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Three coupled ultraslow temporal solitons in a five-level tripod atomic system
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We propose a scheme to generate three coupled ultraslow optical solitons in a five-level tripod atomic system.
We show that the detrimental distortions of the three weak probe fields due to dispersion effects under weak
driving conditions can be well balanced by self- and cross-phase-modulation effects, which leads to the three
coupled ultraslow temporal optical solitons with the temporal, group velocity, and amplitude values nearly
matched. In contrast to other schemes, our model uses optical fibers, including multichromatic optical solitons
in the stimulated Raman scattering, and produces three coupled ultraslow optical solitons in a small propagation
distance of less than 1 cm with 1

2 Rabi frequency of the driving field, typically less than 100 MHz.
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I. INTRODUCTION

Optical solitons have been the subject of intense study
because of their potential applications in optical commu-
nication systems and also in the development of optical
switching devices. Optical solitons initially were described by
a single nonlinear Schrödinger equation (NLSE) for a scalar
field. Such scalar optical solitons form when a single light
propagates inside a nonlinear medium in such a way that its
polarization state is maintained. When these conditions are
not satisfied, one must consider interaction of several field
components at different frequencies or polarizations and solve
simultaneously a set of coupled NLSEs. A shape-preserving
solution of such equations is called a vector soliton because
of its multicomponent nature. In recent years, considerable
attention has been paid to the temporal [1–8] and spatial
vector optical solitons [9–13] in various nonlinear systems.
Because of their remarkable properties, vector optical solitons
have promising applications for the design of new types of
all-optical switches and logic gates [14].

However, most previous multicomponent optical solitons
including temporal and spatial solitons were generated in
passive optical media, such as optical fibers [4–15]. In this case,
intense electromagnetic fields and long propagation distances
are required, and far-off resonance excitation schemes are
generally employed to avoid unmanageable attenuation and
distortion. As a consequence, multicomponent optical solitons
produced in this way generally travel with a propagation
speed very close to velocity of light in vacuum. This makes
the active control of solitons difficult because of the lack of
distinctive energy levels and related transition selection rules.
In particular, it is hard to realize Manakov [16] temporal optical
solitons in optical fibers because the ratio between self-phase-
modulation (SPM) and cross-phase-modulation (CPM) is not
unity, and there is also detrimental energy exchange between
each component due to the existence of the four-wave mixing
effect. Manakov optical solitons are of great interest, not
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only because the described coupled NLSEs have interesting
mathematical properties but also because such solitons may
have promising practical applications (e.g., for realizing all-
optical computing) [17]. In contrast to spatial Manakov optical
solitons, which were observed more than 10 years ago [11],
until now temporal Manakov vector optical solitons have not
been realized in experiments.

It should be noted that electromagnetically induced trans-
parency (EIT) [18] in cold atomic media has been vigorously
pursued in the fields of nonlinear and quantum optics. It
has been demonstrated that these techniques possess striking
features and lead to interesting physical effects [19–27]. One is
the significant reduction of group velocity [28,29], which may
have technical applications [30]. Another feature is that Kerr
nonlinearity of optical media can be largely enhanced through
a CPM effect. This technique has been proposed for achieving a
large nonlinear phase shift [19,21,27] and some other nonlinear
optical processes under weak driving conditions. Based on
large nonlinearity enhancement, low absorption, and ultraslow
propagation properties, it has been shown recently that it is
possible to produce a new type of optical soliton, an ultraslow
optical soliton (USOS), in cold atomic media [31–36] as
well as in semiconductor solid-state devices [37–39]. Because
of their robust nature with a ultraslow propagating velocity,
USOSs have the potential for well-characterized, distortion-
free optical pulses and hence have technological applications
in optical and telecommunication engineering.

In this work, we show the propagation of shape-preserved
optical pulses in the form of three coupled temporal compo-
nents, in which group velocity and amplitude are possible to
match in a five-level tripod atomic system. In the presence of
a continuous wave (cw) coherent classical control field, the
absorption of the three probe fields can be almost suppressed
while simultaneously the nonlinearity is enhanced under
appropriately conditions. By employing the density-operator
formalism to describe the interaction of the system, we
demonstrate that the SPM and CPM effects can balance the
dispersion and result in three coupled nonlinear Schrödinger
equations for the propagation of three weak probe fields, which
admit solutions for three coupled optical solitons. Compared
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with the passive schemes (such as optical fibers [4–15]) as
well as multichromatic solitons induced by stimulated Raman
scatterings [40,41], the solitons produced here may have
ultraslow propagating velocity, and such solutions can be
produced in a very small propagation distance of less than
1 cm with a single weak driving field with 1

2 Rabi frequency,
typically less than 100 MHz. Furthermore, the controllability
of the present scheme allows us also to easily realize temporal
Manakov solitons by actively adjusting the parameters of the
system. Notice that scalar USOSs and soliton pairs in EIT
media have been investigated recently [31–36,42,43]. The
formation of the weak-light scalar spatial solitons, the two-
component Thirring-type spatial solitons, and two-component
vector temporal solitons have also been investigated in EIT-
based systems [44–51]. However, until now there has been no
study on three-component USOSs in optically dense media.
Our results may lead to potential applications in optical
information processing and engineering using multicompo-
nent coupled solitons as the wavelength-division-multiplexed
(WDM) channels or parallel-wavelength bits.

