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Steady-state and dynamical Anderson localization of counterpropagating beams
in two-dimensional photonic lattices
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We demonstrate Anderson localization of mutually incoherent counterpropagating beams in an optically
induced two-dimensional photonic lattice. The effect is displayed in a system of two broad probe beams
propagating head-on through a fixed disordered photonic lattice recorded in a photorefractive crystal. In addition to
the steady-state localization, we also observe the dynamical localization; that is, the localization of time-changing
beams. As compared to the localization of single beams, in which there exist no dynamical effects, the localization
of counterpropagating beams is more pronounced and prone to instabilities.
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I. INTRODUCTION

At the half-centennial celebration [1] of the remarkable
discovery of electronic localization in disordered crystals by
P. W. Anderson [2], it is perhaps fitting to report another
instance of localization in an unrelated physical system.
Nowadays, the phenomenon of Anderson localization (AL)
is one of the basic concepts in solid-state physics. Originally
introduced to explain localization of electronic wave functions
as they propagate through disordered crystals, it has attracted
growing interest during the next few decades [3,4] for its
usefulness in elucidating the phase transition from conductors
to insulators.

Quite early it was realized that, as a wave phenomenon,
AL can be extended to include light [5–7] and interpreted
as an interference effect of counterpropagating (CP) beamlets
along different possible paths in multiple scattering. Following
recent experimental observation of AL in a disordered two-
dimensional (2D) optically induced photonic lattice (PL)
[8], AL of matter waves in a 1D disordered Bose-Einstein
condensate (BEC) [9], and Anderson-like localization of light
in a 1D PL with randomly distributed defects [10], the
transverse localization of light as it propagates in disordered
photonic crystals has become a hot topic of research.

In this article we report the steady state (SS) and the
dynamical transverse AL of broad CP beams in optically
induced PLs. We consider a system of two broad probe beams
counterpropagating head-on in a fixed PL. In a numerical study
we demonstrate AL of the probe beams by adding a varying
random disorder to the lattice. It is found that the localization
of CP beams is more pronounced than that of single beams
and prone to dynamical instabilities, which are absent in the
single beam AL.

The article is divided into four sections. Section I presents
introduction, Sec. II introduces the model, Sec. III discusses
results, and Sec. IV concludes the article.

II. THE MODEL

To study the effect of AL in CP geometry, a time-dependent
model is adopted, describing the nonlinear (NL) propagation
of mutually incoherent CP beams in optically induced PLs in
photorefractive (PR) crystals [11,12]. Although the experiment

[8] is done with a single propagating beam, we extend the
analysis to the CP geometry to obtain more general results.
Our results can be extended to other systems, such as lattices
and beams in BECs [9,13], and other periodic NL systems in
optical, atomic, and condensed matter physics.

We utilize the well-known model [11,12] for the NL
propagation of CP beams in an optically induced lattice in
the paraxial approximation:

i∂zF = −�F + �EF, −i∂zB = −�B + �EB, (1)

where z is the propagation coordinate, � is the transverse
Laplacian, and � is the beam coupling constant. F and B are
the forward- and the backward-propagating probe beams, E

represents the space charge field (SCF) built in the crystal,
normalized to the applied external field. Equations (1) are
written in the dimensionless form. The generation of SCF in
PR crystals is described by a relaxation-type equation:

τ∂tE + E = − I + Ig

1 + I + Ig

, (2)

where τ is the relaxation time of the crystal, I = |F |2 + |B|2 is
the total beam intensity, and Ig stands for the lattice intensity,
both measured in units of the dark or background intensity. A
slow change in SCF causes a change in the index of refraction,
which modifies the SS propagation of the fast optical beams.
Note that we consider a local isotropic saturable PR model for
the interaction of incoherent incident beams.

When the propagation in disordered PLs is considered,
Eq. (2) is modified, to include the randomized lattice intensity
distribution Ir :

τ∂tE + E = − I + Ir

1 + I + Ir

. (3)

Randomization is achieved by adding certain percentage of
the random field to Ig . Since the lattice is uniform in the z

direction, randomness is confined to the transverse plane. We
use lattices with triangular arrangement of beams. As probe
beams, identical hyper-Gaussian beams are launched head-on
from the opposite faces, in the center of the lattice.

