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Energy-flux characterization of conical and space-time coupled wave packets
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We introduce the concept of energy density flux as a characterization tool for the propagation of ultrashort
laser pulses with spatiotemporal coupling. In contrast with calculations for the Poynting vector, those for energy
density flux are derived in the local frame moving at the velocity of the envelope of the wave packet under
examination and do not need knowledge of the magnetic field. We show that the energy flux defined from a
paraxial propagation equation follows specific geometrical connections with the phase front of the optical wave
packet, which demonstrates that the knowledge of the phase fronts amounts to the measurement of the energy
flux. We perform a detailed numerical study of the energy density flux in the particular case of conical waves,
with special attention paid to stationary-envelope conical waves (X or O waves). A full characterization of linear
conical waves is given in terms of their energy flux. We extend the definition of this concept to the case of

nonlinear propagation in Kerr media with nonlinear losses.
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I. INTRODUCTION

Femtosecond laser pulses are nowadays used for many
applications that commonly require beam and pulse shaping
when specific pulse temporal profiles, spectra, or beam profiles
have to be maintained over a given propagation distance
or available on a target. For instance, the generation of
secondary radiation from the UV to the THz range can be
achieved by the interaction of moderately intense pulses with
a gas over long distances [1,2]. The fast ignition scheme in
laser fusion needs an intense laser pulse to interact with a
dense plasma over a localized area [3]. Localized energy
deposition on a target is required in applications ranging
from material engineering with lasers to laser surgery [4,5].
Particle-manipulation scenarios were proposed with weakly
localized waves [6,7]. In these applications, wave localization
and stationarity of the interaction over a given propagation
distance are crucial features.

Designing wave packets with the required features necessi-
tates excellent control of the phase and intensity distribution of
the laser pulses. Several pulse- and beam-shaping techniques
have been developed to spatially, temporally, or spectrally
tailor specific features of Gaussian laser beams or pulses.
However, complicated wave packets for which space and
time are strongly coupled cannot be routinely generated in
the laboratory by simply combining optical elements acting
uniquely on the beam or pulse shape. An example of such
pulses is the family of conical waves recently reviewed by
Malaguti and Trillo [8]. These waves are of potential interest
in all applications where a stationary propagation of an intense
core is required over distances larger than those achievable
with conventional pulses. Conical waves indeed exhibit the
peculiar property of Bessel beams that the energy flux is
not directed along the propagation axis as in Gaussian-like
beams but arrives laterally from a cone-shaped surface [9].
This leads to the appearance of a very intense and localized
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interference peak which propagates without spreading over a
distance wy/ tan 6 that depends on the cone angle 6 and the
width w of the input beam. For Bessel beams, slowly decaying
tails in the form of concentric rings contain a major part of
the beam power and support the long propagation distance
featuring conical waves. Conical waves can be viewed as the
polychromatic generalization of Bessel beams in the sense that
they are free of diffraction and dispersion over long distances.
Several types of conical waves are well identified from the
theoretical point of view [9-12]. However, their generation
and even their characterization raise issues owing to their
space-time coupling and weak localization.

To date, optical conical waves are known to be spon-
taneously generated in Kerr media by filamentation and
in quadratic media [13-16]. Experimentally, conical waves
have been extensively characterized by far-field measurements
[17-20], but clear experimental characterization of the near-
field of conical waves remains a difficult task. The three-
dimensional (3D) reconstruction technique proposed in Refs.
[13,21] was applied to characterize the space-time intensity
distribution of a complex ultrashort pulse that underwent
filamentation in water and showed the need to develop
alternative methods for the retrieval of weakly decaying tails
of space-time coupled wave packets [15]. Several techniques
were recently proposed for measuring the space-time am-
plitude and phase of complex ultrashort pulses [22-24]. It
was foreseen from numerical simulations that this information
gives direct access to the characterization of conical waves
in terms of energy flux [25,26]. Although the robustness of
filaments is interpreted as resulting from an inward energy flux
[27-31], an experimental characterization of the energy flux
associated with filamentation dynamics has been achieved only
recently [32], opening the way to a similar characterization of
space-time coupled wave packets.

This article proposes the concept of density of energy flux as
a tool that gives important information on pulse localization,
stationarity, and dynamics. This concept is particularly im-
portant in the case of conical waves for which stationarity and
localization are intimately linked to the energy flux. The energy
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flux is traditionally given by the Poynting vector. However, a
diagnostic based on the Poynting vector requires knowledge
of the electric and magnetic fields and the latter is not an
experimentally accessible quantity. Pioneering works showed
that under certain conditions the components of the Poynting
vector can be expressed as functions of the transverse electric
field distribution in space and time of a forward-propagating
paraxial pulse [33-36]. In this article, we propose an alternative
concept, namely the energy-flux density expressed in the
local reference frame of the optical pulse under examination,
which only requires knowledge of the intensity and phase
distribution of the pulse. We comment on the link between local
energy-flux density and the Poynting vector, and we illustrate
the usefulness of energy-flux characterization for wave packets
with space-time coupling by means of the example of linear
conical waves.

Section II presents the theoretical building blocks of the ar-
ticle: first, the concept of energy-flux density for optical pulses
with envelope satisfying a forward-propagation equation;
second, the link to the Poynting vector; and third, the conical
wave packets which will be characterized by their energy
density flux. Section III illustrates the fundamental difference
between the time-averaged energy flux, usually applied for
monochromatic beams, and the local energy flux we propose
for characterizing polychromatic wave packets featured by
temporal localization and space-time coupling. Section IV
establishes a complete characterization of linear conical waves
in terms of local flux components. Section V characterizes the
longitudinal component of the local energy flux. Section VI
shows how the concept of energy-flux characterization extends
to nonlinear unbalanced conical waves.

II. DEFINITIONS OF ENERGY DENSITY FLUX

We start by defining the notion of energy density flux. As
we will see, important information regarding stationarity of
a wave packet may be obtained from the energy density flux
expressed in the local frame of the wave packet. We will thus
define the local energy density flux in the laboratory frame
as well as in the local frame moving at the group velocity
of the wave packet. We consider an optical pulse of central
frequency wp propagating in the forward direction (negative
times #) in a dispersive medium. The electric field E(x, y, z, t)
is decomposed into carrier and envelope as E(x,y, z,t) =
Ex,y,z,t)exp(—iwpt + ikoz), where kg = won(wy)/c is the
modulus of the wave vector at wg. The linear propagation of
the pulse is governed by the envelope equation
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where £ represents the complex amplitude of the envelope
of the electric field. The derivation of Eq. (1) from Maxwell
equations relies on several approximations, namely:

1. Scalar approximation: The pulse is assumed to be
linearly polarized in a direction transverse to the prop-
agation direction z. £ is the scalar complex amplitude
of the transverse electric field.

2. Slowly varying envelope approximation: The envelope
shape evolves over a scale typically much larger than
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the wavelength. The second-order derivative 3°E/9z>
is negligible with respect to kydE/0z.

3. Paraxial approximation: |AKk|/k < 1.

4. Narrow bandwidth: |Aw|/wy < 1, which justifies a
second-order expansion of the dispersive terms k(w).

The left-hand side of Eq. (1) represents the propagator,
where k= 9k/dw(w = wy) represents the inverse of the
group velocity of the pulse, the time in the laboratory frame
t represents the longitudinal coordinate, and the propagation
distance z represents the evolution parameter. The first and
second terms on the right-hand side of Eq. (1) represent
diffraction and group velocity dispersion (GVD), respectively;
Vi = 9%/0x> + 9?/dy? is the Laplacian in transverse co-
ordinates, which may as well be expressed with cylindrical
coordinates and k| = 3%k /dw* (@ = wyp).