The article is arranged as follows. In the next section, we
describe the theoretical model and investigate the dispersion
properties of the system. In Sec. III, using reasonable and
realistic approximate conditions, we derive the system’s three
coupled NLSEs, describing the envelope evolution of three
probe fields. Then, three-component coupled soliton solutions
with ultraslow group velocity in the system are provided,
and their stability and controllability during propagation are
discussed in detail. The Manakov temporal solitons in the
tripod atomic system are also briefly discussed in this section.
At the end of this article, we conclude with a brief summary
in Sec. IV.

II. MODEL AND LINEARITY SOLUTION OF THE SYSTEM

Let us consider the five-level tripod atomic system shown
in Fig. 1(a), in which three pulsed probe fields (a, b, c), with
optical frequencies ωa,b,c and 1

2 Rabi frequencies �a,b,c, and
a cw coherent couple field (d), with optical frequency ωd and
1
2 Rabi frequency �d , complete their respective excitations.
The electric-field vector for the probe and control fields can
be written as �Ej=a,b,c = �j �ejEj exp[i(kj z − ωj t)] + c.c.
and �Ed = �edEd exp[i(kdz − ωdt)] + c.c. (j = a, b, c), where
kj,d , Ej,d , and ej,d are wave vector, envelope amplitudes,
and polarization direction of the j th probe or control
fields, respectively. Figure 1(b) shows the corresponding
possible arrangement of experimental apparatus. Under the
electric-dipole and rotating-wave approximation, the density
matrix equations of the system can be written as following

ρ̇41 = id11ρ41 + i�a(ρ11 − ρ44) + i�bρ21

+ i�cρ31 + i�∗
dρ51, (1)

ρ̇51 = id12ρ51 + i�dρ41 − i�aρ54, (2)

ρ̇42 = id21ρ42 + i�b(ρ22 − ρ44) + i�∗
dρ52

+ i�aρ12 + i�cρ32, (3)

ρ̇52 = id22ρ52 − i�bρ54 + i�dρ42, (4)

ρ̇43 = id31ρ43 + i�c(ρ33 − ρ44) + i�aρ13

+ i�bρ23 + i�∗
dρ53, (5)
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FIG. 1. (Color online) (a) Five-level tripod atomic system inter-
acts with a cw coherent control laser (frequency ωd and 1

2 Rabi
frequency �d ) and three pulsed probe fields (frequency ωa,b,c and 1

2
Rabi frequency �a,b,c). All the atoms are assumed to be initially
prepared in the states |1〉, |2〉, and |3〉 with near amplitude as
ρ11 � ρ22 � ρ33 � 1/3. (b) Possible arrangement of experimental
apparatus. The arrowhead represents the propagation direction of
the fields; σ−, π , and σ+ represent the different polarized directions
of the three weak probe fields; and ωd represents the control field.
The three weak fields are sent into the atomic medium to form three
coupled ultraslow temporal optical solitons.

ρ̇53 = id32ρ53 + i�dρ43 − i�cρ54, (6)

ρ̇21 = id4ρ21 − i�aρ24 + i�∗
bρ41, (7)

ρ̇31 = id5ρ31 − i�aρ34 + i�∗
cρ41, (8)

ρ̇32 = id6ρ32 − i�bρ34 + i�∗
cρ42, (9)

ρ̇54 = id7ρ54 + i�d (ρ44 − ρ55) − i�∗
aρ51

− i�∗
bρ52 − i�∗

cρ53, (10)

and using the slowly varying envelope approximation, we
obtain the following propagation equations for the three weak
probe fields:

∂�a,b,c

∂z
+ 1

c

∂�a,b,c

∂t
= iκ4j ρ4j , (j = 1, 2, 3), (11)

where ρij = ρ∗
ji , d11 = 	1 + i(γ41 + γ42 + γ43), d12 =

	2 + iγ54, d21 = 	1 − 	3 + i(γ41 + γ42 + γ43 + γ21),
d22 = 	2 − 	3 + i(γ54 + γ21), d31 = 	1 − 	4 + i(γ41 +
γ42 + γ43 + γ31 + γ32), d32 = 	2 − 	4 + i(γ54 + γ31 + γ32),
d4 = 	3 + iγ21, d5 = 	4 + i(γ31 + γ32), d6 = 	4 − 	3 +
i(γ31 + γ32 + γ21), and d7 = 	2 − 	1 + i(γ41 + γ42 + γ43 +
γ54). Decay rates γij are included phenomenologically
in these equations, and the propagation coefficients are
defined by κ4j = Naωj |µ4j |2/(2h̄ε0c) with Na , µ4j , c, and
ε0 being atomic density, dipole moment for the transition
|4〉 → |j 〉, velocity of light in vacuum, and vacuum
dielectric constant, respectively. Here, the system was
considered as a closed system. Alone with the density
matrix equations, we also have the population conservation
law ρ11 + ρ22 + ρ33 + ρ44 + ρ55 � 1. 	1 = ωa − ε4 is the
one-photon detuning, whereas 	2 = ωa + ωd − ε5, 	3 =
ωa − ωb − ε2, and 	4 = ωa − ωc − ε3 are the two-photon
detunings between |1〉 → |5〉, |1〉 → |2〉, and |1〉 → |3〉,
respectively, where εj is the energy of state |j 〉 (ε1 = 0).

