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Stability criterion for Gaussian pulse propagation through negative index materials
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We analyze the dynamics of propagation of a Gaussian light pulse through a medium having a negative index
of refraction employing the recently reported projection operator technique. The governing modified nonlinear
Schrödinger equation, obtained by taking into account the Drude dispersive model, is expressed in terms of
the parameters of Gaussian pulse, called collective variables, such as width, amplitude, chirp, and phase. This
approach yields a system of ordinary differential equations for the evolution of all the pulse parameters. We
demonstrate the dependence of stability of the fixed-point solutions of these ordinary differential equations on
the linear and nonlinear dispersion parameters. In addition, we validate the analytical approach numerically
utilizing the method of split-step Fourier transform.
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I. INTRODUCTION

The present-day research fraternity has been witnessing
a great surge of interest over the avenue of negative index
materials (NIMs) due to their bizarre characteristics and
soaring prospects for the potential applications for the future
[1]. While the concept of this much celebrated avenue was
hypothesized by Veselago much earlier in the 1960s [2], it was
the experimental realization of the macroscopic demonstration
of NIMs in the early 2000s which stirred the tremendous
interest in this field [3–5]. These NIMs, which are still in their
infancy, exhibit a variety of enthralling effects such as reversal
of Snell’s law, reversed Cerenkov radiation and Doppler
effect, subdiffraction imaging, photon tunneling, backward
wave antennas, phase combination, and electrically small
resonators, and they are anticipated to fulfill a multitude of
other requirements in complex environments in the imminent
generation of researchers. Today’s NIM literature is well
alive with wide coverage of topics ranging from experimental
design of suitable metamaterials to achieve negative index of
refraction to their amazing applications encompassing perfect
focusing, invisibility cloaking, and so on.

Theoretical curiosity on wave propagation through such
NIMs is also recently emerging as another challenging topic
of this area. As of now, linear propagation in NIMs has been
extensively analyzed [4,6,7] with the derivation of appropriate
partial differential equations and development of transfer
functions [8], arrival of ab initio calculations of the nonlinear
dielectric and magnetic properties of split-ring resonator lattice
structures [9], and so on. The possibility of NIMs possessing
a nonlinear electromagnetic response on the level of structural
elements has further elevated the study of NIMs into the
nonlinear regime.

As far as ordinary materials are considered, the nonlinear
interaction of ultrashort pulses has been widely studied in the
framework of the nonlinear Schrödinger equation (NLSE).
The evolution of an envelope function described by the
NLSE completely relies on the slowly varying envelope
approximation (SVEA) over an optical cycle. In fact, quite
a few of the recent studies have attempted to derive various
accurate yet solvable equations that extend beyond the much
celebrated SVEA. Relaxing the SVEA, Brabec and Krausz
had introduced the nonlinear envelope equation describing the

wave packet envelope down to pulse durations as short as
one [10], which has paved the way to several other versions,
including the first-order propagation equation [11], the reduced
Maxwell’s equation [12], and so on. Notably few practical
versions of the derivation of pulse propagation equations
could also be seen in the recent literature like the early
projection operator approach [13,14] leading to unidirectional
pulse propagation equation, the directional field approach [15],
and the factorization approach [16–18]. Very recently, Kinsler
had reexpressed the Maxwell’s equation into a unidirectional
first-order wave equation for media with both electric and
magnetic responses which has much futuristic relevance to the
field of NIMs [19].

