has been chosen to
be close to 1535 nm so that a pump at a wavelength close
to 1445 nm can be used. The pump is launched and extracted
from the cavity using wavelength division multiplexor (WDM)
couplers. A backward pumping scheme is used to avoid pump
depletion and linear loss is neglected in the gain fiber, so gs is
considered constant along the similariton stage. The first stage
where the similariton propagation takes place is constructed
using a dispersion-compensating fiber (DCF) in order to have
positive GVD around 1535 nm. The length of the fiber has
been chosen to be long enough to generate a parabolic pulse;
that is, the asymptotic regime is reached at point A. Then

1050-2947/2010/81(2)/023815(11) 023815-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.023815
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FIG. 1. Schematic diagram of the similariton ring laser.

a coupler is used to extract most of the light in the laser
output. The parabolic chirped pulse is then linearly compressed
at point B using a suitable anomalous dispersion regime
fiber. A Sagnac loop device (SLD) made of highly nonlinear
fiber and an asymmetric coupler is then used to initiate and
stabilize the mode locking and is preceded by an isolator which
ensures unidirectional operation while removing unwanted
backreflection from the SLD. The phenomenon of self-phase
modulation (SPM) has resulted in the use of highly nonlinear
fiber for the SLD. At point C a frequency filter reshapes the
spectrum of the pulse and removes most of the the SPM-
induced chirp due to the SLD and a variable attenuator is finally
used to set the right energy before the initial stage (at point D).

A. Similariton propagation segment

The theoretical description of pulse shaping and propaga-
tion in the all-fiber ring similariton laser with Raman pump and
amplification within first section s (similariton propagation
segment) is based on the generalized nonlinear Schrödinger
equation (GNLSE) with bandwidth-limited gain [33]:

i
∂ψs

∂z
= βs

2

∂2ψs

∂τ 2
− γs |ψs |2ψs + i

gs

2
ψs + i

σg

2

∂2ψs

∂τ 2
. (1)

Here ψs(z, τ ) is the complex envelope of the electrical field
in a comoving frame; τ is the retarded time; βs is the normal
GVD parameter; γs is the nonlinearity parameter; gs = g − αs

is the the effective Raman gain parameter, where αs is the loss
parameter; and σ = 1/�2

g is the parameter of the bandwidth-
limited gain in the fiber. However, our simulations show that
for parabolic (similariton) regimes of the laser the last term
in Eq. (1) is very small compared with the amplification term
and hence can be neglected. We design the laser parameters
and particularly choose the length ls of the first propagation
section for given parameters βs , γs , and gs so that the pulse
shape at the distance z = ls will be close to the asymptotic
parabolic solution [6–8]:
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where ψs(τ ) ≡ ψs(ls, τ ) and θ (τ ) is the Heaviside step
function. The amplitude As and the width τs of the similariton

pulse are
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The phase 	s(τ ) of the parabolic pulse and the energy E0 of
the input pulse at z = 0 are given by

	s(τ ) = 	0 + 3γs

2gs

A2
s − gs

6βs

τ 2, (5)

E0 =
∫ +∞

−∞
|ψ0(τ )|2dτ, (6)

with ψ0(τ ) ≡ ψs(0, τ ). The energy Es of the parabolic pulse
for the propagating length ls is Es = E0e

gs ls . Clearly, the
asymptotical parabolic pulse (Fig. 5) has a linear chirp �s(τ ) =
gsτ/(3βs) which is an important condition for pulse compres-
sion in the compression segment of the ring similariton laser
(Fig. 7). Most of the pulse energy is extracted at this point A
by the output coupler.

B. Compression segment

In the second compression segment, the energy of the
pulse has been greatly reduced by the output coupler and we
assume linear compression in this segment. If necessary, this
segment could be implemented using a suitable hollow core
fiber to minimize nonlinear effects. If we designate κs as the
similariton output couple parameter (see Fig. 1) and lc as the
length of the second compression segment, then the function
ψc(z, τ ) in the end of a second segment is

ψc(lc, τ ) = √
κs

∫ +∞

−∞
G(lc, τ − τ ′)ψs(τ

′)dτ ′. (7)

Here G(lc, τ − τ ′) is the Green function of the linear
Schrödinger equation for propagation distance z = lc with
anomalous GVD and the absorption coefficient equal to βc

and αc, respectively:

G(lc, τ − τ ′) =
√

i

2πβclc
exp

[
−αclc

2
− i(τ − τ ′)2

2βclc

]
. (8)

In the case when the GVD in the second compression
segment is distance dependent βc = βc(z), one should re-
place βc with the average value β̄c in Eq. (8), where β̄c =
l−1
c

∫ lc
0 βc(z)dz.

In the second segment lc is chosen so that the pulse is
unchirped as it enters the similariton segment [i.e., ψ0(τ ) =
ψs(0, τ ) is unchirped]. This condition provides a minimal
level of noise around the similariton pulse, which is im-
portant for the stability of the mode-locked pulse regimes.
Otherwise, the noise in the wings of the pulse grows after
each round trip and, as a result, mode locking cannot be
achieved. The chirp of the pulse at the end of the second
segment (at z = lc) for τ = 0 should also be close to zero.
This requirement has been obtained by exploring extensive
numerous numerical simulations, and it has been found to be
important for optimization of the laser parameters in stable
regimes. In the Appendix it is shown that in the vicinity
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of the length z = l̃c, where the chirp of the pulse is zero,
the function ψc(z, τ ), with good accuracy, is the Gaussian
function (Fig. 5)