In order to provide a clear picture of the interplay between
the dispersion and nonlinear effects of the atomic system
interacting with four optical fields, we must solve the coupled
equations (1)–(11). Before solving those nonlinearly coupled
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FIG. 2. (Color online) Absorption coefficients αa (a), αb (b), and αc (c) of the three pulsed probe fields versus the dimensionless 1
2 Rabi

frequency �dτ0 for several different two-photon detunings 	2τ0 with the parameters (γ41 + γ42 + γ43)τ0 = 0.053, γ31τ0 = γ32τ0 = γ21τ0 =
6 × 10−5, γ54τ0 = 0.69 × 10−2, κ41τ0 = κ42τ0 = κ43τ0 = 10 cm−1, 	1τ0 = 3, 	3τ0 = −1 × 10−3, and 	4τ0 = −5 × 10−4.

equations, let us first examine the linear excitations of the
system, which may provide useful hints of the weak nonlinear
theory developed in the next section. To this end, we assume
that the Rabi frequencies �a,b,c of the pulsed probe fields
are much smaller than that of the control field �d , and all
the atoms are assumed to be prepared in the states |1〉, |2〉,
and |3〉 with approximately equal populations (i.e., ρ11 �
ρ22 � ρ33 � 1

3 ) whereas ρ44 � ρ55 � 0.1 In the low-density
approximation and by adiabatically eliminating the atomic
degrees of freedom, the perturbation approach can be applied
to the atomic part, which is introduced in terms of perturbation
expansion ρij = �kρ

(k)
ij , where ρ

(k)
ij is the kth order part of ρij

in terms of �a,b,c, and it can be shown that ρ(0)
ij = 0(i �= j ) and

ρ
(k)
44 = ρ

(k)
55 = 0. By considering the first order of the pulsed

probe fields and taking the temporal Fourier transform of
Eqs. (1)–(11), we obtain

ρ
(1)
jk (t) = 1√

2π

∫ ∞

−∞
β

(1)
jk (ω)e−iωtdω, j=k=1, 2, 3, 4, 5,

(12)

�k(t) = 1√
2π

∫ ∞

−∞
�k(ω)e−iωtdω, k = a, b, c. (13)

Then, with ω being the Fourier transform variable, we have

β
(1)
21 = β

(1)
31 = β

(1)
32 = β

(1)
54 = 0, (14)

β
(1)
41 = (ω + d12)�a

3D1(ω)
, (15)

β
(1)
42 = (ω + d22)�b

3D2(ω)
, (16)

β
(1)
43 = (ω + d32)�c

3D3(ω)
, (17)

β
(1)
51 = −�d�a

3D1(ω)
, β

(1)
52 = −�d�b

3D2(ω)
, β

(1)
53 = −�d�c

3D3(ω)
,

(18)
∂�a,b,c

∂z
+ ω

c

∂�a,b,c

∂t
= iκ4jβ

(1)
4j (j = 1, 2, 3), (19)

1It is not necessary to start with equal populations in the three states
|1〉, |2〉, and |3〉 initially. Even though the initial populations in these
three states with less difference will lead to the mismatch of group ve-
locity, solitons can still form by shifting their frequencies (detunings).

where D1(ω) = |�d |2−(ω + d12)(ω + d11), D2(ω) = |�d |2−
(ω + d22)(ω + d21), and D3(ω) = |�d |2 − (ω + d32)(ω +
d31). Here βij and �a,b,c are the Fourier transforms of ρij

and �a,b,c, respectively. With the help of Eqs. (14)–(18),
Eq. (19) can be solved analytically, yielding

�j=a,b,c(z, ω) = �j (0, ω) exp[iKj (ω)z], (20)

where Ka(ω), Kb(ω), and Kc(ω) are three branches of the lin-
ear dispersion relation for the linear excitations corresponding
to the three pulse probe fields �a , �b, and �c, respectively. In
most operation conditions, they can be expanded into a rapid
conversion power series around the center frequencies ωa,b,c

of the pulse probe fields; that is, ω = 0. We thus have

Ka(ω) = ω

c
+ κ41

ω + d12

3D1(ω)
, (21)

Kb(ω) = ω

c
+ κ42

ω + d22

3D2(ω)
, (22)

Kc(ω) = ω

c
+ κ43

ω + d32

3D3(ω)
, (23)

with Kj (ω) = Kj + K ′
jω + K ′′

j ω2 + · · · (the detailed expres-
sions of Kj , K ′

j , and K ′′
j can be found in Appendix A).

The physical interpretation of the dispersion coefficients in
Eqs. (21)–(23) is rather clear. Kj=a,b,c = φj=a,b,c + iαj=a,b,c

describes the phase shift φj=a,b,c per unit length and absorption
coefficient αj=a,b,c of the pulsed probe fields, K ′

j=a,b,c gives the
group velocities Vgj=ga,gb,gc = Re[1/K ′

j=a,b,c], and K ′′
j=a,b,c

represents the group velocity dispersion that contributes to the
shape change of laser pulses. Figure 2 plots the absorption
coefficients αj=a,b,c of the three pulsed probe fields versus the
dimensionless 1

2 Rabi frequency �dτ0 for several different
two-photon detuning 	2τ0. The amplitudes of absorption
coefficients in Fig. 2 are on the order of 10−2 cm−1, and
the absorption of the three pulsed probe fields can be almost
simultaneously suppressed because of the contributions of
one control field under appropriate conditions in this five-
level tripod atomic system. For τ0 = 1 × 10−8 s, with the
same parameter setting as in Fig. 2, we also demonstrate
the dependence of the group velocities for the three pulsed
probe fields in Fig. 3, which shows that the group velocities are
much slower than the light velocity in a vacuum (i.e., Vgj/c ∼
10−3). Here, we also emphasize that the three-component
coupled solitons produced in this way generally travel with
group velocities given by Vga = 1/K ′

a , Vgb = 1/K ′
b, and
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FIG. 3. (Color online) Relative group velocities Vga/c (a), Vgb/c (b), and Vgc/c (c) of the three pulsed probe fields versus the dimensionless
1
2 Rabi frequency �dτ0 for τ0 = 1 × 10−8 s, with the other parameters being the same as in Fig. 2.