A. Derivation of the energy density flux from
the propagation equation

For convenience, £ is assumed to be expressed in W/ cm?;
thus, |€|* represents the local intensity of the pulse. It also
represents the pulse energy density in the (x, y, f) space since
the magnetic part of the electromagnetic energy is negligible
and the total pulse energy is given by integration of intensity
over the entire space. If a volume )V is considered in the
(x,y,t) space, fv |E|?dxdydt represents the total energy
carried by the pulse in region V and satisfies a conservation
equation obtained by multiplying Eq. (1) by £*, summing the
result with its complex conjugate and performing the volume
integration. Locally, the energy-conservation equation takes a
form analogous to the divergence theorem,

d|E

2z = —div], 2)

where the divergence operator is defined in the (x, y, ) space
asdivF = V| - F, + 0F;/dt. This allows for an identification
of the flux of energy density J through the surface S enclosing
volume V:
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The longitudinal component defined by Eq. (4) includes two
contributions: the first term is associated with the propagation
of the pulse at velocity Vi = k{)*l, whereas the second
contribution is intrinsic to the propagation medium and
associated with dispersion. The longitudinal energy density
flux in the local frame of the pulse, associated with the local
time T =t — k{z, thus reads

kg & aE*
Jo=—2|e—_-¢ , 5
2i |: at 3Ti| )

whereas the transverse component is unchanged. In this
frame, the energy density flux entails information on the
relative redistribution of energy in the (x, y, t) space during
propagation. If the complex envelope is written in terms of
amplitude and phase & = |£| exp(i¢), each of the energy-flux
components is shown to be proportional to the intensity and to
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the phase gradient along the corresponding direction:

_ l 2 _ //8_¢
J= k0|5| (qu’), kokg 3{) . (6)

Therefore, if it is possible to have access experimentally
to the intensity and phase distributions of an optical pulse,
as recently shown, for example, in Refs. [24,32,37-39], the
longitudinal and transverse components of the energy density
flux vector J are fully determined [32]. As will be seen in
Sec. IIC, this result still holds for a wave packet moving
at velocity V different from k(/)_l, provided corrections are
made to account for the moving frame. Equation (6) also
shows that the flux is proportional to the intensity distribution,
indicating that features of a space-time coupled wave packet
may be undetectable when an (x, y, t) intensity distribution
is measured by the 3D mapping technique but visible in the
flux distribution. For instance, the weighting effect introduced
by the phase gradient may enhance the contrast in the weak
tails [15,32].

B. Link to the Poynting vector

In classical electromagnetism, the evolution of the energy
density defined as w = Re{E - D* + B - H*}/2 (where D, B,
and H denote the electric displacement field, the magnetic
induction, and the magnetic field, respectively) is governed by
the conservation equation

ow

- = —divs, 7)

where S = Re{E x H*}/2 denotes the Poynting vector and the
divergence operator follows here from the standard definition:
divF =V, -F, 4+ 0F;/dz. Several works have shown that
the transverse component of the Poynting vector corresponds
exactly to the expression given by Eq. (3); thus, S, =J,
[33-36,40] (see also Appendix A) . The longitudinal compo-
nent S,, however, must be interpreted differently from the local
longitudinal energy flux J;. The density of electromagnetic
energy indeed includes an electric and a magnetic contribution
and the Poynting vector represents the energy density flux
for both contributions in the laboratory frame. In contrast,
the energy density flux J accounts for the electric part only.
Appendix A shows that the continuity equations [Eqs. (7)
and (2)], and therefore Eqs. (3) and (4), can be transformed
into each other. However, the information on the dispersive
properties of the medium that is contained in the longitudinal
component J; of the energy density flux is not present in the
longitudinal component of the Poynting vector S, but in the
time derivative of the electromagnetic energy. Both quantities
are linked by the following expression, derived in Appendix A:
aJ; 0

a
R — —_ 2 J—
ot az(SZ 1EcI7) + at(we + wp). (®)

We note that although there is a clear link between J and S,
experimental evaluation of energy density flux requires the use
of J as defined in this work since it relies on the knowledge of
the electric field alone. On the other hand, theoretical studies
in which one has direct access to E and H permit the use of
the energy density flux based on the Poynting vector S [41].
Finally we underline that there is no obvious route for
deriving J, directly from S without further approximation.
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The Poynting vector indeed describes the energy flux when
Maxwell equations describe the propagation of the pulse.
Rather, we have shown that the transverse component J
and the longitudinal component J; are derived from the
envelope-propagation equation and that J, coincides with
S.. We show in Appendix B that for nondispersive media,
a generalization of the longitudinal flux component J; may be
expressed as w — S./c, whereas the longitudinal component
of the Poynting vector S, represents the energy density
in the (x,y,t) space. This link to the Poynting vector is
compatible with the expressions for the flux found under the
envelope approximation. We expect that further generalization
is possible in dispersive media; however, both w and S, require
the knowledge or measurement of the magnetic field, whereas
within the approximations considered in this article J can be
obtained from the knowledge of the intensity and phase of the
envelope of the electric field only.

C. Linear conical waves, Bessel X pulse, and
pulsed Bessel beams

We consider scalar wave packets (WPs) propagating in a
dispersive medium characterized by a refractive index n(w),
thus satisfying the wave equation expressed in the Fourier
domain,

2
[;—Zz + AL+ kz(a))i| E(r.».2) =0, 9)
where k(w) = wn(w)/c. WPs with central frequency w, are
assumed to be described by a complex envelope W(r, Tt =
t —z/V, z) propagating in the forward direction at velocity
V, possibly different from Vg =1/ k(’), and a carrier wave
exp(iBz — iwot), where the carrier wave number 8 may also
differ from k¢ and t denotes the local time in the envelope
frame. In particular, we may define the velocity at which the
energy of the pulse propagates as Vg = Vi cos 6y, where §y isa
characteristic angle of the propagating WP described below. In
this work the difference between Vi and Vg from a practical
point of view is always negligible; we therefore choose to
name superluminal a velocity V greater than the Gaussian
velocity Vi and subluminal a velocity V lower than V. The
propagation equation governing the envelope spectrum reads

” o (+ 2V L h A 2@ |90 0.0 =0
Y l [ r, » <) =Y,
072 V) az LT ¢

(10)

K (Q) =k (o) — (B+Q/V), (11)

and Q = w — wy denotes the frequency departure from the
carrier frequency. The general solution to Eq. (10) propagating
in the forward direction with revolution symmetry reads

| +oo A
W(r,t,2) = E/ dQ/ dKKA(K, Q)Jo(Kr)
—00 0
x exp(ikz —iR21), (12)

where K is the transverse component of the wave vector,
A(K, 2) denotes an arbitrary function which represents the
complex angular spectrum of the WP at z =0, and the
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longitudinal wave number associated with the envelope reads

_(‘34_9) 1+ki(9)—_K2_1
= % B+Q/V)
_ /@) K- (,3 + %) (13)

Conical wave packets (CWPs) correspond to specific
choices of the angular spectrum A(K, Q) = f(Q)(S(K —
k(w) sin[6(£2)]), where f (R2) is a weight function for which
the WP may be viewed as a superposition of plane waves with
frequency-dependent wave numbers K distributed over cones
of angle 6(2) with respect to the propagation direction z.