Of late, exploring the feature of propagation of nonlinear
pulse through NIMs has become feasible with the arrival of
quite a few but accurate propagating equations governing
the evolution of ultrashort pulses in NIMs. A system of
coupled nonlinear Schrödinger equations for the envelopes
of the propagating electric and magnetic fields in NIM
have been derived by Lazarides and Tsironis [20] in which
they have showed that the proposed system is equivalent to
the well-known Manakov model which admits bright and
dark soliton solutions. A generalized nonlinear Schrödinger
equation has been introduced by Scalora et al. [21] which
paves the way to realize a wide class of solitary waves. Out
of the few other models that have been derived to describe
second- and third-order nonlinear optical phenomena through
NIMs [22–27], the system of negative refractive index media
presented with the Drude dispersive model [26,27] possesses
a vivid combination of a second-order nonlinear temporal
dispersion and a higher order linear dispersion originating
out of dispersive permeability leading to a modified nonlinear
Schrödinger equation (MNLSE). Very recently we have ana-
lyzed the existence of small-amplitude solitons by establishing
an interesting connection between the Korteweg-de Vries
equation and MNLSE, through the reductive perturbation
process, and we have examined the influence of nonlinear
dispersion terms over the modulation instability windows
[28]. Furthermore, through the study of electromagnetic wave
propagation in NIMs, the role of the status of a Gaussian
beam in beam self-focusing and defocusing has been identified
recently [29].
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At this juncture, by realizing the growing need for analytical
techniques to analyze pulse propagation through NIMs, we
have tried to explore the aspect of propagation of a Gaussian
pulse in NIM through a novel projection operator technique
(POT) [30,31]. The usage of POT in this contribution exposes a
different perspective of studying the various parameters, such
as amplitude, chirp, width, and so on, associated with the
Gaussian pulse as it propagates through NIMs. We further
utilize the analysis of fixed points to study the stability of
propagation of a Gaussian pulse through NIMs.

In the following discussion, we present the description of
the governing equation under consideration for NIMs in Sec. II.
Then in Sec. II A, we start with a short introduction to the
method of projection operator and apply it to the system of
NIM to arrive at the system of ordinary differential equations
(ODEs). Later on in Sec. II B, we deal with the consideration of
the stability of the fixed-point solutions of the ODEs governing
the evolution of pulse parameters. In Sec. III, we present the
results obtained by integrating numerically the POT ODEs and
by direct numerical simulation of the equation through a split-
step Fourier transform method. Finally we conclude in Sec. IV.

II. THEORETICAL FORMULATION OF THE PROBLEM

The governing equation for the propagation of an ultrashort
pulse in negative index material with Kerr polarization is given
by the following modified nonlinear Schrödinger equation:
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where E is the amplitude of the pulse, Z and T are
the propagation distance and time in co-moving reference,
parameter Vg is the group velocity of the pulse, βn is the
nth-order dispersion parameter, γn is the nth-order nonlinear
parameter, and k0 is the wave number in the medium at the
carrier frequency ω0. Note that Eq. (1) has been derived by
carrying out the approximations as in Refs. [26,27]. That
is, the envelope and carrier part of the field are assumed to
vary in the form of E(Z, T ) exp[i(k0Z − ω0T )], where k0 =
n(ω0)ω0/c, and by the introduction of co-moving variables.
Furthermore, by supposing the propagation of pulses at
least a few tens of wave cycles in duration with all higher
order derivatives giving negligible contributions, the first-order
non-SVEA corrections are approximated to ∂2E

∂Z2 ≈ iγ0
∂(|E|2E)

∂Z

and ∂2E
∂T ∂Z

≈ iγ0
∂(|E|2E)

∂T
. We then introduce the normalized

variables t = T/T0, z = Z/ld , and U = E/E0 retaining the
linear and nonlinear dispersion coefficients up to second
order, with ld = T 2

0 /β2, lnl = 1/γ0|E0|2, lsnl = 1/γ0|E0|4ς ,
and lss = T0/γ0|E0|2Sa as the dispersion, nonlinear, saturation
nonlinear, and self-steepening lengths, respectively. After
doing so, Eq. (1) transforms into the following MNLSE:
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FIG. 1. Nonlinear dispersive parameters used for depicting pulse
parameter dynamics through NIM at ωpe/ωpm = 0.8.

where α = sgn(β2) = ±1 represent the normal and anomalous
group velocity dispersion (GVD) and nonlinear coefficient
κ > 0 and κ < 0, which represent the focusing and defocusing
cases, and σ1 = lnl/ lss1 and σ2 = lnl/ lss2 stand for the normal-
ized first- and second-order nonlinear dispersion coefficients,
respectively. To categorize the MNLSE to depict the explicit
behavior of negative refraction, it is further correlated with
the Drude model [26] delineating the frequency dispersion
with the permittivity and permeability of the form ε(ω) =
ε0(1 − ωpe