Vgc = 1/K ′
c, respectively, which are nearly matched under

appropriate parameter conditions as shown in Fig. 3.
It should be noted that Eq. (19) is obtained in the linear

regime of the system under the weak-field and adiabatic
approximations while ignoring the higher order terms of probe
fields. In order to preserve the shapes of the three probe
fields, we need to include the Kerr-type SPM and CPM,
which may balance the spread effect due to the group velocity
dispersion described by the K ′′

a,b,c coefficients to generate
the three-component coupled solitons of the probe fields. In
the next section, we explore the higher order terms of �a,b,c

while systematically keeping terms up to ω2 in Eqs. (21)–(23)
for the purpose of demonstrating the formation of ultraslow
temporal coupled optical solitons in the five-level tripod atomic
system.

III. NONLINEAR DYNAMICS AND THE
THREE-COMPONENT COUPLED SOLITONS

With the dispersion coefficients in hand, we now investigate
the nonlinear evolution of the three probe fields including
the Kerr-type SPM and CPM, which may balance the spread
effect due to the group velocity dispersion. We explore the
higher order �a,b,c by systematically keeping terms up to ω2

in Eqs. (21)–(23) and show that a reasonable and realistic
set of parameters can be found so that the SPM and CPM
effects can precisely balance group velocity dispersion in
the ultraslow propagation regime. This leads to Eq. (11),
describing the propagation of the three pulse probe fields that
evolve into three coupled NLSEs, which admit solutions de-
scribing three-component coupled optical solitons. Following
the method developed in Refs. [31–33], we take a trial function
�j=a,b,c(z, ω) = �j=a,b,c(z, ω) exp[izKj=a,b,c] and substitute
it into the wave equation

∂

∂z
�j (z, ω) = iKj (ω)�j (z, ω), j = a, b, c. (24)

We then obtain

∂�j (z, ω)

∂z
eizKj = i(K ′

jω + K ′′
j ω2)�j (z, ω)eizKj ,

(25)
j = a, b, c.

Here we only keep terms up to order ω2 when expanding the
propagation constant Kj=a,b,c. In order to balance the interplay
between the group velocity dispersion and the nonlinear effect,
it is necessary for us to consider the higher order terms in

the probe field amplitude, namely, the nonlinear terms on the
right-hand side of Eq. (11):

iκ41 � iκ41ρ
(1)
41 + iT nl

a , (26)

iκ42 � iκ42ρ
(1)
42 + iT nl

b , (27)

iκ43 � iκ43ρ
(1)
43 + iT nl

c , (28)

where the third-order nonlinear term T nl
j=a,b,c is given by

T nl
a = −κ41e

−izKa
ρ

(2)
32 d12�c − ρ

(2)
21 d12�a − ρ

(2)
54 �a�

∗
d

−d11d12 + |�d |2 ,

(29)

T nl
b = −κ42e

−izKb
ρ

(2)
32 d22�c − ρ

(2)
21 d22�a − ρ

(2)
54 �b�

∗
d

−d21d22 + |�d |2 ,

(30)

T nl
c = −κ43e

−izKc
−ρ

(2)
31 d32�a − ρ

(2)
32 d32�b − ρ

(2)
54 �c�

∗
d

−d31d32 + |�d |2 ,

(31)

with ρ
(2)
21 , ρ

(2)
31 , ρ

(2)
54 , and ρ

(2)
32 given by

ρ
(2)
21 = −�∗

aρ
(1)
42 + �∗

bρ
(1)
41

d4
, (32)

ρ
(2)
31 = −�∗

aρ
(1)
43 + �∗

cρ
(1)
41

d5
, (33)

ρ
(2)
32 = −�∗

bρ
(1)
43 + �∗

cρ
(1)
42

d6
, (34)

ρ
(2)
54 = �∗

aρ
(1)
51 + �∗

bρ
(1)
52 + �∗

cρ
(1)
53

d7
, (35)

where ρ
(1)
41 , ρ

(1)
42 , ρ

(1)
43 , ρ

(1)
51 , ρ

(1)
52 , and ρ

(1)
53 can be

obtained from Eqs. (14)–(18); that is, ρ
(1)
41 = d12�a/

3D1(0), ρ
(1)
42 = d22�b/3D2(0), ρ

(1)
43 = d32�c/3D3(0), ρ

(1)
51 =

−�d�a/3D1(0),ρ(1)
52 = −�d�b/3D2(0),and ρ

(1)
53 = −�d�c/

3D3(0).
With the help of nonlinear terms in Eqs. (29)–(31), we

now turn to the investigation of the nonlinear dynamics of the
five-level tripod atomic system. By taking the inverse Fourier
transform of Eq. (25),

�k(z, t) = 1√
2π

∫ ∞

−∞
�k(z, ω)e−iωtdω, k = a, b, c,

(36)
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the nonlinear wave equations, namely the coupled NLSEs, that
govern the evolution of the slowly varying envelopes �a(z, t),
�b(z, t), and �c(z, t), can be obtained by