The pulsed Bessel beam (PBB) and the Bessel X pulse
(BXP) are particular cases of conical waves obtained from
Egs. (12) and (13) for which the plane-wave constituents
present a constant transverse component of the k vector (PBB,
0(2) = arcsin[ K/ k(w)]) [42] or a constant propagation angle
0y for each frequency (BXP, K(2) = k(w)sin6y) [11]. The
PBB is similar to a Bessel beam generated by means of a
circular diffraction grating and may be regarded as the product
of a Bessel beam and a Gaussian pulse. The BXP can be
generated by sending a Gaussian beam through an axicon and
exhibits a two-winged (X-shaped) structure resulting from the
superposition of an inward and an outward beam [37,42,43].
Ideally, the PBB and the BXP have infinite energy due to
their weakly decaying tails, but in practice both are produced
with finite energy beams sent through finite apertures and thus
exhibit a central intensity peak that extends over a propagation
region called the Bessel zone (which depends on the spatial
apodization of the profile).

Conical waves with a stationary envelope in their reference
frame constitute an important subclass of CWP for which the
envelope does not depend on z. This condition is satisfied
when the longitudinal wave number varies linearly with
frequency, which is obtained by choosing the angular spec-
trum A(K, Q) = f(Q)8(K — k. () and k() is defined by
Eq. (11). The envelope then reads

U(r, 7) :/ f(Q)JO(kL(Q)r)exp(—iQr)dQ, (14)
k1 (Q)real

where integration is performed over frequencies for which
k. (2) is real.

It is particularly instructive to assume that a small
expansion of the dispersion relation up to second order is
sufficient to describe the dispersive properties of the medium;
thus, k(w) = ko + k{2 + k[ Q?/2 and

k3 (Q) = 0297 + 2012 + ap, (15)
where oy = kok{j + ki — 1/V?, oy = koky — B/V, and g =

k2 — p2.

’ In this case, the stationary CWPs have been obtained
by Porras and Di Trapani [44] and were recently studied
in a nonparaxial framework by Malaguti and Trillo [8].
A comprehensive analysis of angular dispersion curves of
stationary CWPs in a linear dispersive medium is given
in Ref. [45]. In the following treatment we will refer to
the notation of Ref. [8]. Stationary CWPs are characterized
by two parameters: the angular aperture 6) of the beam
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FIG. 1. (Color online) Parameter space (6y, V) for stationary
CWP in water and a central wavelength of 527 nm. The different
sectors labeled A, B, and D are bounded by the dashed curves where
(xf = apap and o, = 0 (line I';), on which the shape of the angular
spectrum k, (2) [Eq. (15)] changes. A, X waves (hyperbolic) with
angle gap; B, X waves (hyperbolic) with frequency gap; D, O waves
(elliptic). The + labels indicate that the central frequency of the k, (€2)
curve is upshifted (+) or downshifted (—) with respect to w,. The
curves 'y (V = Vg cosby) and I', (V = Vi / cosby) determine loci
around which stationary CWPs with sufficiently narrow bandwidth
share the features of PBBs or BXPs, respectively. The insets show
the qualitative shape of the dispersion curve [Eq. (15)] for B—, A,
and D™ (ky in um™', Q in rad/fs).

at the carrier frequency which is linked to the longitudinal
wave number B8 = kg cos 6§y and the velocity V of the CWP.
Following Malaguti and Trillo, Fig. 1 shows the different types
of stationary conical waves in the plane (6y, V), which we
will use to illustrate the use of energy flux as a tool for
characterizing stationary CWPs. This classification is based
on a second-order approximation of chromatic dispersion, but
spectral features and the characterization of the energy flux
remain qualitatively similar even if the full dispersion curve
is retained, as in all numerical results in this article. A single
exception exists when the spectrum of the WP is centered
around a zero of the GVD, which will not be treated in this
article. The line I, is defined by o, = 0. The region above line
I, corresponds to X-wave solutions (a; > 0). In particular,
regions A¥ (ozl2 — a0 < 0 or kjcosby — /kokg sinfy <
V=1 <k cos 6y + /kok{, sin 6) correspond to hyperbolic so-
lutions of Eq. (15) with a wave number (angle) gap, while
regions B (ozl2 — ap0p > 0 or shaded areas in Fig. 1) corre-
spond to hyperbolic solutions with a frequency (wavelength)
gap. The region below line I'. corresponds to O-wave-like
solutions (ay < 0), which present elliptic k, (€2) profiles and
are analogous to the solutions found in the case of anomalous
GVD [42,44,46].

In general the PPB and the BXP are not stationary solutions
in the strict sense. However, it is possible to find some
limit case in which stationary CWPs may be considered
as belonging to the family of PBB or BXP within this
second-order expansion. From Eq. (15), it can be seen that
a constant k; (thus a PBB profile) is obtained for o; = 0 and
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oy = 0, which results in a single couple of velocity and angular
aperture V = Vg cos 6 and tan® 6y = kok{ / k(?, respectively,
corresponding to the intersection of lines I', and I in Fig. 1.
However, the weight function f(£2) may be sufficiently narrow
to neglect @, Q2 in Eq. (15), while the condition o; =0
just gives the velocity featuring a PBB so that the whole
curve I'; (V = Vg cos6y) characterizes PBB-like solutions.
Similarly, the angular aperture at a given frequency of the
stationary CWP presented in Fig. 1 is given by cos8(2) =
B+ R/ V)/(ko + k2 + k(’)’Qz/Z). This shows that stationary
conical waves with strictly constant cone angles (BXP) are
never obtained in condensed media. However, if the bandwidth
of the weight function in Eq. (14) allows us to neglect k Q?
in front of ko + k{2, we obtain stationary CWPs with almost
constant cone angle 6, for the velocity V ~ Vi cos 6, featuring
solutions of the BXP type (line I'y, in Fig. 1).

Finally, within the framework of the second-order expan-
sion of k(w) and the slowly varying envelope approximation
[% < B ai in Eq. (10)], the propagation equation for the
envelope W(r, 7, z) can be put in the form of Eq. (1):

L ow R . 0w

2iB— + ALV —ay—— + 2i;— + ¥ =0. (16)

0z 972 at

Therefore, the associated energy-flux components are ex-
pressed as

1

= — [V'V U —wV, v*|, 17
Ji 28 [ L A (17)

o ow ow* o
Jo=—o W — + WP (8)

2iB T at B
III. MONOCHROMATIC VS POLYCHROMATIC ENERGY

DENSITY FLUX

A. Time-integrated flux

The energy density flux given in Egs. (3) and (5) is
particularly well suited to characterize polychromatic wave
packets such as those presented in Sec. IIC, which exhibit
space-time couplings and/or angular dispersion. In most cases
studied in the literature, optical wave packets are supposed to
be describable in terms of separated variables with uncoupled
beam and pulse dynamics. This is the case for the Gaussian
pulse (GP) obtained by focusing a laser beam with a lens with
focal length f in a dispersive medium. The linear propagation
of a GP is well known and may be described in terms
of the beam and pulse parameters solely depending on the
propagation distance, with the origin (z = 0) at the focus of
the lens [47]:

12 2 2
. LU()TO _ r _ T
Ert,2) =& w(z)T2(z) eXp |: w(z)? T(Z)2i|

2 2
X eXp [ik02F(z) —il(z) — iZk”IL(z)i| , (19
0

where the beam waist, beam curvature, Gouy shift, pulse
duration, and pulse chirp are given, respectively, by

w(z) = wo(l + Zz/Z%g)]/z

F(z) = z(1 + 23/2%).