2

ω(ω+iγe) ), µ(ω) = µ0(1 − ωpm
2

ω(ω+iγm) ), where ωpe and
ωpm are the electric and magnetic plasma frequencies and
γe and γm are the electric and magnetic loss terms, respec-
tively. Accordingly the nonlinear dispersion coefficients take

up the form of σ1 = 1
ωt

(1 + ω2
pmω2

pe−ω4
0

εµ ω4
0

− ω2
pm+ω2

0

ω2
pm−ω2

0
) and σ2 =

1
ω2t2

ω2
0

ω2
0−ω2

pm

− 1
4εµ

[1 + 3ω2
pmω2

pe

ω4
0

+ 1
4ε2µ2 (1 − ω2

pmω2
pe

ω4
0

)2]. Note that

these parameters are chosen depending on which ratio of
ωpm/ωpe is chosen to determine the engineered size of the
constituents of NIM structures, the split-ring resonators, and
so on. Figure 1 shows the variation of nonlinear dispersive
parameters plotted against normalized frequency at the value
of ωpm/ωpe = 0.8.

A. Application of POT to NIMs

In a previous study, Tchofo Dinda et al. [30] proposed
a collective variable (CV) technique for obtaining the pulse
propagation dynamics through optical fiber. The CV treatment
reduces the dynamics of the pulse field, which involves an
infinite number of degrees of freedom, to the dynamics of
a simple mechanical system having only a few degrees of
freedom, each called a collective variable, which could be
then associated with a relevant physical parameter of the pulse.
The achievement of this approach results in the possibility of
transforming the partial differential equation for the original
field into a set of ordinary differential equations for the
collective variables. We have tried to view and analyze the
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system of nonlinear negative index materials in the light of
the generalized POT proposed very recently by Nakkeeran
and Wai [31] for the nonlinear Schrödinger equation, which
was proved to be equivalent to the bare approximation of
collective variable theory proposed by Tchofo Dinda et al. [30]
or to the Lagrangian variational method (LVM) [32] under
the appropriate choice of the phase constant in the projection
operator. The POT treatment starts with the introduction of new
variables which could be associated with nonlinear localized
modes, the amplitude, width, chirp, and phase of the pulse
for which the equations of motion can be constructed. The
actual propagating amplitude is decomposed in the following
manner:

U = F [x1, x2, x3 . . . . . . xk, t], (3)

where xk are the various parameters of the propagating wave
functionally depending on the propagation coordinate z. Just
replacing U with any appropriate form of the functions F [xk, t]
introduces extra degrees of freedom, thereby enlarging the
phase space of the system. There arises the need for con-
straining the system of new variables to retain the system in its
original phase space. Eventually the constraints imposed allow
the system to be projected only in the particular direction, and
POT gets its name from this particular notion.

Application of the POT to the MNLSE governing the
propagation of pulses in negative index materials with Kerr-
type polarization starts with the introduction of the generalized
projection operator

Pk = eiθF ∗
xk, (4)

where θ is an arbitrary phase constant. To obtain the CV’s
equations of motion, we project Eq. (2) in the direction of Pk .
An appropriate ansatz function F (Xk(z), t) is chosen with Xk

being the pulse parameters and substituted for U in Eq. (2),
and then the resulting equation is multiplied with the projection
operator Pk , integrated then with respect to t and the real part
extracted.

∫ ∞
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∗
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Regarding the choice of ansatz, one should note the point that
hyperbolic secant- or raised cosine-like functions result in a
different set of dynamical equations from the LVM and bare
approximation of CV technique. As a result, this circumstance
demands investigations both from LVM and CV theory for
the complete study of dynamics of NLSE. But, fortunately, it
was proved that Gaussian ansatz has an inherent symmetric
property between the pulse parameters which will result
in the same set of the dynamical equations derived either from
the LVM or from the bare approximation (BA) of the CV
theory [33]. Moreover, the analytical tractability of the ansatz
simplifies the study of dynamics of NLSE. Keeping in mind
the stated uniqueness of the Gaussian ansatz, we have chosen

F [Xk(z), t] as the Gaussian function of various measurable
pulse parameters, such as amplitude, pulse width, frequency,
temporal position, chirp, and phase, and have fed it to the prop-
agating amplitude E to obtain the spatial evolution of these
fundamental parameters. The Gaussian function is of the form

F (Xk(z), t) = X1(z) exp{−[t − X2(z)]2X3(z)2

+ iX4(z)[t − X2(z)]2 + iX5(z)[t − X2(z)]

+ iX6(z)}, (6)

where X1(z), X2(z), X3(z), X4(z), X5(z), and X6(z) represent
the amplitude, temporal position, inverse width, chirp,
frequency, and phase, respectively, of the propagating wave.
The resultant ODEs for the various pulse parameters are
termed the CV equations of motions which are as follows:
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The numerical studies of the evolution of the pulse parameters
along the distance of propagation are performed by integrating
the pulse dynamical equations for the Gaussian ansatz adopting
the fourth-order Runge-Kutta scheme. The projection operator
method is validated by performing a direct numerical
simulation of MNLSE using the split-step Fourier transform
method.