ψc(z, τ ) = 4

3

√
2κs

π
(1 + G2)1/4As

× exp

[
−αcz

2
− τ 2

2τ 2
c

− i

2
C(z)τ 2

]
ei	c , (9)

where the phase is given by

	c = a + 1

2
arctan(−G), a = 	0 + 3γsA

2
s

2gs

. (10)

The function C(z) characterizing the chirp of the pulse
�c(z, τ ) = C(z)τ has the form

C(z) = G

τ 2
c

− |βc|
τ 4
c

z, (11)

with

G = 3πgsτ
2
s

64βs

. (12)

The characteristic width τc of the pulse and the characteristic
length l̃c defined by the equation �c(l̃c, τ ) = 0 are

τc = 3
√

πτs

8
√

1 + G2
. (13)

l̃c = Gτ 2
c

|βc| . (14)

For the parameters of the laser (see Sec. V), we find that
G � 1 (G � 270). In this case, the preceding equations can
be simplified by changing 1 + G2 to G2. Using Eqs. (3) and
(4), we may present the Gaussian function ψc(z, τ ) as

ψc(z, τ )=
(

κsE0√
πτc

)1/2

exp

[
gsls

2
−αcz

2
− τ 2

2τ 2
c

− i

2
C(z)τ 2

]
× ei(a−π/4), (15)

where the phase function C(z) is

C(z) = G

τ 2
c

(
1 − z

l̃c

)
= |βc|(l̃c − z)

τ 4
c

. (16)

Here the width τc of the pulse and the length l̃c are

τc = 8βs√
πgsτs

, (17)

l̃c = 3βs

gs |βc| . (18)

If βc = βc(z) is distance dependent the approximate equation

for length l̃c is given by 3βs/gs � ∫ l̃c
0 |βc(z)|dz. The energy of

the pulse describing by the wave function ψc(z, τ ) in Eq. (15)
is

Ec(E0, lc)=
∫ +∞

−∞
|ψc(lc, τ )|2dτ =κsE0 exp(gsls−αclc).

(19)

We emphasize that the energy Ec found in Eq. (19) is exact. In
this section we neglect the nonlinear effects using a suitable
hollow core fiber. This means that the condition LD/LNL � 1

should be fulfilled in the compression segment where LD is
the dispersion length and LNL is the nonlinear length. This
condition written in an explicit form is

κsγclcA
2
s e

−αclc � 1. (20)

All the preceding equations are in a good agreement with
numerical simulations when the distance z = lc is close to
the characteristic length l̃c: |lc − l̃c|/l̃c � 1 (see Fig. 5). For
example, the characteristic length l̃c given by Eq. (18) deviates
from the exact result by about 1%.

C. Filter-Sagnac loop device

In the scheme presented here the feedback of the similariton
laser is provided by integration of the Sagnac interferometer
with a frequency filter. This integration is important for the
mode-locking mechanism because in the stable similariton
regimes the input pulse ψ0(τ ) = ψs(0, τ ) in the similariton
segment s should be unchirped. Otherwise, the similariton
pulses in segment s have small noise satellites, which are
amplified for each round trip and destroy the stability of the
mode-locking mechanism. We call such a nonlinear device an
FSLD (filter-Sagnac loop device) because it operates as one
integrated unit (see later in this article).

Assuming the nonlinearity-dominant regime (LD/LNL �
1) in the Sagnac loop, the output function ψf (τ ) of the Sagnac
loop is given by

ψf (τ ) = {κ0 exp[iκ0γ0L0|ψc(lc, τ )|2] − (1 − κ0)

× exp[i(1 − κ0)γ0L0|ψc(lc, τ )|2]}ψc(lc, τ ), (21)

where the effective length L0 of the loop is L0 = [1 −
exp(−α0l0)]/α0. Here κ0 is the coupling parameter of the
loop and γ0 and α0 are the nonlinear parameter and the
absorption coefficient, respectively. To prevent amplification
of the noise in each round trip, which destroys the stability of
the mode-locking mechanism, we also use in our laser designs
the switching condition [33] given by

L0 = 1 − exp(−α0l0)

α0
= π

γ0|1 − 2κ0||ψc(lc, 0)|2 . (22)

We note that the nonlinear feedback is considerable when the
parameter κ0 is close to 0.5 (κ0 �= 0.5). Thus, we also assume
that the condition |1 − 2κ0| � 1 is satisfied.

If we define H (ω) as the frequency filter function, then the
output filter function ψF (τ ) is given by

ψF (τ ) = 1

2π

∫ +∞

−∞
H (ω)�f (ω)e−iωτ dω, (23)

with �f (ω) = ∫ +∞
−∞ ψf (τ )eiωτ dτ . Thus, Eqs. (21) and (23)

yield the equation for the output filter fuction ψF (τ ) as

ψF (τ ) = κ0

∫ +∞

−∞
h(τ − τ ′) exp[iκ0γ0L0|ψc(lc, τ

′)|2]

×ψc(lc, τ
′)dτ ′ − (1 − κ0)

∫ +∞

−∞
h(τ − τ ′)

× exp[i(1−κ0)γ0L0|ψc(lc, τ
′)|2]ψc(lc, τ

′)dτ ′.
(24)
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Here the filter function h(τ ) is given by

h(τ ) = 1

2π

∫ +∞

−∞
H (ω)e−iωτ dω. (25)

We assume later in this article that the characteristic filter width
τh of the filter function h(τ ) is much greater than the width τc

of the output pulse in the second segment given by function
ψc(τ ): τh � τc. This is a necessary condition for this scheme
of ring laser because it yields the mode-locking laser regimes.
From Eq. (24) and condition τh � τc follows that in this case
the output pulse shape of the FSLD is completely defined by
filter function h(τ ):

ψF (τ ) = R(E0, lc)h(τ ),
(26)

R(E0, lc) = κ0R1(E0, lc) − (1 − κ0)R2(E0, lc),

with the complex amplitudes R1(E0, lc) and R2(E0, lc) as

R1(E0, lc) =
∫ +∞

−∞
exp[iκ0γ0L0|ψc(lc, τ )|2]ψc(lc, τ )dτ,

(27)

R2(E0, lc) =
∫ +∞

−∞
exp[i(1 − κ0)γ0L0|ψc(lc, τ )|2]ψc(lc, τ )dτ.