’
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¢ (z) = arctan(z/zg),
TG) =T,[1 + @ +d)/z%w]
L(z) = (z+ A1 + z&yp/(z + d)].

Here, a flat temporal phase is assumed at the beginning of the
propagation z = —d definedby f = —d — z%/d. The quantity
zr = kow(/2 denotes the Rayleigh length and zgvp = T /2k(
the dispersion length. The pulse duration at the focus Ty
is linked to the initial pulse duration 7, by the relation
Ty = T,(1 + d*/z%yp)"/*. From Eq. (19), it is readily seen
that variables are separated: the temporal (or longitudinal) and
the transverse dynamics remain completely uncoupled.

When experimental characterization deals with the spatial
dynamics, the temporal dynamics is assumed to be frozen and
the pulse is considered as quasimonochromatic. In this case, a
characterization in terms of energy flux amounts to considering
the transverse component of the flux only. As we have seen,
it is proportional to the intensity of the wave packet and to
the transverse gradient of the wave-packet phase. If the latter
quantity is assumed not to depend on time, the time-integrated
flux can be approximated as

Ji(r,2) = f Ji(r, 7, 2)dt = ki / 1E(r, 7, DI’V 1¢(r, 2)dT
0
~ if(r, V11, 2), (20)
ko

where F(r,z) = [ |E(r, T, 2)|?dt denotes the fluence of the
beam which is the experimentally accessible quantity.

As we shall show, a fundamental difference exists between
the various notions of energy flux; namely, J (r, z) gives us
information about the fluence in the monochromatic case.
In contrast, the transverse energy flux J,(r, 7, z) for each
propagation distance gives information on the spatial and
temporal reorganization of energy within the wave packet,
which applies for polychromatic cases as well. The difference
will be shown by considering simple situations—a GP, an
apodized PBB, and an apodized BXP coming from an ideal
axicon—which exhibit different space-time coupling and
cannot be distinguished from their characterization by means
of Ji(r,z), whereas the energy-flux characterization with
J1(r, T, 2) clearly shows their distinct features.

B. Energy flux in the monochromatic case

For the GP, the components of J can be calculated directly
from Eq. (19):

_ 2 T

Jr - |5(r, T’ Z)' F(Z) (21)
_ 2 T

Jo = |E(r, T, 2)] o (22)

From this expression, it is readily seen that 7, = f Jdt =
F(r, z)ﬁ. Thus, a GP is associated with an inward flux before
the focus of the lens [ F(z) < 0] and an outward flux after the
focus.

For the PBB and the BXP, the flux is calculated numerically
by considering propagation through water for WP with central
frequency at Ao = 800 nm. The GP parameters are wy =
0.03 cm, T, =80 fs, and f =4 cm. We chose PBB and
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FIG. 2. (Color online) Time-integrated transverse flux profiles vs
propagation distance for (a) a focused Gaussian pulse, (b) a pulsed
Bessel beam, and (c) a Bessel X pulse. Red (blue) indicates outward
(inward) flux with respect to the propagation axis.

BXP with the same propagation angle 6y = 2° at the central
wavelength Ao = 800 nm, temporal duration 7,, = 80 fs, and
Gaussian apodization with wy = 0.1 cm to mimic a real
situation with finite energy.

Figure 2 shows the time-integrated transverse flux 7, (7, z)
as a function of the propagation distance z (evolution pa-
rameter) and radial coordinate for the three cases under
examination. The focused Gaussian case [Fig. 2(a)] presents
inward-directed (negative) flux before the beam waist position
at z = 0 and outward-directed (positive) beyond the focus, due
to linear diffraction. As can be seen in Figs. 2(b) and 2(c), the
cases of the PBB and the BXP cannot be distinguished by their
characterization in terms of time-integrated flux. Both exhibit
an integrated flux qualitatively similar to that of a GP, with
an initial inward flux, followed by a region (corresponding
approximatively to the center of the Bessel zone) in which
the flux vanishes, and finally an outward flux. This behavior
is strictly connected to the fact that the beams are spatially
apodized, as will be discussed later. For longer propagation
distances, the flux becomes ring-shaped (in the x-y plane),
which corresponds to the far field of a PBB or a BXP.

C. Energy flux in the polychromatic case

The representation at fixed z of J, in the (r, ) domain
allows us to discriminate between the three cases. Figure 3
shows the change in the transverse flux distribution for the GP,
PBB, and BXP as a function of the propagation distance.

Before the focus of the GP or at the very input of the Bessel
zone [Figs. 3(a)-3(c)], the GP transverse flux does not present
any spatiotemporal feature, indicating that the pulse as a whole
is focusing, since J, < 0. The PBB and the BXP present an
inward energy flux, featured by the intensity distribution of
the wave packet itself. Figures 3(d)-3(f) show the three cases
around the beam waist or the center of the Bessel zone. The GP
transverse flux [Fig. 3(d)] is considerably smaller with respect
to the previous case since the WP is approaching the beam
waist.

The BXP flux [Fig. 3(f)] presents two wings: one in the
leading part of the pulse with inward-directed flux and one
in the trailing part with outward-directed flux. This behavior
may be simply understood by means of Fig. 4(a) as a result
of the conical nature of this wave packet. The PBB can be
regarded as a degenerate BXP, in which propagation angle and
pulse tilt angle are equal, so that the inward-flux and outward-
flux wings spatially overlap. Figures 3(g)-3(i) show the flux
characterizing the GP, PBB, and BXP at a greater propagation
distance. The energy flux is directed outward for all wave
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FIG. 3. (Color online) Transverse flux J, for different wave
packets at different propagation distances. Panels (a), (d), and (g)
refer to the GP 4 cm before the beam waist, near the beam waist,
and 4 cm after that point, respectively. Panels (b), (e), and (h) refer
to a PBB obtained by multiplying a Gaussian profile by a radially
dependent phase at the beginning of propagation, near the center of
the Bessel zone, and toward the end of this zone, respectively. Panels
(c), (), and (i) refer to the same situation as panels (b), (e), and (h) for
the BXP wave-packet profile. The color scale of J, is in arbitrary units
since the intensities were normalized to the maximum value reached
during propagation. The black contour plots show the intensity over
two decades.

packets and exhibits features of the intensity distribution in
the far-field region, which corresponds to a diverging Gaussian
beam for the GP and a diverging ring for the PBB and the BXP.

FIG. 4. (Color online) Simple representation of the propagation
of the expected transverse flux for the propagation of (a) a BXP
and (b) a rotationally symmetric tilted pulse. The red (blue) color
corresponds to flux directed upward (downward) with respect to the
vertical axis.
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IV. STATIONARY ENVELOPE WAVES

A. Normal GVD case: X waves

As previously stated, stationary CWPs may be described by
means of Eq. (14). Malaguti and Trillo have derived closed-
form analytical solutions for stationary CWPs with specific
spectral weight functions f(£2) [8]. From these solutions and
Egs. (17) and (18), we evaluated the energy flux characterizing
CWPs: All the solutions of Ref. [8] with velocity equal
to the energy velocity Vg = Vi cosfy and corresponding to
symmetrically distributed spectral weight turn out to have
both transverse and longitudinal flux components equal to O.
The case of an asymmetric spectral weight leads to analytical
solutions featuring a single branch of an X wave with frequency
gap in region B of Fig. 1.