The propagation Eqs. (1) are solved numerically, con-
currently with the temporal Eq. (3) for SCF, in the manner
described in Ref. [11,12] and for typical values of parameters
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FIG. 1. (Color online) Steady-state Anderson localization. Inten-
sity distributions of the forward probe beam are shown at its exit face
for (a) zero disorder; (b) 20% disorder; (c) 25% disorder. Parameters:
� = 11, L = 2.5LD = 10 mm, FWHM of the probe beams 300 µm,
input intensity |F0|2 = |BL|2 = 1, lattice intensity Ig = 3, and lattice
spacing 25 µm.

used in experiments. Input peak intensities of the forward-
and backward-propagating beams are set to 1/3 of the lattice
beam peak intensity. When dynamical AL is considered,
the input beam intensities are increased to twice the lattice
beam intensity. The lattice beam spacing is 25 µm. The
input FWHM of the probe beams equals ω0 = 300 µm. The
coupling constant between the CP beams is set to � = 11.
The propagation length is fixed to L = 10 mm. When the
steady state is reached, we speak of the SS AL; when the fields
keep changing, we speak of the dynamical AL.

III. RESULTS

First, we consider the case without disorder. Hyper-
Gaussian CP beams focus on propagation and are captured
by the lattice sites, forming a filamented triangular pattern
similar to the lattice itself (Fig. 1, the first row). No transverse
localization of the probe beams is observed, of course, but the
transverse mutual and self-focusing of each beam as a whole
are there. For the chosen values of parameters, no temporal
instabilities of the beams occur—the SS is reached fast.

To observe the transverse beam localization, a random noise
is added to the lattice. By increasing disorder, we discover
the effect of AL (Fig. 1, the remaining rows). It is clear that
the number of prominent peaks, as well as the width of the
probe beam, is greatly reduced with the increase in disorder.
We find that the transverse AL in SS is enhanced in the CP
geometry, as compared to the single beam AL, for the same
set of parameters.

For quantitative description of the phenomenon, we utilize
the standard quantities: the inverse participation ratio

P =
∫

I 2(x, y, L)dxdy

/[∫
I (x, y, L)dxdy

]2

, (4)

the localization depth ξ , and the effective beam width � =
P −1/2 [8]. It should be noted that � is defined at the exit face
for each of the beams and is not equal to the FWHM of input
beams. The localization depth is defined as ξ = l exp(k⊥l/2),
where l is the mean free path related to the refractive index
fluctuations and k⊥ = 2π/ω0 is the transverse wave number.
In our case l is of the order of the lattice constant, while k⊥ is
inversely proportional to the initial beam width.

Since AL is essentially a statistical phenomenon, many
realizations of the disorder are needed to measure ensemble
averages for the quantities of interest. We establish different
disorder realizations by starting each simulation with different
random number generators. It turned out that even though
different realizations lead to different transverse distributions
of the probe beams (cf. insets in Fig. 2), the measured values
of P and � stay close to each other (Fig. 2). Still, the relative
fluctuation �P/P ≈ 30% at the 25% disorder is relatively
large.

It is evident from Fig. 2 that, starting from some input
values, the inverse participation ratio of any of the beams
gets larger and the effective beam width gets smaller, as the
amount of disorder is increased. These tendencies are similar
to the experimental findings in Ref. [8], except for the shape of
the functional dependencies: while in Ref. [8] they are convex
(concave) for P (�), in our case they are the opposite. This
difference is the consequence of considering AL of CP beams,
instead of the single beams.

Figure 3 presents AL of the forward probe beam as
a function of the propagation distance. Such dependencies
are characteristic for the presentation of the single beam
localization. At this point it is worthwhile to point to the
differences between the single beam AL and the AL of CP
beams. In the single beam AL, to reach the localization regime,
the beam’s propagation distance must be long enough, so that

FIG. 2. (Color online) P and � as functions of the disorder level.
Inset depicts different realizations for the same disorder of 25%.
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FIG. 3. (Color online) Anderson localization at different propa-
gation distances and for 25% disorder, (a) at L/4; (b) L/2; and (c) at
the exit face L. The setup and parameters are as in Fig. 1.

the localization length ξ becomes comparable to the effective
beam width. As it propagates, the beam initially undergoes dif-
fusive broadening, until the appropriate propagation distance
is reached; then the localization takes place and the beam
focuses, acquiring exponentially decaying tails [8]. This clear
picture becomes more complex in the CP case.