(28)

Thus, Eq. (26) shows that the FSLD operates as one unit: the
shape of the output pulse ψF (τ ) of the FSLD is given by the
filter function h(τ ), but the amplitude R(E0, lc) is defined by
the parameters of the Sagnac loop and the function ψc(lc, τ ),
which depends on the energy E0.

D. Threshold condition

From the periodic boundary condition for the propagating
pulse it also follows that the input field in the first segment is
ψs(0, τ ) = K1/2ψF (τ ) = K1/2R(E0, lc)h(τ ), where K � 1 is
the parameter of the variable attenuator, which is located after
the FSLD. This allows us to find the energy [Eq. (6)] of the
input pulse in the first segment by the following equation:

E0 = K|R(E0, lc)|2
∫ +∞

−∞
|h(τ )|2dτ

= K|R(E0, lc)|2 1

2π

∫ +∞

−∞
|H (ω)|2dω. (29)

Let us introduce the function Q(E0, lc), which defines the loss
of the energy in the FSLD:

Q(E0, lc) = |R(E0, lc)|2
2πEc(E0, lc)

∫ +∞

−∞
|H (ω)|2dω. (30)

Then using Eq. (29) we find the relation E0 =
KQ(E0, lc)Ec(E0, lc), with Ec(E0, lc) = κsE0 exp(gsls −
αclc). Now, taking into account this expression for energy
Ec and equation E0 = KQEc, we find the laser threshold
condition:

KQ(E0, lc)κs exp(gsls − αclc) = 1. (31)

Note that in the case where the laser exhibits additional loss in
junctions, one should just redefine the parameters αs , αc, α0,
and κs, in the preceding equations.

If we consider, for example, the case when the filter function
H (ω) is Gaussian H (ω) = exp(−τ 2

hω2/2), where τh is the
filter width, then the function h(τ ) is

h(τ ) = 1

2π

∫ +∞

−∞
H (ω)e−iωτ dω = 1√

2πτh

exp

(
− τ 2

2τ 2
h

)
.

(32)

Because we assume here that the condition τh � τc is satisfied,
the input pulse function in the first segment is ψ0(τ ) =
K1/2ψF (τ ), where the function ψF (τ ) is defined by Eq. (26).
Hence, in this case the input pulse function has the Gaussian
shape (see Fig. 5),

ψ0(τ ) =
(

E0√
πτh

)1/2

exp

(
− τ 2

2τ 2
h

)
ei	0 , (33)

and the input energy E0 can be found using the following
equation:

E0 = K|R(E0, lc)|2
2
√

πτh

. (34)

The loss of the energy in the FSLD is given by Eq. (30), and
hence, in the case of Gaussian filter function, the loss function
Q(E0, lc) in the laser threshold Eq. (31) has the form

Q(E0, lc) = |R(E0, lc)|2
2
√

πτhEc(E0, lc)
. (35)

We emphasize that the laser threshold condition given by
Eq. (31) is equivalent to Eq. (29). Thus, this condition also can
be written in the form E0 = F (E0, lc), where F (E0, lc) is the
output energy after one round trip as a function of the input
energy E0 (see Fig. 8). The function F (E0, lc) is defined here
by the right-hand side of Eq. (29).

III. MODE-LOCKED REGIMES

The theory developed above allows us to calculate all
pulse parameters for similariton regimes in the ring laser.
These mode-locked regimes are critically dependent on the the
laser parameters, which can be found by taking into account
the periodic boundary condition for propagating similariton
pulses. We may write this periodic boundary condition for
input pulses (at z = 0) in the first similariton propagation
segment as

ψ0(τ ) = K1/2ψF (τ ) = K1/2R(E0, lc)h(τ ). (36)

Because we assume that the threshold of Eq. (31) is
satisfied, the periodic boundary condition yields the equation
τ0 = �τs0. Here τs0 is the width of the similariton pulse given
by Eq. (4) at ls = 0, τ0 is the width of the input pulse described
by the function ψ0(τ ), and � is some dimensionless factor that
is approximately equal to one (� � 1). We have introduced
this � factor because Eq. (4) holds with high accuracy only
asymptotically when the distance ls is sufficiently long and
the pulse is parabolic. From Eq. (33), it follows that τ0 = τh,
and hence the periodic boundary condition for the pulses
propagating in the ring laser can be written in the form
τh = �τs0, or in an explicit form as

τh = 3�

(
βsγsE0

2g2
s

)1/3

. (37)
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This equation holds in the general case because Eq. (36) yields
the condition τ0 = τh for an arbitrary filter function h(τ ). Note
that we assume the condition τh � τc, where τc � 0.6 ps for
propagation regime described by Eq. (7); hence, we find τh �
0.6 ps.