In this section we will show the flux of stationary CWPs
with asymmetric spectral weight, evaluated by means of
Eq. (14). It is important to emphasize that we used a full
dispersion relation k(w), extrapolated from the data of [48], in
the definition of these WPs [Eq. (11)]: The expression for the
flux has been derived in the second-order approximation and
gives the main contribution. Higher-order terms become more
important in a spectral region corresponding to zero GVD.

Figure 5 shows the transverse flux J, for an X wave
corresponding to region B of Fig. 1, with central wavelength
Ao = 527 nm, reference angle 6, = 0 rad, Gaussian spectral
weight (T, = 80 fs), and Gaussian spatial apodization (wy =
0.5 mm), propagating in water when the velocity of the pulse
peak is subluminal [Fig. 5(a), V = 0.9995V(;] or superluminal
[Fig. 5(b), V = 1.0005V] with respect to the Gaussian group
velocity Vg = 1/kjy = 220720072 m/s. The flux profile is
similar to that of the BXP case.

It may be noticed that the inward-directed flux wing appears
in the leading part of the pulse or the trailing one according
to the superluminal or subluminal propagation of the envelope
peak. This behavior is not in contradiction with the fact that
the overall pulse is moving in the forward direction and it may
be simply understood by considering that the propagation of
the central peak is the result of the cylindrically symmetric
superposition of tilted pulses, as already pointed out in [42]
and schematically represented in Fig. 4(b).

Spatial apodization limits the propagation range in which
the wave packet is effectively stationary: the behavior is

x10*
,8-0.1 /E\Oj 2
ol @ E o © L\
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0.2 0.2 ,
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FIG. 5. (Color online) Transverse flux J, for stationary CWP
in the X-wave case for different propagation velocities of the
envelope peak. (a) V =0.9995V;; (b) V =1.0005V;. The gray
contour plots show the intensity over four decades. The insets show
the corresponding spectral X, k, features. Color scale in arbitrary
units.
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FIG. 6. (Color online) Transverse flux J, for stationary CWP of
the O-wave type for different propagation velocities of the envelope
peak. (a) V =0.9995Vs; (b) V =1.0005Vs;. The gray contour
plots show the intensity over four decades. The insets show the
corresponding spectral A, k, features. Color scale in arbitrary units.

qualitatively similar to the BXP case. After propagation toward
the end of the Bessel zone, a dominant wing carrying an
outward-directed flux is obtained in the trailing or leading
part of the pulse depending on the peak velocity (superluminal
in the first case and subluminal in the second case).

B. Anomalous GVD case: O waves

Stationary CWPs in media with anomalous dispersion
typically feature elliptical spectral k  (2) profiles called O
waves [44,49]. Similar stationary CWPs are also obtained
in the case of normal dispersion [8] in region D in Fig. 1;
however, these profiles are either highly nonparaxial or are
almost identical to a single-branch X-wave profile if we remain
in a paraxial frame.

In this section we will study the O-wave case within the
paraxial approximation by considering the propagation in a
medium with anomalous GVD (kj < 0). As in the previous
section, we will consider the full dispersion relation in the
definition of the wave packet and an asymmetrical spectral
weight.

Figure 6 shows the transverse flux J, for this WP
propagating in water at central wavelength Ao = 1300 nm
and corresponding angle 6y = 0.005 rad, Gaussian spectral
weight (T, =40 fs), Gaussian spatial apodization (wgo =
0.6 mm), peak velocity [Fig. 6(a) V = 0.9995 V; and Fig. 6(b)
V =1.0005 Vg] greater and lower than Vi = 222930323
m/s, respectively. Although the near-field profile of the wave
packet under examination is definitely different from that of
the X-wave case, it still exhibits an almost identical flux profile
and we are still able to predict super- or subluminal velocity
by looking at the position of the inward-directed energy
wing.

V. LONGITUDINAL COMPONENT AND
ENERGY STREAM

Up to now, we considered only the transverse component
of the energy flux J, which coincides with the transverse
component of the Poynting vector and does not depend on
the velocity of the wave packet under examination. In this
section, we show that the longitudinal component of the energy
flux also constitutes an important source of information that
we exploit in two different forms: First, we consider the
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FIG. 7. (Color online) Longitudinal flux J; for a GP propagating
in different regimes. (a) Linear propagation with normal GVD.
(b) Nonlinear propagation (high intensity) with anomalous GVD
(Ao = 1300 nm in water). (c) Nonlinear propagation with anomalous
GVD at lower intensity with respect to case (b). The color scale
of J, indicates flux toward positive (negative) t values in red
(blue). The gray contour plots show intensity contours over two
decades.

longitudinal energy flux in itself, and second, we associate
it with the transverse component to obtain the direction of the
energy flux for general wave packets. To our knowledge, this
was attempted only once with the Poynting vector associated
with localized waves [41]. Here we consider the energy flux
in the frame moving at the velocity of the envelope peak of
specific WP to diagnose the energy redistribution occurring
within the WP.

A. Longitudinal component of the energy flux

In the frame moving at Vg = 1/k, the longitudinal flux
component J; is related to the chromatic dispersion of the
pulse, as indicated by Eq. (5). In both cases of normal and
anomalous GVD, a Gaussian pulse with an initial flat phase
develops during propagation a longitudinal flux component
distinguished by two side lobes in the leading and in the trailing
part of the pulse: the leading lobe is directed toward negative
times and the trailing lobe toward positive times [Fig. 7(a)].
This indicates that the pulse is broadening along the temporal
coordinate. In contrast, if the pulse has an initial negative
chirp and propagates in a normally dispersive medium, each
side lobe corresponds to a longitudinal flux with opposite sign,
indicating pulse compression during propagation, as expected
from the action of normal GVD.

The case of nonlinear propagation in a Kerr medium with
anomalous dispersion is particularly instructive. Although we
derived the energy flux from linear propagation equations
in Sec. II, the expression for J also holds for nonlinear
propagation and in the presence of losses, as we will illustrate
in Sec. VI. Self phase modulation induced by the optical
Kerr effect generates new frequencies in the regions of the
pulse with the strongest intensity gradients. In particular, a
focusing Kerr nonlinearity generates upshifted (downshifted)
frequencies with respect to the central frequency in the de-
creasing (increasing) part of the pulse. In conjunction with with
anomalous GVD, this effect is responsible for pulse shortening
during propagation. Figure 7(b) illustrates the longitudinal flux
obtained in this situation: Each lobe of J; exhibits an opposite
sign with respect to the linear propagation case. Figure 7(c)
depicts the longitudinal flux associated with the nonlinear
propagation of a GP with lower energy and pulse intensity
than that in Fig. 7(b). In this case, self phase modulation is
weaker and the new frequencies are not able to overcome
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FIG. 8. (Color online) (a) Linear scale of the intensity plot and
(b) longitudinal flux J; vs propagation distance z for a Gaussian pulse
with strong quadratic and cubic frequency chirp. For both figures, the
temporal axis refers to the local frame moving at V; = 1/k;. The
color scale of J; indicates flux toward positive (negative) T values in
red (blue).

linear dispersion over the whole pulse. Nonlinear effects thus
dominate in the central high-intensity core and the flux points
inward, thus leading to a local temporal compression, while
the surrounding low-intensity regions behave almost linearly
with an outward flux. This leads to the progressive distortion
of the pulse.

