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Inhibition of light tunneling for multichannel excitations in
longitudinally modulated waveguide arrays
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We consider the evolution of multichannel excitations in longitudinally modulated waveguide arrays where
the refractive index either oscillates out-of-phase in all neighboring waveguides or when it is modulated in phase
in several central waveguides surrounded by out-of-phase oscillating neighbors. Both types of modulations allow
resonant inhibition of light tunneling, but only the modulation of the latter type conserves the internal structure of
multichannel excitations. We show that parameter regions where light tunneling inhibition is possible depend on
the symmetry and structure of multichannel excitations. Antisymmetric multichannel excitations are more robust
than their symmetric counterparts and experience nonlinearity-induced delocalization at higher amplitudes.
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Optical structures with periodic transverse modulation of
the refractive index provide unique opportunities for precise
control of the propagation dynamics of light, allowing, for
example, the engineering of diffraction [1,2]. Biperiodic
modulations along both transversal and longitudinal directions
open new routes for diffraction management and make possible
a variety of new phenomena including the formation of
diffraction-managed solitons [3,4], dragging of laser beams
[5,6], periodic shape transformations or Rabi oscillations [7,8],
and parametric amplification of soliton swinging [9], just
to mention a few. One of the most promising features of
longitudinally modulated waveguide arrays is the possibility of
discrete diffraction suppression (or light tunneling inhibition),
even in the linear regime. Such suppression is a resonant effect,
occurring only for a specific set of modulation amplitudes
and frequencies. Diffraction suppression was demonstrated in
periodically curved arrays [10–15], in arrays with oscillating
widths of channels [16], and in lattices with a longitudinally
oscillating refractive index [14,17–21]. Most of the effects
mentioned above were demonstrated for the simplest single-
site excitations or for broad nodeless beams.

The specific features of tunneling inhibition in linear and
weakly nonlinear regimes for higher-order complex modes
incorporating multiple bright spots were not studied yet. The
stability of higher-order modes was investigated only in a
strongly nonlinear regime when localization occurs due to the
solitonic effect (i.e., when input amplitude is already suffi-
ciently high for the formation of localized states even without
the longitudinal modulation of system parameters) in deeply
modulated lattices with defocusing nonlinearities [22] and in
periodically bending waveguide arrays [23]. A detailed analy-
sis of tunneling inhibition for multichannel excitation will be
especially interesting in structures where diffraction is not fully
suppressed [14] (e.g., in arrays with oscillating widths of chan-
nels or in lattices with a longitudinally oscillating refractive
index).

In this work we show the possibility of tunneling inhi-
bition for higher-order excitations in waveguide arrays with
longitudinal refractive index modulations. We put forward a

type of refractive index modulation that allows the inhibition
of tunneling and simultaneously preserves the internal mode
structure. The dependence of parameter regions where light
tunneling inhibition is possible on the symmetry and structure
of multichannel excitations is also discussed.

For analysis we use the full continuous model since the
simplified discrete model allows only a qualitative description
of the phenomenon. In particular, in the frames of the latter
model it is hardly possible to take into account mode-width
oscillations arising due to the longitudinal refractive index
modulation as well as radiative losses. When the refractive
index modulation depth increases such oscillations become
considerable and may substantially affect tunneling inhibition
dynamics and the corresponding resonant frequencies. Our
model is based on the nonlinear Schrödinger equation for the
dimensionless field amplitude q, governing the propagation of
the light beam along the ξ axis of the waveguide array with a
longitudinally modulated refractive index

i
∂q

∂ξ
= −1

2

∂2q

∂η2
− pR(η, ξ )q − |q|2 q. (1)

Here, η and ξ are the normalized transverse and lon-
gitudinal coordinates, while p stands for the refractive
index contrast of the individual waveguide. The refrac-
tive index profile of the lattice is given by R(η, ξ ) =∑+∞

m=−∞ [1 + F (m)µ sin(�ξ )]G[η − (m + 1/2)ws], where ws

is the separation between waveguides, µ is the longitudi-
nal modulation amplitude, � is the modulation frequency,
the function G(η) = exp(−η6/w6

η) describes the profile of
individual waveguides with widths wη, while the function
F (m) determines the type of refractive index modulation.
Qualitatively similar results can be obtained also for other
waveguide shapes.