Our direct simulations show that if the filter function is
Gaussian H (ω) = exp(−τ 2

hω2/2), then the � factor can be
chosen equal to one. Thus, if the threshold Eq. (31) is satisfied
for some parameter K � 1, then the input energy E0 of the
pulse for stable laser regime is

E0 = 2g2
s τ

3
h

27βsγs

. (38)

In the next section we demonstrate that for stable regimes
this equation holds with good accuracy. This equation is also
satisfied well in the more general case when the filter function
has an arbitrary shape.

We also have found that the necessary condition for this
scheme of ring laser is τh � τc, which using Eq. (37) can be
written in an explicit form as

E0 � 0.7

√
gsβs

γs

exp

(
−1

2
gsls

)
. (39)

From this inequality it follows that for fixed input energy E0,
the length ls of the first amplifying segment should be enough
long to generate the required energy Es = E0e

gs ls at z = ls
of the parabolic pulse in the first segment. Otherwise, the
compression in the second segment is not effective to generate
mode-locked operation in the similariton laser.

From this theory it follows that the train of highly linearly
chirped output similariton pulses in the ring laser is given by

ψout(τ ) =
√

1 − κsψ̂s(τ ), (40)

with

ψ̂s(τ ) =
∞∑

N=0

ψs

(
E

(N)
0 , τ − NτR

)
. (41)

Here the function ψs(E0, τ ) = ψs(τ ) is defined by
Eqs. (2)–(5), τR is the round-trip time of the pulse in the
laser, and the energy E

(N)
0 is the characteristic input energy of

the similariton pulse after N propagating round trips. In the
general case, this energy E

(N)
0 deviates from the input energy

E0 = E
(0)
0 at N = 0.

The generated train of output parabolic pulses also can be
compressed by a special fiber with an anomalous GVD and
zero nonlinear parameter coupled to the couple κs . One can
use for such compression the same fiber as for the second
compression segment, and at length lc the output compressed
pulses are

ψc
out(τ ) =

√
1 − κs

∫ +∞

−∞
G(lc, τ − τ ′)ψ̂s(τ

′)dτ ′

=
√

κ−1
s − 1

∞∑
N=0

ψc

(
E

(N)
0 , lc, τ − NτR

)
, (42)

where the function ψc(E0, lc, τ ) ≡ ψc(lc, τ ) is given by
Eq. (15). The compressed periodic output pulses in this case
will be Gaussian with a good accuracy. Moreover, it follows

2 4 6 8 10 12 14 16 18

426

428

P
o

w
er

 (
W

)

2 4 6 8 10 12 14 16 18

133

134

135

E
n

er
g

y 
(n

J)

2 4 6 8 10 12 14 16 18
−6

−5

−4

−3

Round trip

∆ 
P

h
as

e

FIG. 2. Peak power, energy, and �phase at point A as a function
of number N of round trips for the SP1 regime.

from Eq. (42) that the spectrum of the train of output pulses
is parabolic and coincides with the spectrum of similariton
pulses given by Eq. (41) (see Fig. 6).

We also can define the deviation of the pulse phase �
(N)
phase =

	(N+1)
s (0) − 	(N)

s (0) for the N th round trip where the phase
	(N)

s (0) is defined by Eq. (5); hence, �
(N)
phase is

�
(N)
phase = [

	
(N+1)
0 − 	

(N)
0

]
+ 3γs

8gs

(
2g2

s

βsγs

)1/3 {[
E

(N+1)
0

]2/3−[
E

(N)
0

]2/3}
. (43)

The deviation of the pulse phase �
(N)
phase as the function

of the number N has period one for the stable pulse SP1
regime and it has period two for the SP2 regime (see Figs. 2
and 3). For unstable regimes, the function �

(N)
phase is aperiodic

(see Fig. 4). This behavior of �
(N)
phase also can be demonstrated

using Eq. (43).

IV. DETERMINATION OF LASER PARAMETERS

Direct numerical simulations of pulse propagation in the
ring laser for different laser parameters have demonstrated
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FIG. 3. Peak power, energy, and �phase at point A as a function
of number N of round trips for the SP2 regime.
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three basic similariton regimes: SP1 (period of one round
trip) (Fig. 2), SP2 (period of two round trips) (Fig. 3), and
unstable (Fig. 4). In the results presented later in this article
we are mostly interested in the first two similariton propagation
regimes. In this section we describe the simulation of the
laser and pulse parameters chosen from the developed theory,
assuming that the Raman gain gs and the parameters of the
fiber in all segments are fixed. Thus, we should determine
the laser parameters such as ls , κs , lc, κ0, l0, τh, K , and the
characteristic energy E0 of the similariton pulse given by
Eq. (6) for the SP1 or SP2 regime as in Figs. 2 and 3,
respectively. The laser and pulse parameters can be found in
the following way:

1. First, we fix some available value of the filter width
τh � 0.6 ps and then calculate the energy E0 by
Eq. (38). One also can decide on the energy E0 that one
would like to have at the input of the first amplifying
segment. Then the filter width for τh � 0.6 ps is given
by Eq. (37) with � = 1.

2. Using the input function ψ0(τ ) given by

ψ0(τ ) =
√

E0

||h|| h(τ )eiφ0 ,

||h|| ≡
[∫ +∞

−∞
|h(τ )|2dτ

]1/2

, (44)

[or by Eq. (33) in the case of Gaussian filter function],
we choose the length ls to be such that the pulse function
ψs(τ ) in the end of the first segment coincides with the
function given by asymptotical parabolic solution [Eqs.
(2)–(6)]. This can be verified by numerical solution of
the GNLSE [Eq. (1)]. Moreover, for a given energy E0,
the length ls should satisfy the inequality Eq. (39) as
well.