In analogy with the evolution of the temporally averaged
transverse flux depicted in Figs. 2(a)-2(c), the evolution of the
radially averaged longitudinal flux [J; may be regarded as the
propagation of a pulse inside an optical fiber.

Figures 8(a) and 8(b) show the intensity and the longitudinal
flux J; versus propagation distance z for the linear propagation
of a pulse with an initially Gaussian spectral distribution
and strong quadratic and cubic phase chirp. The dispersion
parameters correspond to propagation in water at a central
wavelength of 527 nm. In this simulation we considered that
only dispersive effects occur during propagation and neglected
diffraction. The intensity pattern depicts an intense temporal
peak whose velocity v varies during propagation, following
the relation 1/v = 1/ Vg + dt/dz. In the local frame moving
at Vg, the instantaneous velocity of this peak is given by
the first derivative of the (t, z) intensity distribution curve.
The curvature of this intensity distribution thus represents the
peak acceleration: in Fig. 8(a), the peak exhibits a constant
deceleration. The peak velocity changes from superluminal
for the first ~20 cm to subluminal afterward. This behavior is
governed by the cubic chirp, while the distance z at which the
peak travels at Vj; (i.e., the z position for which dt/dz = 0) is
determined by the quadratic chirp. Note that a cubic chirp of
opposite sign would lead to a constant acceleration, due to the
change of the curvature sign. The longitudinal component of
J shown in Fig. 8(b) illustrates the deceleration property: We
observe in correspondence of the main peak a net flux directed
toward negative (positive) times in the superluminal (sublumi-
nal) region. However, the overall pulse presents a broad series
of secondary intensity peaks associated with a flux of opposite
sign. This indicates, as expected, that the center of mass of the
entire pulse energy does not change during propagation in spite
of the peak deceleration. Furthermore, for large propagation
distances [rightmost part of Fig. 8(b)], the flux pattern becomes
similar to that obtained for a GP subject to normal GVD
[see for example Fig. 7(a)].
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FIG. 9. (Color online) Streamline plot of vector J for station-
ary envelope wave packets. (a, b) subluminal and superluminal
frequency-gap X waves, respectively, as in Fig. 5. (c) Subluminal
O wave as in Fig. 6(a). (d) Superluminal wave-number-gap X wave
with parameters like the ones of Fig. 5(b), but 7, = 60 fs and 6, =
0.005 rad. The contour plots show the intensity over five decades.

B. Streamline representation of the flux

The longitudinal component is also useful for envisioning
the direction of the energy density flux. In this context,
the choice of the reference system is important; that is, the
direction of the energy flux depends on the moving frame
chosen to represent this quantity. For stationary-envelope
WPs, a natural choice is the reference system moving at
the peak velocity of the pulse, as expressed in Egs. (17)
and (18). Figure 9 illustrates four different cases of CWPs
with stationary envelope. Figures 9(a), 9(b), and 9(c) show
the streamline plots of vector J for the previously considered
(Secs. IV A and IV B) subluminal and superluminal X waves
with a frequency gap (as in regions B* of Fig. 1) and
subluminal O wave (as in region D~ of Fig. 1), respectively.
Figure 9(d) shows the energy-flux streamlines in the cases of
a superluminal X wave with a wave number gap (region A
of Fig. 1). The most important feature is that the energy flows
along conical surfaces from the outer region toward the central
peak and then streams outward again to the surrounding region.
Moreover, along the temporal (longitudinal) coordinate, the
flow is directed toward negative (positive) times for subluminal
(superluminal) stationary conical wave packets. This result
is in keeping with the fact that the peak results from a
constructive interference supported by the surrounding energy
reservoir: Even if the longitudinal velocity of the envelope
peak V is superluminal (larger than V), the energy is actually
transported along z at velocity Vg = Vgcosf. As a last
remark, it is worth noticing that the condition divJ =0,
which characterizes stationarity of the intensity profile of the
envelope during its paraxial propagation along z, is satisfied by
applying Egs. (17) and (18) to any analytical solutions obtained
by Malaguti and Trillo. This result is remarkable since these
solutions are fully nonparaxial, whereas Eqs. (17) and (18)
are obtained in a paraxial framework. This is actually due to
the truncature of dispersive terms at second order for ki(Q) in
the Malaguti and Trillo solutions.
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We now give a geometrical interpretation of the the energy-
flux streamlines in different regimes of GVD, highlighting
uncovered links with the phase fronts.

By using a decomposition of the complex amplitude ¥ =
|W|exp(ig) into a real amplitude and phase and by means of
the local longitudinal coordinate transformation & = —V,,7,
where V,, = (laz|)~/?, the components [Eqs. (17) and (18)]
of the flux read

1
J. = Bwvma, £,2) (23)

sgn(az) 5 [3¢ Sgn(az)al}
_S) g2 | 20 g, o) 4 BN
5 W] o8 (r, €, z) o

The last term in Eq. (24) may be absorbed in the phase
by using ¢'(r, £, 2) = ¢(r, &, 2) + %g. The flux is then

expressed as the product of the intensity |¥|? by vector e; =
B~ (V. ¢, —sgn(az)d¢’/d&). Both the transverse and longi-
tudinal components are then proportional to the phase gradient
in the corresponding direction. Only in the case of an effective
anomalous dispersion (o < 0) is the flux vector propor-
tional to the phase gradient: (J, J:) = BV IPVY (r, €, 2),
where V denotes the gradient in the (x, y, &) space. In this
case, the vector (J, J¢) is orthogonal to the isocontour for
the phase ¢'(r, &, 7). This is shown, for example, in Fig. 10(d),
where we plot e; = J/|v/|* as a vector field and the phase ¢’
as a color plot [50] for a GP centered at 1y = 1300 nm in water
(anomalous GVD regime).

For ay > 0, vector e; represents the symmetric of the
normal to the phase front with respect to the axis £ = 0. This
is a geometric property that follows from the definition of the
flux. Consequently, the energy flux is such that phase fronts
parallel to the loci r = +£ are associated with an energy flux
parallel to the phase front. In the case of a GP, the possible
regimes are represented in Figs. 10(a) and 10(b), where e,
is plotted over cos ¢’ for different propagation distances z of
the same GP having zz # zgvp. Figure 10(a) refers to a short
propagation distance (z < zg, Zgyp): the iso-¢’ curves do not

Je = (24)

2 1 0 1 2
& (mm)

FIG. 10. (Color online) Vector e, superimposed to the plot of
cos ¢’ for different cases. GP in normal GVD regime with zz # zgvp
for short (a) and long (b) propagation distances. Note the differences
in axis limits. (c) Subluminal frequency-gap X-wave profile. (d) GP
in anomalous GVD regime.
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follow r = ££ and e; are neither orthogonal nor parallel to
the phase fronts, but the symmetric vectors with respect to
the axis £ = 0 are clearly orthogonal to phase fronts. Figure
10(b) refers to a longer propagation distance (z > zg, Zgvp):
since in this case the iso-phase curves asymptotically approach
r = x££ [within a second-order approximation of k(w)], the
vector field e; and thus the flux J are asymptotically parallel
to phase fronts along r = ££. This is also the case for the
X wave with a frequency gap and an asymmetric spectral
weight obtained from the analytical formula (24) of Ref. [8],
as shown in Fig. 10(c) (subluminal case): the phase fronts
align asymptotically along r = %£, even if in this region the
intensity is very low, and thus e; and the energy flux become
asymptotically parallel to phase fronts.