Further, we consider two types of the longitudinal refractive
index modulation (see Fig. 1). In the first case (termed
“out-of-phase” modulation) the refractive index oscillates
out-of-phase in all waveguides of the array that corresponds to
F (m) = (−1)m [see Fig. 1(b)]. Such modulation, as proposed
in Ref. [16], was used before to demonstrate the inhibition of
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FIG. 1. (Color online) (a) Unmodulated, (b) “out-of-phase” mod-
ulated, (c) and “in-phase” modulated waveguide arrays.

light tunneling for single-channel excitations experimentally
[19]. In the second case (further called “in-phase” modulation)
the refractive index oscillates in-phase in the selected group
of several excited waveguides, while in all other waveguides
surrounding the selected group it oscillates out-of-phase.
For instance, for the simplest two-channel excitation in the
form of symmetric or antisymmetric two-hump modes, the
refractive index oscillates in-phase in two central channels
F (m) = (−1)m+1 for m < 0, and F (m) = (−1)m for m � 0
[see Fig. 1(c)]. In this work we focus on the investigation of
tunneling inhibition for multichannel excitations and consider
the input conditions of the form q|ξ=0 = Aw(η), where A is the
input amplitude, while w(η) represents the profiles of various
linear guided modes of a group of several isolated single-
mode waveguides [thus, in the simplest case of two-channel
excitations we use as an input symmetric and antisymmetric
modes of the two guides depicted in Fig. 2(d)]. We further
set wη = 0.3, ws = 1.8, and p = 8.7. To characterize the
efficiency of tunneling inhibition we introduce a distance-
averaged power fraction trapped in several central excited
channels. For two-channel excitations the distance-averaged
power fraction is given by

Um =L−1
∫ L

0
dξ

∫ ws

−ws

|q(η, ξ )|2 dη

/∫ ws

−ws

|q(η, 0)|2 dη,

(2)

where L is the propagation distance. We also monitored the
distance-averaged power fraction trapped in each of the excited
waveguides.

First, we demonstrate that light tunneling inhibition is
possible for multichannel excitations even in the linear regime
for both “in-phase” and “out-of-phase” types of longitudinal
modulation. To do so we calculated the distance-averaged
power fraction Um as a function of the modulation frequency
�. It is instructive to normalize the modulation frequency
to the beating frequency of the unmodulated linear coupler
�b = 2π/Tb, where Tb is a beating period. For our set of
parameters one has Tb = 52.8. In all cases considered the
propagation distance was L = 4Tb.

Figures 2(a) and 2(b) show the resonance curves Um(�)
for the antisymmetric two-channel excitation [curve “a” in
Fig. 2(d)] in “out-of-phase” and “in-phase” modulated waveg-
uide arrays. One can see that the inhibition of light tunneling
takes place for both types of modulation for the specific
resonant frequencies, but resonances are much narrower in
the case of “out-of-phase” modulation. This indicates that

FIG. 2. (Color online) Theoretically calculated Um value in
both central waveguides versus �/�b at µ = 0.2 and A = 0.01
for antisymmetric mode in (a) “out-of-phase” modulated and
(b) “in-phase” modulated waveguide arrays. (c) Um versus �/�b

in right (curve 1) and left (curve 2) waveguides for the antisymmetric
mode in an “out-of-phase” modulated array at µ = 0.2 and A =
0.01. Dashed lines in (a)–(c) indicate Um = 1 level. (d) Profiles of
symmetric and antisymmetric modes of two waveguides.

“in-phase” modulation is more favorable for multichannel
excitations since it allows the inhibition of tunneling within
the broader range of modulation frequencies. The resonance
frequencies are practically the same for both types of mod-
ulations. However, in the case of “in-phase” modulation the
distance-averaged power fractions trapped in each of the two
waveguides and in both excited waveguides exactly coincide,
which indicates the absence of an energy exchange between
the two excited central waveguides. In contrast, upon “out-
of-phase” modulation the distance-averaged power fractions
in different channels are different and even acquire maximal
values at slightly different modulation frequencies that do not
coincide with a common resonance frequency defined for a pair
of central waveguides. Notice that the change µ → −µ (or π