3. In this step, we choose the coupling parameter 0 < κs <

1 to yield a sufficient amount of the light in the cavity to
satisfy the threshold condition Eq. (31) for appropriate
attenuator parameter K � 1. Then the output parabolic
laser pulse is given by ψout(τ ) = √

1 − κsψs(τ ) and the

energy of the output parabolic pulse is

Eout =
∫ +∞

−∞
|ψout(τ )|2dτ = (1 − κs)E0 exp(gsls).

(45)

4. We calculate the compression length lc from the
condition that the chirp of the pulse in the end of
second segment (at z = lc) for τ = 0 is close to zero.
Note that for the SP1 and SP2 regimes the chirp is not
exactly equal to zero. This compression length lc can be
found approximately as in Eq. (18) or more accurate by
Eq. (7). For different values of the parameter lc close to
this, the laser demonstrates three similariton regimes:
SP1 (Fig. 2), SP2 (Fig. 3), and unstable (Fig. 4). These
regimes can be checked by numerical simulations for
large numbers of round trips in the ring laser. The
function ψc(τ ) in the second compressing segment at
z = lc is given by Eq. (7) and in analytical form by
Eq. (15).

5. We choose the coupling parameter κ0 close to 0.5
(κ0 �= 0.5) to yield sufficient nonlinear feedback. For
example, if one fixes the value κ0 = 0.52, then the
parameters l0 and L0 can be found as in Eq. (22).
The output filter function ψF (τ ) is defined by Eq. (24).
Because we assume that τh � τc, a good approximation
is given also in Eq. (26). However, to assess different
similariton regimes for large numbers of round trips in
the ring laser, Eq. (24) or direct simulations along the
Sagnac loop should be used. The reason is that in the
approximate solution Eq. (26) the filter function ψF (τ )
and hence the function ψ0(τ ) are unchirped. However,
even a small chirp in the pulse ψ0(τ ) after numerous
round trips yields some noise in the laser cavity and
leads to different similariton regimes.

6. In this step we calculate the attenuator parameter K �
1, which should satisfy the laser threshold condition
Eq. (31) or Eq. (29):

K = E0

|R|2
[∫ +∞

−∞
|h(τ )|2dτ

]−1

= 2πE0

|R|2
[∫ +∞

−∞
|H (ω)|2dω

]−1

, (46)

with the square of the amplitude |R|2 given by

|R|2 = κ2
0 |R1|2 − κ0(1 − κ0)(R1R

∗
2 + R2R

∗
1 )

+ (1 − κ0)2|R2|2. (47)

In the particular case of a Gaussian filter function,
Eq. (46) yields

K = 2
√

πτhE0|R|−2. (48)

Using direct simulation the parameter K can be found
by equation K = E0/EF where EF is the energy of
the pulse in the first round trip propagating between
variable attenuator and the FSLD.

7. The SP1 and SP2 regimes exist for a range of laser pa-
rameters. If we define the laser parameters as described
earlier in this article, one may choose the parameter lc
as a single parameter defining the regions of different
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laser regimes. This is because the SP1 and SP2 regimes
exist only when the output function ψc(τ ) in a second
segment (at z = lc) has just a small chirp. Thus, these
regimes exist around the value lc � 3βs/(gs |βc|). To
define the ranges of the parameter lc for which these
similariton regimes exist, we use the direct numerical
simulations for propagating pulses around the ring
laser with large numbers of round trips N � 1. These
simulations are necessary because the laser regimes are
sensitive to any noise background in the fiber ring laser.

V. NUMERICAL SIMULATIONS

The numerical results obtained in this article are based on
direct simulation of the GNLSE [Eq. (1)] with appropriate
fiber parameters in each section of the ring similariton laser,
using well known split-step Fourier method [33] for tens of
thousands of round trips N of the propagating field. The filter
is simulated in accordance with its definition by Eq. (23)
while the response of the attenuator, the coupler, and the
isolator are taken into account by integrating their respective
loss in the code. In these simulations we assume that the
input of the light in each stage is equal to the output of
the previous stage. The initial conditions vary from some
given pulses to initial noise in the cases when self-starting
regimes are expected. We note that even if the initial field does
not have a noise component, the simulation for the number
of round trips N � 1 yields small power noise components
of the propagating field which are important for reaching
different laser regimes (SP1, SR2, or unstable regimes). Thus,
all numerical results have been obtained by direct simulations
of the GNLSE for the propagating field in each section with
the number of round trips N � 1.

The numerical simulations show (see Fig. 2) that in the SP1
regime the characteristic energy E

(N)
0 of the similariton pulse

after large number N of round trips is the constant E
(N)
0 = Ē0

for N � 1, and Ē0 slightly differs from the input energy E0 =
E

(0)
0 calculated by Eq. (38). In the SP2 regime (see Fig. 3) we

have two different energies, E
(N)
0 = Ē0

′ and E
(N)
0 = Ē0

′′ for
odd and even N , respectively, when N � 1. These two values
Ē0

′ and Ē0
′′ are different but also close to the energy E0 in

Eq. (38).
For the numerical simulation, all the parameters of the

laser have been set to values typically found in available
optical components. The similariton stage should be long
enough to support a parabolic pulse which is only reached
asymptotically. The first coupler κs should be chosen in order
to have a reasonable amount of the light in the cavity while
maximizing the output power of the laser, while the second
coupler κ0 should be as close to 50/50 as possible to have a
good contrast in the SLD. The numerical results presented in
this section are found for the case E0 = 5 pJ, ls = 1700 m,
gs = 0.006 m−1, βs = 0.13 ps2 m−1, γs = 0.002 W−1 m−1,
βc = −0.021 ps2 m−1, γ0 = 0.013 W−1 m−1, κs = 0.1, κ0 =
0.52, while the loss of the fibers is set to a typical 0.2 dB/km
(= 4.6 × 10−5 m−1) and the length of the SLD is set by
Eq. (22). The filter is then chosen to set τh to the value given
by Eq. (37), which is τh = 7.87 ps. The output energy of the
pulse after the isolator is then set to E0 by using a variable
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FIG. 5. Pulses at points A, B, C, and D for the SP1 regime. Solid
curves represent the numerical simulations and stars represent the
analytical solutions: Eq. (2) for A, Eq. (15) for B, and Eq. (33) for D.

attenuator. In the cases given later in this article, l0 is found to
be close to 0.5 m and K is close to 0.5.