B. Fixed points and their stability

Furthermore, we aim to study the existence of stable and
unstable solutions in the parameter space of MNLSE. The
stable fixed points of a system correspond to stable solutions
of the system. Hence, we begin by arriving at the fixed points of
the system by imposing the left-hand side of the CV equations
to be zero (i.e., X′

i = 0) [34]. The stability of the fixed points
can be determined by the analysis of the eigenvalues of the
Jacobian matrix Mij = ∂Xi/∂Xj . To start with this analysis,
we set X1 = Am + �Am, X3 = Winv + �Winv, X4 = Ch +
�Ch, and X5 = F r + �F r, with Am, Winv, Ch, and F r
denoting the amplitude, inverse width, chirp, and frequency,
respectively, and the corresponding � quantities denoting
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the small perturbations added to them. Then we linearize
the CV equations around the steady-state solutions (Am,
Winv, Ch, and F r) to derive the evolution equations for the
small deviations �Am,�Winv,�Ch, and �F r which are as
follows:

�Am′ = M11Am + M12Winv + M13Ch + M14F r,

�W ′
inv = M21Am + M22Winv + M23Ch + M24F r,

(13)
�Ch′ = M31Am + M32Winv + M33Ch + M34F r,

�F r′ = M41Am + M42Winv + M43Ch + M44F r,

where the matrix coefficients are given as

M11 = 3Ch κ σ2 Am2

4
√

2
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4
√
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4
Ch (5

√
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4
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√
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[−21 σ2 W 4
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2

× −2Am κ W 2
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2
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2 κ Am2 + 8 W 2
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2

+ 4 Ch α,
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invκ (σ1 − 2 F r σ2)√

2
,

M41 = 2
√

2Am Ch κ (σ1 − 2 F r σ2 ) ,

M42 = 0,

M43 =
√

2 Am2κ (σ1 − 2 F r σ2) ,

M44 = −2
√

2 Am2 Ch κ σ2. (14)

Now one can get the stability criterion as the real part of at least
one of the eigenvalues is positive; then the corresponding fixed
point is unstable. Thus, to have a stable fixed point, and hence
a stable solution, the real parts of all the eigenvalues of the
matrix Mij have to be negative. Now we determine the stability
of solutions by calculating the characteristic polynomial of the

TABLE I. Stability criteria.

S.No. σ1 σ2 α κ Fixed point

i. +ve −ve −ve −ve Stable
ii. −ve −ve −ve −ve Stable
iii. −ve +ve −ve +ve Stable
iv. ±ve ±ve +ve ±ve Unstable

matrix and by checking the eigenvalues analytically, which is
complex because the phase space involved is four dimensional.
So we substitute the realistic values for the NIM case obtained
from the parameter plots of Fig. 1 and check for stable fixed
points.

III. RESULTS AND DISCUSSION

As we analyze the stability of the propagation of a Gaussian
pulse through NIM by explicitly utilizing the values of σ1

and σ2 from Fig. 1, we see that there exist three different
combinations of signs of σ1 and σ2: (i) σ1 > 0, σ2 < 0, (ii)
σ1 < 0, σ2 < 0, and σ1 < 0, σ2 > 0. The fixed points at these
conditions are marked in Fig. 1. We observe that the real part
of all the eigenvalues of the matrix Mij tend to be negative
only at the conditions described in Table I. As a result, we
notice that the sign of the first-order nonlinear dispersion term
σ1 has no contribution to the stability of the fixed points. It
is σ2 > (<0), κ > 0 (<0) and α > 0 (<0) which determines
the stability of fixed points. By analyzing the characteristic
polynomial for sufficient proof of these conditions, we identify
that the real part of the eigenvalues tends to be negative only
when “α − κσ2” tends to be negative. By interpreting in the
other sense, we could say that it is the combination of second-
order nonlinear dispersion with nonlinearity that balances the
linear dispersion resulting in stability of fixed points leading
to smoothly evolving Gaussian pulses.