This geometrical construction of flux streamlines from the
phase fronts illustrates the link between the determination of
the phase and that of the energy density flux for an optical WP
propagating in a dispersive medium.

VI. NONLINEARITY AND ABSORPTION

In the case of nonlinear propagation, expressions (3) and
(5) of flux density determined in Sec. II remain valid. As an
example, we consider the nonlinear propagation of conical
wave packets such as those formed spontaneously during
filamentation in water, which is described by the nonlinear
envelope equation including nonlinear source terms for the
optical Kerr effect with instantaneous and delayed (Raman
effect) contributions, multiphoton absorption, and plasma
effects (absorption and defocusing) following ionization of
the medium [16,51]. In this case, Eq. (2) becomes

g
0z

+div) = —pRIEPK —oplE), (25)

where the terms on the right-hand side of Eq. (25) represent
the density of energy losses by multiphoton absorption and
plasma absorption, respectively (see Ref. [25] for details).
The parameters are the cross section 8X), where K denotes
the number of photons involved in the multiphoton process,
the cross section for inverse Bremsstrahlung o, and p denotes
the plasma density. Note that linear absorption can be treated
similarly (K = 1).

We therefore have an extension of the energy flux also in
the nonlinear case and in the presence of absorption. In this
case the continuity equation contains additional terms which
represent the amount of energy transferred from the optical
pulse to the medium.

Recently, nonlinear conical wave-packet profiles which
maintain an intensity-invariant shape in the presence of
nonlinear losses have been discovered [52,53]. Numerical
solutions called unbalanced nonlinear Bessel beams (UBBs)
and unbalanced nonlinear O waves (UBOs) have been found
for the monochromatic case and the polychromatic case in the
regime of anomalous GVD, respectively.

Following the procedure of Ref. [53], we numerically
evaluated the near-field profiles of UBBs and UBOs and the
associated energy flux.

Figure 11 shows the streamline representation of J for an
UBO. The parameters were chosen to represent dispersion and
nonlinear losses for water at 1y = 1300 nm. The energy flux
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FIG. 11. (Color online) Streamline plot of the energy flux J for
a nonlinear O wave (UBO) with stationary envelope propagating
at Vg = k(’)’l. The streamlines are superimposed to the intensity
distribution of the UBO plotted over four decades.

is directed toward the center of the pulse corresponding to the
peaks of intensity distribution and multiphoton absorption. The
central core, that is, the intense part of the wave, is therefore
continuously replenished by the conical nature of the pulse
and this permits the stationary behavior in spite of losses.
The energy flux carried by the conical tail actually exactly
compensates the amount of losses in the intense core.

VII. DISCUSSION AND CONCLUSIONS

Since there is a close relation between the energy flux and
the phase fronts, information on the energy flux constitutes
a powerful tool for predicting if and how energy will be
redistributed during propagation of the wave packet under
examination. We have seen that knowledge of the magnetic
field, which would be necessary to build the Poynting vector,
is not necessary with the expressions for the energy flux derived
in the present work. We emphasize here the approximations in
which this study is valid.

First, it relies on a paraxial approximation. This may
be overcome by means of an effective correction to the
longitudinal component of the main wave vector, as in
Eq. (16), which leads to similar types of expressions for the
components of the energy flux [Egs. (17) and (18)]. However,
in experimental situations it is not always clear which angle
should be considered as 6y. In the paraxial case we may reduce
to the assumption 8 = ky.

Second, it is based on a second-order expansion of k(w)
around wy. It is possible to include higher-orders terms.
Without going into the details, we give here the third-order
correction to the longitudinal component of the energy flux:

ikl (.0 . 0E*
Jo=20 (5*— ¢ )
2 at at

KU (L E 92EF 0EF OE
— & —=+E— - — . 26
+ 6 < 97?2 at? at 81) (26)

Other approximations are linked to the fact that we have
neglected high-order operators in the propagation equation,
such as the space-time focusing operator (which takes into
account the fact that for each frequency there is a different
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Rayleigh range) or self-steepening operator in the nonlinear
case. These operators would give corrections to the flux
expressions derived in this article, which can be obtained
perturbatively as far as space-time coupling is concerned.
The expressions obtained in the paraxial case represent a
good approximation for wave packets with sufficiently narrow
frequency bands; however, the corrections to the flux would
be relevant for highly nonparaxial wave packets, single-cycle
pulses or WPs with central frequency close to a zero in the
GVD dispersion curve.

It has been shown that an envelope equation corrected
with space-time focusing and self-steepening terms, that is,
the nonlinear envelope equation, still properly describes the
propagation of pulses at single-cycle durations [54]. The
expression for the flux we have derived does not account for
these terms and is therefore not expected to be accurate as
we approach the single-cycle limit. A first possibility to make
these expressions more accurate for few-cycle pulses is to
derive corrections due to the additional space-time focusing
term, in the linear case, by treating this term perturbatively as
for the derivation of the nonlinear envelope equation. However,
this procedure would yield expressions for the flux which are
dependent on the choice of the carrier frequency and thus of &,
whereas these quantities lose their significance for single-cycle
pulses or large bandwidths. A second possibility would be to
resort to unidirectional propagation equations such as those
proposed by Kolesik and Moloney [55], which consider the
propagation of the electric field for any pulse duration and
would yield expressions for the flux that are independent of
any reference frequency or wave number. The group velocity of
the pulse, however, enters the propagation equation expressed
in moving frame [56]. It is thus expected to enter the derived
expression for the flux as well as the dispersive properties of the
medium. Finally, an elegant possibility to obtain expressions
for the flux that are independent of reference frequencies or
wave number, valid for few-cycle pulses, and explicitly linked
to the Poynting vector and electromagnetic energy density
is indicated in Appendix B in the case of propagation in a
nondispersive medium. A similar derivation for a dispersive
medium goes beyond the scope of the present article but would
be the easiest way to generalize the notion of energy density
flux for few-cycle pulses and in particular to apply it to conical
waves carrying a large spectrum.

In conclusion, we defined a concept of energy density
flux which is slightly different from that of the Poynting
vector since it mainly relies on the propagation equation
for the complex amplitude of the wave packet and does not
require knowledge of the magnetic field. The energy flux
is intimately connected to the knowledge of amplitude and
phase of the electric field in the local reference frame (x, y, 7)
of the pulse under examination. In the case of pulses with
strong spatiotemporal coupling, near-field measurements may
be quite difficult to interpret [15]. The phase information,
if available, is in general even less clear. We have shown
that an analysis of optical pulses by means of the energy
density flux J is a valuable tool for extracting and representing
this phase information when dispersion of the medium can
be truncated at second order. In particular, we have deeply
analyzed the case of CWPs for stationary and nonstationary
pulses and we have extended the procedure to the nonlinear
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case. The energy density flux was shown to be a useful tool
for retrieving information about the nature of the pulse and
its evolution during propagation. The most appealing feature
of this tool is the possibility to adopt it in an experimental
framework, as introduced in [32], thanks to the development
of spatiotemporal intensity and phase retrieval techniques.
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APPENDIX A: LINK BETWEEN THE ENERGY DENSITY
FLUX AND THE POYNTING VECTOR

We start by considering the electric field as mainly directed
along the x axis and with zero y component (|E| >~ E,). From
Maxwell equations in the absence of free charges we have

divD = 0 (A1)

and in the Fourier space (only temporal transformation),
D(w) = epn*(w)E(w). Equation (A1) may be written as
IE,
n2
ax