As described earlier in this article, we have found three
operating regimes for the laser which correspond to three
values of the net dispersion of the cavity. These three regimes
are implemented in the simulation by varying the length lc
of the fiber used in the linear compression stage around
l̃c = 3095 m, which is the value found from Eq. (18). For
these parameters, the SP1 regime exists for a length lc

around lc = 3076 m (which corresponds to E
(N)
0 = 4.95 pJ

and the net GVD of the cavity, strongly in the normal regime,
is βnet = 156.39 ps2), and the SP2 regime exists for lc >

3085 m (Ē0
′ = 5.2843 pJ, Ē0

′′ = 5.4366 pJ, and βnet = 156.19
ps2) and unstable regimes exist for length lc smaller than
lc < 3072 m (βnet = 156.49 ps2). The peak power of the pulse,
the energy, and the phase difference of the pulse between each
round trip for the SP1 regime, the SP2 regime, and the unstable
regime are shown in Figs. 2, 3, and 4, respectively. In the three
cases described here, the cavity has been designed to have an
output energy after the first round trip to be equal the input
energy E0 = 5 pJ.

In the stable regime, the shape of the pulse varies along
the cavity, as shown in Fig. 5. We can verify that the intensity
before and after the first segment matches exactly the analytical
expression given by Eq. (33) (in D) and Eq. (2) (in A) while
the pulse in B is well approximated by the expression given
in Eq. (15). The spectrum and the frequency chirp in A, B, C,
and D are also shown in Fig. 6 and Fig. 7, respectively. The
spectra at points A and B are the same, which follows from
Eq. (7). The spectrum at point D is Gaussian and it coincides
exactly with spectrum for analytical solution in Eq. (33).

As mentioned earlier in this article, this numerical study
concerns a seeded laser even if we expect the laser to be
self-starting in some cases or with a slightly different scheme
to be described elsewhere. In the cases shown here, the stability
of the laser is dependent on the input energy of the seed. The
design of the laser is fixed (i.e., lc, l0, and K are the value
found for the case E0 = 5 pJ) and the output energy F (E0, lc)
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FIG. 6. Spectrum at points A, B, C, and D for the SP1 regime.
Solid curves represent the numerical simulations. The spectra at
points A and B are parabolic and coincide exactly with theoretical
spectrum for the solution in Eq. (2).

can then be numerically calculated as

F (E0, lc) = K

∫ +∞

−∞
|ψF (τ )|2dτ. (49)

The thick curves in Fig. 8 represent the output energy F (E0, lc)
after one round trip as a function of the input energy of
the seed E0. Figure 8 shows that the output energy after
one round trip is an oscillating function of the input energy
E0. We note that the laser threshold condition Eq. (31) is
equivalent to Eq. (29), which we may rewrite now in the
form E0 = F (E0, lc). Hence, the points of energy for which
the linear curve f (E0) = E0 (thin curve in Fig. 8) and thick
curve F (E0, lc) intersect at points where the output energy
after one round trip is exactly the same as the input energy.
For these points (energies E0), the laser threshold condition
[Eq. (31)] is satisfied.

The dotted square regions in Fig. 8 show the continuous
range of input energies leading to the stable SP1 (top panel)
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FIG. 7. Frequency chirp at points A, B, C, and D for the SP1
regime. Solid curves represent numerical simulations and stars
represent the analytical solution for linear chirp �s(τ ) = gsτ/(3βs)
at point A (similariton chirp). Theoretical and numerical chirps at
point D are equal to zero.

and SP2 (middle panel) regimes presented earlier in this
article. For the SP1 regime, the input energy Eb represents
the maximum energy allowed to get a stable regime. If the
input energy is greater than Eb, the output energy after the first
round trip will be greater than the input energy and will keep
increasing, which leads to a nonstable regime. Graphically,
Eb corresponds to the last intersection point between the thin
curve and the thick curve. For input energies smaller than Ea ,
output energies after the first round trip could also be greater
than Eb or smaller than Ea , also leading to unstable regimes.
However, stable regimes could also be found for specific input
energies smaller than Ea , leading to an output energy in the
range [Ea,Eb] after several round trips. As mentioned earlier
in this article, the stabilized energy for the SP1 regime is
E

(N)
0 = 4.95 pJ and it is not dependent on the input energy.
Following the same reasoning for the SP2 regime, the

maximum energy corresponds to Ed , while the minimum
energy Ec is E0 = 5 pJ in the dotted square region in
Fig. 8. For some input energies smaller than E0, the output
energies could decrease rapidly and become smaller than the
smallest input energy allowed by the threshold condition.
We do not present here the detail graphs for SP2 regimes
(see Fig. 3) because they have the same pulse shape as for
SP1 regimes. Furthermore, numerically, SP2 regimes start
up for small changes of laser parameters (here we vary the
length lc) but it is difficult to distinguish SP1 from SP2 using
analytical curves because they are approximate, as expected.
The numerical simulation also shows only small deviations in
the parameters of two sequential pulses in SR2 regimes. The
shapes of such sequential pulses are exactly the same as in SP1
regimes and they are determined by their sequential energies,
which are Ē0