−i

(
∂

∂z
+ 1

Vgj

∂

∂t

)
�j + iK ′′

j

∂2

∂t2
�j = T nl

j , j = a, b, c,

(37)

where Vgj = Re[1/K ′
j ] describes the group velocity and

K ′′
j describes the group velocity dispersion. By substituting

Eqs. (29)–(31) into Eq. (37), we can rewrite Eq. (37) as

−i

(
∂

∂z
+ 1

Vga

∂

∂t

)
�a + iK ′′

a

∂2

∂t2
�a

= (Uaae
−αaz|�a|2+Uabe

−αbz|�b|2+Uace
−αcz|�c|2)�a,

(38)

−i

(
∂

∂z
+ 1

Vgb

∂

∂t

)
�b + iK ′′

b

∂2

∂t2
�b

= (Ubae
−αaz|�a|2+Ubbe

−αbz|�b|2+Ubce
−αcz|�c|2)�b,

(39)

−i

(
∂

∂z
+ 1

Vgc

∂

∂t

)
�c + iK ′′

c

∂2

∂t2
�c

= (Ucae
−αaz|�a|2+Ucbe

−αbz|�b|2+Ucce
−αcz|�c|2)�c,

(40)

where absorption coefficients αj = Im[Kj ], as illustrated in
Fig. 2 with different parameter values, are given by

αa = Im

[
κ41

d12

3(|�d |2 − d12d11)

]
, (41)

αb = Im

[
κ42

d22

3(|�d |2 − d22d21)

]
, (42)

αc = Im

[
κ43

d32

3(|�d |2 − d32d31)

]
, (43)

and the nonlinear coefficients Uaa , Ubb and Ucc, Uab, Uba , Uac,
Uca , Ubc, Ucb, which characterize SPM and CPM respectively
of the three pulse probe fields, are given by

Uaa = κ41
d12

(
γ 2

54 + 	2
2 + |�d |2

)
27(|�d |2 − d12d11)|(|�d |2 − d12d11)|2 , (44)

Uab = κ41
d12[(γ21 + γ54)2 + (	2 − 	3)2 + |�d |2]

27(|�d |2 − d12d11)|(|�d |2 − d22d21)|2 , (45)

Uac = κ41
d12[(γ31 + γ32 + γ54)2 + (	2 − 	4)2 + |�d |2]

27(|�d |2 − d12d11)|(|�d |2 − d32d31)|2 ,

(46)

Uba = κ42
d22

(
γ 2

54 + 	2
2 + |�d |2

)
27(|�d |2 − d22d21)|(|�d |2 − d12d11)|2 , (47)

Ubb = κ42
d22[(γ21 + γ54)2 + (	2 − 	3)2 + |�d |2]

27(|�d |2 − d22d21)|(|�d |2 − d22d21)|2 , (48)

Ubc = κ42
d22[(γ31 + γ32 + γ54)2 + (	2 − 	4)2 + |�d |2]

27(|�d |2 − d22d21)|(|�d |2 − d32d31)|2 ,

(49)

Uca = κ43
d32

(
γ 2

54 + 	2
2 + |�d |2

)
27(|�d |2 − d32d31)|(|�d |2 − d12d11)|2 , (50)

Ucb = κ43
d32[(γ21 + γ54)2 + (	2 − 	3)2 + |�d |2]

27(|�d |2 − d32d31)|(|�d |2 − d22d21)|2 , (51)

Ucc = κ43
d32[(γ31 + γ32 + γ54)2 + (	2 − 	4)2 + |�d |2]

27(|�d |2 − d32d31)|(|�d |2 − d32d31)|2 .

(52)

Equations (38)–(40) have complex coefficients and generally
do not allow soliton solutions. However, because of the
contribution of the control field, the absorptions of the
three pulsed probe fields can be almost simultaneously
suppressed under appropriate conditions, which leads to
exp(−αjL) � 1 with L being the length of atomic system.
Furthermore, we show for the present system that practical
parameters can be found so that the imaginary parts of
the complex coefficients are much smaller than the corre-
sponding real parts, that is, K ′′

j=a,b,c = K ′′
jr + iK ′′

ji � K ′′
jr

(j = a, b, c), Ulmn = Ulmr + iUlmi � Ulmr (l, m = a, b, c),
Uaar = Ubar = Ucar = Wa , Uabr = Ubbr = Ucbr = Wb, and
Uacr = Ubcr = Uccr = Wc. If we define τ = (t − z/Vga)/τ0,
δaj = (Vga − Vgj )/Vg1Vgj , ξ = z/LDa , LDa = τ 2

0 /|K ′′
ar |,

�j (t, z) = F0juj (τ, ξ ), Lnlj = 1/(|Wj ||F0j |2) (characterizing
the nonlinear length), LDj = τ 2