For demonstration of a typical case, we choose Am =
0.1153, Winv = 1/47.0950, and Ch = 0.01 and find that
for the NIM case, with σ1 = 0.1408 and σ2 = −0.0534 at
n = −2.2286, there is a stable fixed point at the defocusing
case (κ = −1) of anomalous dispersion (α = −1) with all
the eigenvalues of the matrix becoming negative. This stable
fixed point corresponds to a smoothly evolving Gaussian pulse
as depicted in Fig. 2. As we change conditions from the
anomalous to normal dispersion regime for the focusing or
defocusing case of nonlinearity for the same NIM parameters,
we observe that the real parts of all the eigenvalues are no
more negative and, thus, that the unstable fixed point results
in unstable propagation which is depicted in Fig. 3. Note that
we have chosen the nonlinear dispersion parameter values σ1

and σ2 from the NIM region of Fig. 1. While the solid line of
Fig. 2(a) and Fig. 3(a) shows the variation of significant pulse
parameters (amplitude, width, and chirp) with propagation
distance obtained from the POT, the circled line is plotted from
the direct numerical solution of MNLSE using the split-step
Fourier transform method at conditions of stable and unstable
fixed points, respectively. These plots show good agreement
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FIG. 2. Propagation of a smoothly evolving Gaussian pulse
through NIM at a stable fixed point. (a) Variation of pulse parameters
with respect to propagation distance with the solid line denoting
that plotted by the projection operator method and the circled
line corresponding to that plotted by the direct split-step Fourier
transform method. (b) Intensity of a smoothly evolving Gaussian
pulse propagating through NIM.

between analytical (POT) and numerical techniques. Unlike
the stable propagation case, there is a dramatic variation of
pulse parameters with propagation distance in the case of
unstable propagation resulting from an unstable fixed point.
This study of fixed points puts forth the fact which could
be well interpreted as NIM facilitates the propagation of a
smoothly evolving Gaussian pulse in the anomalous regime,
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FIG. 3. Propagation of an unstable Gaussian pulse through NIM
at an unstable fixed point. (a) Variation of pulse parameters with
respect to propagation distance with the solid line denoting that
plotted by the projection operator method and the circled line
corresponding to that plotted by the direct split-step Fourier transform
method. (b) Intensity of unstable Gaussian pulse propagating through
NIM.

only for positive (negative) second-order nonlinear dispersion
in the focusing (defocusing) case of nonlinearity. For the sake
of completeness, one can find from Ref. [16], in a positive
index material, σ2 is always positive and hence the criterion
(iii) holds true. Considering a positive index material, a stable
fixed point is seen at the parameter value σ1 = 0.1712 and σ2 =
0.0531 with n = +0.7927 in the focusing case of (κ = 1) of
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FIG. 4. Temporal position plotted as a function of propagation
distance for NIM with various values of σ1 and σ2 at ωpm/ωpe = 0.8.

anomalous dispersion (α = −1). Furthermore, while noticing
the variation of temporal position with propagation distance,
we observe a distinct feature. In the NIM regime, we notice
that the focusing case puts forth a positive shift of the center
of the pulse and that the defocusing case shifts the center of
the pulse downward at positive values of σ1. This criterion is
exactly reversed at negative values of σ1, with the focusing
case bringing the downward shift and the defocusing case
producing an upward shift. These two facts could be seen
from Figs. 4(a) and 4(b), respectively. Here again the solid
line corresponds to that obtained from POT and the starred
line from direct numerical simulation.

IV. CONCLUSION

We have presented the investigation of propagation of
a Gaussian pulse through negative index material using a
theoretical technique of the projection operator, and we
have validated the results numerically through the split-step
Fourier transform method. The role of second-order nonlinear
dispersion in the status of the stability of Gaussian pulse in the
various categories of focusing or defocusing cases of normal
or anomalous regimes is studied through fixed-point analysis,
and it is identified that it is the combination of second-order
nonlinear dispersion and nonlinearity that balances the linear
dispersion to result in stability.
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