′ = 5.2843 pJ and Ē0
′′ = 5.4366 pJ when lc >

3085 m (Fig. 3). The theory for the SP1 regime [see Eq. (38)]
yields the energy E0 = 5 pJ; hence, in this case the fractional
deviation of the numerical result from the analytic result is
|Ē0 − E0|/E0 = 1%. The deviations of energies for the SP2
regime are |Ē0

′ − E0|/E0 � 6% and |Ē0
′′ − E0|/E0 � 9%,

respectively, which demonstrates that, in the case of the SP2
regime, Eq. (38) gives less accuracy. For the unstable regime
(shown in the bottom panel of Fig. 8), only one intersection
point exists between the thin line and the thick line, resulting in
the energy rapidly increasing as soon the input energy deviates
slightly from E0. Hence, this case leads to unstable operation
and decreasing power of the pulses to zero for large number
of the round trips.

The analysis in this section is based on direct simulation
of the GNLSE in each section of the ring laser with tens of
thousands of round trips N . The output energy F (E0, lc) in
Eq. (49) is also found by numerical simulation. However, the
output energy E0 = F (E0, lc) can be calculated with a good
accuracy analytically [see Eq. (29)]:

F (E0, lc) = K|R(E0, lc)|2||h||2, ||h||2 =
∫ +∞

−∞
|h(τ )|2dτ.

(50)

This allows us to analyze different regimes using the analytical
theory developed earlier. We note here that the presence of
small power noise satellite components of the light is also
important for reaching different laser regimes and can be taken
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FIG. 8. The thick solid curves repre-
sent simulated output energy F = F (E0, lc)
after the first round trip as a function
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lead to stable operation (some other isolated
starting regions or points outside this region
can also lead to stable operation).

into account by direct simulation of the GNLSE discussed
earlier in this article.

VI. CONCLUSIONS

We have presented an all-fiber mode-locked similariton
laser scheme with Raman amplification designed with the aid
of a full theoretical model of its operation. The evolution of a
pulse throughout the cavity has been studied theoretically and
numerically for various regimes of the laser corresponding
to different values of dispersion of the cavity. The output
similariton pulses of the laser have a true parabolic shape and a
linear chirp, and stable pulses can exist with the much greater
energies that can be achieved in solitonlike laser. Previously
developed similariton lasers [19–25] have all been based on
high-gain, rare-earth doped fiber sections, which limits their
operation to the gain regions of these amplifiers. In addition,
these laser designs generally rely upon free space elements
which are less practical than the all-fiber system proposed
here. Since the gain is achieved by Raman amplification,
this laser could operate in a broad range of wavelengths.
External compression of the parabolic similaritons can be used
to achieve high peak power pulses, and the all-fiber nature
of the laser lends itself to a compact stable implementation
which could find application in a range of devices. The design
proposed here utilizes a mode-locking mechanism and the
system should be readily adaptable to operate over a wide
range limited primarily by the availability of suitable pump
lasers and filters.

APPENDIX: GAUSSIAN APPROXIMATION

In this appendix we calculate the function ψc(z, τ ) in
the second compression segment. This function for z = lc is
given by Eq. (7) with the Green function defined in Eq. (8).
Because it is impossible to calculate the integral in Eq. (7)
analytically, we develop here an approximate method. The
treatment is based on an assumption that for some length lc
the function ψc(z, τ ) can be described with a good accuracy

with a Gausssian function in the case when βc < 0. This
conjecture has been confirmed by numerous simulations for
specific length z = lc for which the chirp of the propagating
pulse is close to zero. Thus, lc is the length for which the chirp
of the parabolic pulse is compensated by linear compression.
Because a linearly chirped Gaussian pulse in a linear dispersive
medium maintains its Gaussian shape on propagation, we
approximate in our calculations (for some length lc discussed
above) the input parabolic pulse ψ̃s(τ ) = κ

1/2
s ψs(τ ) in Eq. (7)

with a linearly chirped Gaussian pulse having the same energy,
effective width, and chirp. Thus, the input pulse in the second
compression segment given by

ψ̃s(τ ) = Ãs

√
1 −

(
τ

τs

)2

exp[i	s(τ )]θ (τs − |τ |), (A1)

Ãs = √
κsAs =

√
κs

2

(
2g2

s E
2
0

βsγs

)1/6

exp

(
1

3
gsls

)
(A2)

in this approximation can be replaced with the linearly chirped
Gaussian pulse as

ψg(τ ) = Ag exp

(
− τ 2

2τ 2
g

− i

2
Cτ 2 + ia

)
. (A3)

We choose here the same phase parameters of the Gaussian
pulse as in the input parabolic pulse: a = 	0 + 3γsA

2
s /2gs

and C = gs/3βs . To find unknown parameters τg and Ag , we
assume that the energies and the effective widths of the input
pulses ψ̃s(τ ) and ψg(τ ) are also the same:

∫ +∞

−∞
|ψ̃s(τ )|2dτ =

∫ +∞

−∞
|ψg(τ )|2dτ, (A4)

∫ +∞

0
|ψ̃s(τ )|2τdτ =

∫ +∞

0
|ψg(τ )|2τdτ. (A5)
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These equations with wave functions given by Eqs. (A1) and
(A3) yield the relations