0 /|K ′′
jr | (characterizing the dis-

persion length), and Lδj = τ0/|δaj | (characterizing the walk-
off length) with τ0, F0j being the pulse width and amplitudes
of the three pulsed probe fields, the nonlinear evolution
equations (38)–(40) can be simplified in the dimensionless
forms as

i

(
∂

∂ξ
+ Gδa

∂

∂τ

)
ua − Ga

∂2

∂τ 2
ua − (paa|ua|2

+pba|ub|2 + pca|uc|2)ua = 0, (53)

i

(
∂

∂ξ
+ Gδb

∂

∂τ

)
ub − Gb

∂2

∂τ 2
ub − (pbb|ub|2

+pab|ua|2 + pcb|uc|2)ua = 0, (54)

i

(
∂

∂ξ
+ Gδc

∂

∂τ

)
uc − Gc

∂2

∂τ 2
uc − (pcc|uc|2

+pac|ua|2 + pbc|ub|2)ub = 0, (55)

where we have set LDj = LNLj (j = a, b, c), which means
the well balance between the group velocity dispersion
and nonlinear effects in our system. Thus, we have
F0j = 1/τ0|K ′′

jr/Wj |1/2, Gδj = δajLDa/τ0, Gj = K ′′
jr/|K ′′

ar |,
pjj = Wj/|Wj |, and pmj = Wm/|Wj |. A major obstacle
for the formation of three-component coupled optical soli-
tons is the group-velocity mismatch Gδj that appears in
equations (53)–(55). In the absence of the CPM nonlinear
effects, the three probe fields separate individually or move
away from each other after propagating a distance known as
the “walk-off” length Lδj , resulting from the group-velocity
mismatch [15]. However, solitons can shift their frequencies
(wavelengths) in such a way that the faster moving pulse slows
down while the slower moving pulse speeds up, so that the
three pulses continue to overlap indefinitely, which is the main
mechanism in the previous investigations used to generate
vector optical solitons under a group-velocity mismatch. In
order to find the soliton solutions of Eqs. (53)–(55), we assume
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the solutions in the form of

ua(ξ, τ ) = Ua(ξ, τ ) exp(iϑaξ − iMaτ ), (56)

ub(ξ, τ ) = Ub(ξ, τ ) exp(iϑbξ − iMbτ ), (57)

uc(ξ, τ ) = Uc(ξ, τ ) exp(iϑcξ − iMcτ ), (58)

with the carrier-frequency shifts Mj = Gδj=a,b,c/(2Gj=a,b,c)
and λj=a,b,c = ϑj=a,b,c − G2

δj=a,b,c/(4Gj=a,b,c). Conseque-
ntly, Uj=a,b,c satisfies the ordinary differential equations

Ga

∂2

∂τ 2
Ua + (paa|Ua|2 + pba|Ub|2

+pca|Uc|2)Ua − λaUa = 0, (59)

Gb

∂2

∂τ 2
Ub + (pbb|Ub|2 + pab|Ua|2

+pcb|Uc|2)Ub − λbUb = 0, (60)

Gc

∂2

∂τ 2
Uc + (pcc|Uc|2 + pac|Ua|2

+pbc|Ub|2)Uc − λcUc = 0. (61)

This transformation of Eqs. (56)–(58) has removed the
group velocity mismatched term Gδj=a,b,c from the evolution
and transferred it into carrier-frequency (wavelength) shifts
of each individual pulsed probe field. The three coupled
equations (59)–(61) are the simplest coupled NLSEs, that is,
the incoherent coupled NLSEs, which admit exact solutions
under certain conditions [52,53].

We give a practical example to show that a set of
experimentally achievable parameters of our five-level tripod
atomic system can be found to support three-component
coupled USOSs. We consider cold 87Rb atoms with
the designed states chosen as mentioned previously, for
example, 5S1/2, F = 1,MF = −1, 0, 1 as |1〉, |2〉, |3〉,
respectively, and 5P1/2, F = 1,MF = 0, 5D3/2, F = 2 as
|4〉 and |5〉, respectively. The corresponding decay rates
are (γ41 + γ42 + γ43)τ0 = 0.053, γ54τ0 = 0.69 × 10−2,
and γ31τ0 = γ32τ0 = γ21τ0 = 6 × 10−5 [54]. We have
neglected the decay (|4〉 → 5S1/2, F = 2) because
of their small effect [54]; thus, the system can be
considered as a closed system. Taking κ41τ0 � κ42τ0 �
κ43τ0 � 10 cm−1, �dτ0 = 0.9, 	1τ0 = 3, 	2τ0 = 1,
	3τ0 = −1 × 10−3, and 	4τ0 = −5 × 10−4, we can
obtain K ′

a � (1.254 − 0.075i) × 10−8 s cm−1, K ′
b �

(1.252 − 0.075i) × 10−8 s cm−1, K ′
c � (1.253 − 0.075i) ×

10−8 s cm−1, K ′′
a � (−1.595 + 0.138i) × 10−16 s2 cm−1,

K ′′
b � (−1.588 + 0.138i) × 10−16 s2 cm−1, K ′′

c � (−1.591 +
0.138i) × 10−16 s2 cm−1, Uaa � Uba � Uca =
Wa � (−5.462 + 0.023i) × 10−17 s 2 cm−1, Uab � Ubb �
Ucb = Wb � (−5.448 + 0.023i) × 10−17 s2 cm−1, Uac �
Ubc � Ucc =Wc � (−5.457 + 0.023i)×10−17 s2 cm−1,
and αa � αb � αc � 0.041 cm−1. Clearly, for all complex
coefficients, the imaginary parts are indeed much smaller
than their corresponding real parts. The physical reason
for such small imaginary parts is the quantum interference
effect produced by the cw coherent control field �d . With
this set of parameters, we have the ultraslow group velocity,
that is, Vga/c � 2.658 × 10−3, Vgb/c � 2.662 × 10−3,
and Vgc/c � 2.660 × 10−3. Choosing the pulse width
τ0 = 1 × 10−8 s, we can obtain LDa = Lnla = 0.627 cm,