It is possible now to treat this equation perturbatively,
considering E = & explikoz — iwgt]. We obtain, considering
only the dominant terms,

d .
+ 5 (PE) =0, (A2)

(A3)

1 3¢,
E = {SX;O;——ag }

ik() 0x

The magnetic field is obtained with a perturbative approach
starting from the Maxwell equation:

oB
— = —rotE. (A4)
ot
By also considering B = Bexp[ikoz — iwpt], we obtain
k ko &, | 0E, 1 0&
B:{O;—ng—i—g——L L } (A5)
wo wy 0t wy 07 wo Iy

The Poynting vector in the case of a rapidly oscillating field
is

1
(S) = (E x H) = —Re {€ x B*}. (A6)
210
With the preceding expressions,
1 j &,
5 = L Re {—’—5; } (A7)
20 wo ax
1 i, 0E”
Sy, = —R —& , A8
T 2u0 e{+600 T dy } (A9)
1 k iko . 3E | 0E”
S.=>—R {—°|8x|2 + e+ g, ] (A9
210 wo wp ot wo az

S is always given in W/m?. In the preceding equations
the electric field is given in V/m. However, in deriving
the evolution equation for the intensity from that for the
envelope [Eq. (2)], we assumed that fields were in (W/m?)!/2,
If we consider such a change of units in these equations, by
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mean of a factor €ycng, the preceding equations become

TS
S, =Rel——&* , (A10)

ko 0x

i g
S, =Re {+—&, , All
’ e{+k0 oy } (1D

i EF i L a&*

S, =Re{|& P+ —&E—— + —E——1L. Al2
¢ e{l | + (o)) Jat ko 0z } ( )

These equations show that the transverse components of the
energy-flux vector J, defined starting from the paraxial prop-
agation equation, coincide with the transverse components of
the Poynting vector S. The longitudinal components are also
related and the link is obtained by considering the continuity
equation which produced the definition of J, derived from
the propagation equation, and the continuity equation of the
Poynting vector. These two equations read as

AE|? ~ 9J;
= —d = —V - —,
3z vy T
3 , 3.
a(we + wy) =—divS = -V S, — 8;’

where w, and w,, represent electric and magnetic energy den-
sity, respectively. Since J; = S, within the approximations
involved, we thus identify

aJ; 0

= — Al3
ot 0z ( )

d
(S, — & + 7 (We + wp).

APPENDIX B: ENERGY FLUX WITHOUT
ENVELOPE APPROXIMATION

We have emphasized that the validity range of the expres-
sions for the energy density flux derived in this work mainly
arise from the envelope approximation. We indicate here a
possible route to generalize the expressions for the energy
density flux to the case of few-cycle pulses propagating in a
nondispersive medium. We link the generalized flux with the
Poynting vector.

A. Potential function

Green and Wolf have shown that any electromagnetic field
may be rigorously derived from a single, generally complex,
scalar wave function V (r, ¢) [33]. Under the gauge condition
V - A = 0, where A denotes the usual vector potential. The real
and imaginary parts of the scalar complex function V simply
represent the two components of A that are orthogonal to the
wave vector. The function V allows a simple derivation of the
momentum density g(r, ¢) and the energy density w(r, t) of
the field. In a homogeneous isotropic medium, these quantities
were shown to be represented by expressions analogous to the
formulas for the probability current and the probability density
in quantum mechanics:

e 19V av*
= Olvy.vyr g 228 : Bl
Y=3 [ + c? 3t ot B
e [V %
S=cg=-21" vy 4+ Zvyr|. B2
€= 73 [ Py } (B2)
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These quantities satisfy the usual conservation law,

ow

—=-V_.§, B3
o7 (B3)

and S is the standard Poynting vector.

B. Generalized flux for single-cycle pulses

Equation (B3) can be rewritten in a form similar to that
obtained from a unidirectional propagation equation where the
evolution variable is z and time ¢ plays the role of a longitudinal
coordinate:

as, oJw

— 4+ —=-V_,-S,. B4

9z ot o B
By a change of reference frame & =z, t =t — z/c, the
derivatives are transformed as d/dr = d/dt and 9/dz =
d/0& — (1/c)d/dt. Equation (B4) becomes

aS;

9§
This is the generalization of the energy-conservation equation,
without envelope approximation, which also establishes the
link with the usual Poynting vector. The left-hand side
describes the evolution of the longitudinal component of the
Poynting vector S, with respect to the evolution variable £;
it may be regarded as the energy density in the (x, y, 7)
space since it represents the intensity of the optical field. The
right-hand side is the divergence (V- v=V, - v, + dv,/97)
of the flux vector with components (S, , w — S;/c) in the
perpendicular and longitudinal 7 directions, respectively.
The longitudinal flux component is proportional to the dif-
ference between the usual density of electromagnetic energy
w and the longitudinal component of the Poynting vector. The
transverse component of the flux is the same as that of the
Poynting vector S, whether the envelope approximation is
made or not. The flux components do not depend on the choice
of a carrier frequency or wave number. These expressions were
obtained in a medium without dispersion and would require
to be further generalized in dispersive media. Although this
full generalization is beyond the scope of the article, one can
note that Eq. (BYS) is similar to Eq. (2), which was derived
in a dispersive medium under the envelope approximation.
The generalized flux is expected to depend on the dispersive
properties of the medium since the electromagnetic energy
w depends on the dielectric permittivity. We finally note
that the fact that S, and w — §;/c can be interpreted as an
energy density in the (x, y, t) space and a longitudinal flux
component, respectively, is not obvious; thus, we show in the
next section that these expressions allow us to retrieve the flux
expressions obtained under the envelope approximation.

9
= V1S~ o-(w=5/0). (BS)

C. Link with the envelope formulation

In order to show the connection with the envelope formu-
lation, we assume that the field, and hence the potential V,
can be expressed as V = U expl[i(¢ — wot + koz)], where wy
and k are the frequency and wave number of the carrier wave,
U is a real envelope, and ¢ the phase of the potential V. The
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energy density and energy-flux components then read

SZ:_E_()(ZJV*@_V 8_VE)V*>
2 at 0z ot 0z
:60{U2|:wok0—%—¢2—¢z)— 0(2)_?
+w02—ﬂ - %%} (B6)
S.=-3 (aavt*vlv + BB—YVLV*>
ZEO[UZ(CUO_?)—?)VM—B&—[ZVLU], (B7)

Sje= Vvvv*+avav*
w— c=— . —
z ) s 1 8%' BE

_“ 2, (VY
=3 {(VLU) +<8$>

2
LU [(sz + (%) } } . (B8)
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The preceding equations are still exact. (No envelope approxi-
mation was made.) In the envelope approximation, some terms
in the preceding equations can be neglected. For example,
(3, U)(0,U) <« wokoU?. The energy density and flux then read

S. ~ eowokoU?, (B9)
S ~ ewoU*(V 1), (B10)

d
a(w —8)KV,. -5, (B11)

By introducing these expressions in Eq. (B5), we obtain

d
k0£U2 ==V, - [UAV.i9)] (B12)
Since E = —0A/0¢, in the envelope approximation, & =

iwpA. The complex potential V just contains the components
of the vector potential A; hence, U is proportional to £. The
conservation equation [Eq. (B12)] then becomes similar to
Egs. (2) and (6) in the limit of a nondispersive medium. The
expressions we have obtained (and the associated geometrical
properties) are therefore valid in the limit of the envelope
approximation.
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