4

3
Ã2

s τs = √
πA2

gτg,
1

4
Ã2

s τ
2
s = 1

2
A2

gτ
2
g , (A6)

which define the parameters τg and Ag of the Gaussian pulse
in explicit form as

τg = 3
√

π

8
τs, Ag = 4

3

√
2

π
Ãs. (A7)

Using in Eq. (7) the function ψg(τ ) instead of ψ̃s(τ ), one
may calculate the integral in explicit form. Another equivalent
approach is based on the Fourier method [33]. In this method,
we introduce the Fourier transform of the ψg(τ ): �g(ω) =∫ +∞
−∞ ψg(τ )eiωτ dτ , which is

�g(ω) = τgAg

√
2π (1 − iG)

1 + G2
exp

[
−τ 2

g (1 − iG)

2(1 + G2)
ω2

]
eia,

(A8)

where G = Cτ 2
g is the dimensionless parameter. The propa-

gation of the Gaussian pulse in a linear dispersive medium
(βc < 0) is described by equation

ψc(z, τ ) = e−αcz/2

2π

∫ +∞

−∞
�g(ω) exp

(
i

2
βcω

2z − iωτ

)
dω.

(A9)

The integration in Eq. (A9) yields the function ψc(z, τ ) as

ψc(z, τ ) = τgAge
−αcz/2√

τ 2
g + βcGz − iβcz

× exp

[
− τ 2

2T (z)2
− i

2
C(z)τ 2

]
eia, (A10)

where the width T (z) and the phase function C(z) are

T (z) = τg

√
1 + 2βcG

τ 2
g

z + β2
c

τ 4
g

(1 + G2)z2, (A11)

C(z) = Gτ 2
g + (1 + G2)βcz

τ 4
g + 2τ 2

g βcGz + (1 + G2)β2
c z

2

= Gτ 2
g + (1 + G2)βcz

τ 2
g T (z)2

. (A12)

If we define the characteristic length l̃c with the equation
C(l̃c) = 0, then we have

l̃c = Gτ 2
g

|βc|(1 + G2)
, G = gsτ

2
g

3βs

. (A13)

Combining Eqs. (A11) and (A13), we find an important
relation: [

d

dz
T (z)

]
z=l̃c

= 0. (A14)

Using Eq. (A14) we may rewrite the function given by
Eq. (A10) in the vicinity of z = l̃c as

ψc(z, τ ) = A exp

[
− τ 2

2τ 2
c

− αcz

2
− i

2
C(z)τ 2

]
eia, (A15)

where the phase function C(z) and the amplitude A are

C(z) = G

τ 2
c

− |βc|
τ 4
c

z, (A16)

A = Ag

√
1 − iG = 4

3

√
2κs

π
(1 + G2)1/4Ase

i	/2. (A17)

Here 	 = arctan(−G), and the parameters G, τc, and l̃c are
given by

G = gsτ
2
g

3βs

= 3πgsτ
2
s

64βs

, (A18)

τc = τg√
1 + G2

= 3
√

πτs

8
√

1 + G2
, (A19)

l̃c = Gτ 2
g

|βc|(1 + G2)
= Gτ 2

c

|βc| . (A20)

We have neglected the nonlinear effects in the compression
segment; hence, the next condition should be fulfilled in the
compression segment:

LD

LNL
= γcκsA

2
s τ

2
c

|βc| � 1, (A21)

where LD and LNL are the dispersion length and nonlinear
length, respectively. In conclusion, we emphasize that the
results obtained in this appendix are correct only for distances
|z − l̃c|/l̃c � 1, where the characteristic length l̃c is defined
by condition �c(z, τ )|z=l̃c

= C(l̃c)τ = 0 [where �c(z, τ ) is
the chirp of the pulse]. The equations obtained here are in
a good agreement with numerical simulations (see Fig. 5).
In particular, Eq. (A20) for characteristic length l̃c gives the
deviation from numerical results as about 1%.

[1] O. E. Martinez, R. L. Fork, and J. P. Gordon, Opt. Lett. 9, 156
(1984).

[2] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum
Electron. 28, 2086 (1992).

[3] K. Tamura, J. Jacobson, H. A. Haus, E. P. Ippen, and J. G.
Fujimoto, Opt. Lett. 18, 1080 (1993).

[4] B. Proctor, E. Westwig, and F. Wise, Opt. Lett. 18, 1654
(1993).

[5] H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. Am. B
8, 2068 (1991).

[6] M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley,
and J. D. Harvey, Phys. Rev. Lett. 84, 6010 (2000).

[7] V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey,
Opt. Lett. 25, 1753 (2000).

[8] V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley,
J. Opt. Soc. Am. B 19, 461 (2002).

[9] V. I. Kruglov and J. D. Harvey, J. Opt. Soc. Am. B 23, 2541
(2006).

[10] C. Finot, G. Millot, C. Billet, and J. Dudley, Opt. Express 11,
1547 (2003).

023815-10



ALL-FIBER RING RAMAN LASER GENERATING . . . PHYSICAL REVIEW A 81, 023815 (2010)

[11] C. Finot, S. Pitois, G. Millot, C. Billet, and J. M. Dudley, IEEE
J. Sel. Top. Quantum Electron. 10, 1211 (2004).

[12] C. Finot, G. Millot, and J. M. Dudley, Opt. Lett. 29, 2533
(2004).

[13] C. Billet, J. Dudley, N. Joly, and J. Knight, Opt. Express 13,
3236 (2005).

[14] C. Finot, F. Parmigiani, P. Petropoulos, and D. Richardson, Opt.
Express 14, 3161 (2006).

[15] J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs,
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