LDb = Lnlb = 0.630 cm, LDc = Lnlc = 0.629 cm,
F0a � F0b � F0c � U0 � 58 MHz, and the dimensionless
coefficients Ga � −1, Gb � −0.996, Gc � −0.998,
Gδa = 0, Gδb � −1.25 × 10−3, Gδc � −0.63 × 10−3,
paa = pbb = pcc = −1, pba � −0.998, pca � −0.999,
pab � −1.003, pcb � −1.001, pac � −1.001, and pbc �
−0.999. By introducing the normalizing coefficients, we have
defined the central channel by j = a and used it as a reference
channel so that Ga/λa = paa/λa = −1. By renormalizing√

λaτ → τ , we rewrite Eqs. (59)–(61) in the form

∂2Ua

∂τ 2
+

⎛
⎝|Ua|2 +

∑
n�=a

pla|Un|2
⎞
⎠ Ua − Ua = 0, (62)

Gn

∂2Un

∂τ 2
+

⎛
⎝pnj |Un|2 +

∑
l �=n

plj |Um|2
⎞
⎠ Un − λnUn = 0,

(63)

where Gn, plj,nj , and λn are rescaled as Gn = Gj/λa ,
pnj = pjj/λa , plj = pmj/λa , and λn = λj/λa , respectively.

We now present numerical examples to demonstrate the
existence of three-coupled USOSs in the system. By assuming
that in the presence of CPM all components of the soliton
have the same “sech” shape, that is, Un(τ ) = Ansech(τ ), and
substituting this solution in Eqs. (62) and (63), the amplitudes
An are found to satisfy the set of coupled algebraic equations
A2

a + ∑
n=b pnA

2
n = 2 and pnA

2
n + ∑

l �=n plA
2
l = 2Gn. Based

on the previously mentioned parameter settings, we show in
Fig. 4 the numerical solutions to Eqs. (62) and (63) with
complex coefficients by an iteration method. Our simulations
show the three fields have the same hyperbolic secant shape
and confirm the conclusion that USOSs can form in the present
system. Because all parameters Gn and pnj in Eqs. (62) and
(63) are very close to −1 and the group velocity of the
three pulsed probe fields is nearly matched with a very small
differences in a wide range (as shown in Fig. 3), our numerical
solution describes three-component coupled bright solitons
with nearly equal intensity, as illustrated in Fig. 4. We should

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

|Ω
j/U

0|

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

(b)

(a)

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

t/τ
0

(c)

FIG. 4. (Color online) |�j/U0| [(a) |�a/U0|, (b) |�b/U0|,
(c) |�c/U0|] as the function of the dimensionless time t/τ0 obtained
by numerically integrating Eqs. (62) and (63). All the parameters are
present in the main text.
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mentioned that the special case in which the SPM and CPM
nonlinear terms in the set of Eqs. (59)–(61) of three coupled
NLSEs are exactly equal (pjj = pmj = −1) corresponds to a
three-component generalization of the Manakov model for the
optical solitons [16]. In this special case, Eqs. (59)–(61) are
known to possess exact three-component solitons [55,56].

IV. DISCUSSION AND CONCLUSION

In order to further demonstrate the formation and evo-
lution of the three-component coupled ultraslow tempo-
ral optical solitons in the present system and check their
stabilities, we show in Fig. 5 the analytical solutions of
Eqs. (62)–(63) (dashed lines) and the full numerical solutions
(solid lines) obtained by directly integrating Eqs. (1)–(11)
without using any approximations. The initial conditions
used in the numerical calculations are z = 0 and t = 0,
�a(0, t)/U0 = �b(0, t)/U0 = �c(0, t)/U0 = sech(2t/τ0). In
Fig. 5, each curve contains three distinguishable traces,
representing the perfectly matched solitons. We note that
the dotted lines are numerical solutions without including
nonlinear terms (the SPM and CPM effects), which exhibit
severe pulse spreading, as expected. We emphasis that we have
neglected the contributions of the time derivatives (i.e., ∂/∂t) in
deriving the nonlinear term Uij . These contributions, however,
can lead to significant propagation effects at large propagation
distances (i.e., giving an additional group velocity correction).
Therefore, the analytical solutions and the numerical solutions
will gradually separate. Besides, our numerical calculations
show that it is not necessary to start with three exactly matched
sech(t/τ0) functions. By taking three matched Gaussian inputs,
the shapes of fields have a full width at half maximum that is
about 18% larger than the initial hyperbolic pulse shape used
in the previous simulation. Figure 6 shows the evolution of the
input signal fields at z = 0.8 cm using the same parameters as
in Fig. 4. Clearly, the shapes of three input fields have changed

4 0 4 8 12 16 20 24 28 32 36
0

0.2

0.4

0.6

0.8

1.0

t τ0

j
U

0

FIG. 5. (Color online) Comparison of analytical solutions of Eqs.
(63)–(62) (dashed lines) and the full numerical solutions (solid lines)
obtained by directly integrating Eqs. (1)–(11) without using any
approximations. The dotted lines are numerical solutions without
including nonlinear terms (i.e., without SPM and CPM terms).
Each curve contains three indistinguishable traces, that is, |�a/U0|,
|�b/U0|, and |�c/U0|. The parameters (	j , γij , �d , U0, τ , and
κ41,42,43) are the same as in Fig. 4.