In the CP localization, the initial diffusive broadening is
practically absent (Fig. 4), this being the consequence of
mutual and self-focusing of the beams, which suppress the
broadening. The beams enter with an effective width of about
42 µm and continue to focus. No diffusive expansion is

FIG. 4. (Color online) Comparison between the localization of
copropagating and counterpropagating beams. � is shown vs. the
propagation distance for the forward-propagating beam. Red (light
gray) curves are for 0 disorder, blue (dark gray) curves are for 25%
disorder. Oscillations in the beam widths are the consequence of
focusing instabilities.

FIG. 5. (Color online) Comparison of the single beam and CP
beams localization for 0 and 25% disorder. The ordinate axis is on
the logarithmic scale. (a) Single beam profile after 10 mm propagation
(black curve and dots, 0% disorder; red (gray) curve and dots, 25%
disorder). Curves represent spline fits through the dots; (b) Same as
(a) but for the forward beam of the CP pair.

seen—the beams reinforce each other on propagation and
form tightly focused filamented structures. Even in the case
of no disorder—no localization—there is no broadening of the
beams in the NL regime we consider. The oscillations seen
in � are the consequence of the NL mutual and self-focusing
instability of CP beams. The self-focusing oscillation of the
single beam, as well as its localization, is less prominent.
For the parameters used, already at the level of 25% disorder a
strong localization regime is reached; the diffusion broadening
is negligible, but the exponential tails are there (Fig. 5). The
transverse wave number equals only k⊥ ≈ 0.021 µm−1, and
the localization depth is estimated at ξ ≈ 32 µm, which is of
the order of the effective beam width.

However, the most prominent difference between the single
beam AL and the AL of CP beams is the appearance of
dynamical localization in the latter case. Such localization
is not possible in the single beam AL. In principle, CP beams
are prone to spatiotemporal (ST) instabilities on increasing
the coupling constant, the propagation distance, or the initial
beam intensities. One should make a distinction between
the spatial modulational instabilities, which are manifested
in the beam filamentation, and the ST instabilities, which
involve focusing and filamentation in both space and time.
While the literature on spatial instabilities in Kerr and PR
media is abundant [14–19], there is scarcely any on the ST
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FIG. 6. (Color online) Dynamical Anderson localization. (Top)
P as a function of time. (Middle) Transverse intensity distributions at
different moments. (Bottom) The x-axis section through the lattice,
as a function of time. The parameters are: |F0|2 = |BL|2 = 2, Ig = 1.
Other parameters are as in Fig. 1.

instabilities of CP beams in the presence of optically induced
lattices [12,20]. In short, such instabilities manifest themselves
in many ways: from sudden transverse jumps of the CP beams
as a whole, to spontaneous pattern formation, and to the
continuous transverse motion of beam filaments [21]. It is
the latter form of instabilities that is readily observed in the
AL of CP beams.

Under dynamical localization we understand AL of CP
beams in which all the quantities associated with the local-
ization keep changing in time. As they propagate, the beams
undergo all the changes characteristic of AL, but they never
reach steady state. An example is shown in Fig. 6. The
dynamical AL is reached there just by increasing the input
beam intensities relative to the lattice intensity and keeping

all other parameters as in Fig. 1(c). The time-dependent
quantities keep fluctuating about the time-independent SS
averages. For the example at hand, one can infer from the graph
that Pave ≈ 16 × 10−4 µm−2, which translates into �ave ≈
25 µm.

IV. CONCLUSION

In conclusion, we report on the transverse AL of mutually
incoherent CP beams in optically induced 2D photonic lattices.
This is accomplished in a system of two CP broad probe beams,
propagating head-on through the fixed triangular photonic
lattice in a saturable PR medium. In a numerical study, we
demonstrate the transverse AL of the probe beams by adding
a varying random disorder to the lattice. It is found that
steady state AL is more pronounced in the CP geometry than
in the standard single beam geometry. Also, due to strong
mutual and self-focusing tendency of CP beams, no initial
diffusive broadening of beams is observed in the regime we
consider.

Interestingly, we also observe the dynamical AL; that is,
AL of the time-changing CP beams. Dynamical situation
is introduced by increasing the input fields relative to the
lattice peak input intensity, whereby an unstable regime of
beam propagation is entered. The CP beams no longer reach
steady state but keep changing in time. The parameters
describing localization, such as P , �, ξ , etc., become time
dependent; however, the time dependence is not dramatic.
The time-dependent quantities keep fluctuating about the
time-independent steady-state averages.
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