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

t τ0

j
U

0

FIG. 6. (Color online) |�a/U0|, |�b/U0|, and |�c/U0| (dashed
line) at z = 0.8 cm obtained by numerically integrating Eqs. (1)–(11)
using three matched Gaussian input pulses. The central peak has
a hyperbolic secant shape (dash-dotted line) and has an apparent
advancement relative to that of the signal pulses propagating through
a vacuum (dotted line). Each curve contains three indistinguishable
traces.

significantly because the input signal fields are not a soliton. As
a result of the nonlinear effects, the input pulses are narrowed,
and they arrive at a balance by the dispersions of the system.
One can find that the central peaks of the signal pulses can be
fitted very well by a hyperbolic secant function (shown by the
dash-dotted line) and have an apparent advancement relative to
that of the signal fields propagating through a vacuum (shown
by the dotted line), indicating that the shape preservation is
well maintained at even z = 0.8 cm.

Before concluding, we need to explain why three coupled
solitons with ultraslow group velocities cannot be formed
under the resonant conditions (	1 = 	2 = 0). The ultraslow
propagation requires weak driving conditions, which leads
to very narrow transparency windows [18]. Deviations from
these conditions result in significant prove field attenuation
and distortion. From Eqs. (44)–(52), however, it is clear that
the nonlinear coefficient Uij is closed and purely imaginary
with small values of 	3 and 	4 (i.e., 	3, 	4 ∼ 0). This is
contradictory to the requirement that Uij be predominately
real to obtain the soliton solutions of nonlinear Schrödinger
equations (14)–(16).

However, although the present study focuses only
on lifetime broadened atomic systems, the effects of
Doppler broadening due to the different thermal velocity
v can be included by first rewriting the corresponding
velocity-dependent detunings, that is, 	1 = ωa − ε4 ⇒ 	1 −
kazvz, 	2 = ωa + ωd − ε5 ⇒ 	2 − (kdzvz ± kbzvz), 	3 =
ωa − ωb − ε2 ⇒ 	3 − (kdzvz ± kczvz), and 	4 = ωa − ωc −
ε3 ⇒ 	2 − (kdzvz ± kbzvz + kczvz). The vz-dependent quan-
tities obtained are then averaged over a given velocity
distribution f (vz) [29]. The qualitative analysis can be done by
replacing the velocity vz by v ∝ √〈v2

z 〉 and 〈v2
z 〉 =∫

v2
zf (vz)dvz. Obviously, a proper choice of the propagation

directions of the waves can (sometimes greatly) decrease the
effects of Doppler broadening.

In summary, we have proposed a scheme to produce
three-component USOSs in a five-level tripod atomic system.
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In the presence of a control field, linear as well as nonlinear dis-
persions are dramatically enhanced while simultaneously the
absorptions of three pulsed probe fields are almost suppressed
under appropriate conditions in the medium. In order to obtain
the corresponding nonlinear evolution equations (i.e., three-
coupled NLSE), we have employed the perturbation approach
to the density matrix equations. We have also shown that
detrimental distortions of probe fields due to strong dispersion
effects under weak driving conditions can be well balanced by
SPM and CPM effects, resulting in the three coupled optical
solitons of different frequencies with nearly matched group
velocity and amplitude. We also demonstrated that there exist
parameter regimes in which the three coupled temporal optical
solitons can be produced in a small distance (L ∼ 0.63 cm)
and propagate through the present system with ultraslow group
velocities (Vgj ∼ 10−3c), which is in startling contrast to the
soliton in optical fibers where the propagating velocity of
the soliton is close to a vacuum light velocity and requires
a substantial propagation distance. In addition, we stress that
the three coupled USOSs predicted here can be established
under very weak excitations, with the 1

2 Rabi frequency of the
driving field less than 100 MHz. Finally, we point out that the
method described here is readily applicable to other excitation
schemes with different atom configurations and also that our
scheme may provide the possibility of promising applications
for the design of new types of all-optical switches and logic
gates in nonlinear optics and quantum information processing.
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APPENDIX

The explicit expressions of terms Ka , K ′
a, and K ′′

a in
Eq. (21) are given by

Ka = κ41d12

3(|�d |2 − d11d12)
, (A1)

K ′
a = 1

c
+ κ41

(
d2

12 + d11d12
)

3(|�d |2 − d11d12)2
+ κ41

3(|�d |2 − d11d12)
,

(A2)

K ′′
a = κ41

(
d2

11d12 + 2d11d
2
12 + d3

12

)
3(|�d |2 − d11d12)3

+ κ41(d11 + 2d12)

3(|�d |2 − d11d12)2
;

(A3)

Kb, K ′
b, and K ′′

b in Eq. (22) are given by

Kb = κ42d22

3(|�d |2 − d21d22)
, (A4)

K ′
b = 1

c
+ κ42

(
1 + d2

22 + d21d22
)

3(|�d |2 − d21d22)2
+ κ42

3(|�d |2 − d21d22)2
,

(A5)

K ′′
b = κ42

(
d2

21d22 + 2d21d
2
22 + d3

22

)
3(|�d |2 − d21d22)3

+ κ42(d21 + 2d22)

3(|�d |2 − d21d22)2
;

(A6)

and Kc, K ′
c, and K ′′

c in Eq. (23) are given by

Kb = κ43d32

3(|�d |2 − d31d32)
, (A7)

K ′
b = 1

c
+ κ43

(
1 + d2

32 + d31d32
)

3(|�d |2 − d31d32)2
+ κ43

3(|�d |2 − d31d32)2
,

(A8)

K ′′
b = κ43

(
d2

31d32 + 2d31d
2
32 + d3

32

)
3(|�d |2 − d31d32)3

+ κ43(d31 + 2d32)

3(|�d |2 − d31d32)2
.

(A9)
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