shift of the phase of modulation) does not effect the position of
common resonance, but it results in the exchange of resonances
for individual channels. It should be mentioned that due to the
definition of Um the values of the distance-averaged power
fraction in each of the excited waveguides can exceed unity
[see, e. g., curve 2 in Fig. 2(c)], although their half-sum for
each particular frequency of longitudinal modulation coincides
with the value defined for the pair of waveguides that is always
smaller than one. This shows that “out-of-phase” modulation
allows the achieving of inhibition of tunneling for multichannel
excitations, but it also results in an energy exchange between
excited waveguides and distortion of the internal structure of
the input “collective” mode. A similar picture was encountered
for excitations of three and larger numbers of waveguides.
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FIG. 3. (Color online) Um versus �/�b for (a) antisymmetric
mode with amplitude A = 0.01 (curve 1), 0.35 (curve 2), 0.42 (curve
3), and (b) symmetric mode with amplitude A = 0.01 (curve 1),
0.25 (curve 2), 0.40 (curve 3) in an “in-phase” modulated waveguide
array at µ = 0.2. Dashed lines indicate Um = 1 level. (c) Resonance
curve width versus input amplitude for symmetric and antisymmetric
modes in an “in-phase” modulated array at µ = 0.2. (d) Resonance
curve width versus input amplitude for the symmetric mode in
an “out-of-phase” modulated array at µ = 0.2. The curve for the
antisymmetric mode is not shown since it almost coincides with that
for the symmetric mode.

We also studied the inhibition of light tunneling for
multichannel excitations in the nonlinear regime. While for
single-site excitations the width of primary resonance is a
monotonically growing function of the input amplitude (as
was shown recently [20]), we found that for multichannel
excitations the situation might be dramatically different. To
illustrate this, we calculated resonance curves for different
input amplitudes for both symmetric and antisymmetric modes
for different types of longitudinal modulation. Surprisingly, in
the case of “in-phase” modulation for antisymmetric excitation
the width of resonance first decreases with the growth of
amplitude, reaches a certain minimal value at intermediate
amplitudes, and then starts increasing [Fig. 3(a)]. At the same
time, the width of resonance for symmetric excitation in a
system with such types of longitudinal modulation grows
monotonically with amplitude [Fig. 3(b)]. The corresponding
dependencies of resonance width δ� defined at the level
0.9Umax (here Umax is the distance-averaged power frac-
tion in primary resonance) on amplitude are presented in
Fig. 3(c). The dependence δ�(A) for the symmetric excitation
is approximately parabolic for sufficiently high amplitudes.
Interestingly, in the array with an “out-of-phase” longitudinal
refractive index modulation the resonance width increases with
A monotonically for both symmetric and antisymmetric modes
[Fig. 3(d)]. Moreover, while for the “in-phase” modulation the
resonance widths for symmetric and antisymmetric modes at
A → 0 are different, in the case of “out-of-phase” modulation

FIG. 4. (Color online) (a) Um versus input amplitude A for sym-
metric and antisymmetric modes in “in-phase” modulated waveguide
arrays at µ = 0.2 and � = �r. Dashed line indicates Um = 1 level.
(b) Amplitude of delocalization Adel versus longitudinal modulation
depth µ for symmetric and antisymmetric modes in an “in-phase”
modulated waveguide array.

the dependencies δ�(A) for both modes are very close for
any amplitude A [hence, in Fig. 3(d) we show only the
dependence for the symmetric mode]. All features mentioned
previously imply that the band of modulation frequencies
where tunneling inhibition is possible is rather sensitive to
the type of longitudinal modulation and to the structure of the
input collective mode.

As in the case of single-site excitations further growth of the
input amplitude results in nonlinearity-induced delocalization
of higher-order modes [see Fig. 4(a) that shows the dependence
of the distance-averaged power fraction on input amplitude for
both symmetric and antisymmetric modes for “in-phase” mod-
ulation]. In the regime of nonlinearity-induced delocalization
the light beam may spread considerably across the waveguide
array. Interestingly, for antisymmetric modes and “in-phase”

FIG. 5. (Color online) (a) Diffraction of the antisymmetric mode
in an unmodulated array. Dynamics of propagation of the antisymmet-
ric mode in “in-phase” modulated waveguide arrays at µ = 0.15 for
(b) A = 0.01, (c) 1.59, and (d) 2.00. Dynamics of propagation of (e)
symmetric and (f) antisymmetric modes at µ = 0.15 and A = 0.99.
In panels (b)–(f) � = �r.
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FIG. 6. (Color online) (a) “In-phase” modulated array. Propa-
gation of antisymmetric mode in (b) “out-of-phase” modulated array
and (c) “in-phase” modulated array at µ = 0.2. In all cases A = 0.01.

modulation the output intensity pattern remains symmetric
even in the delocalization regime, while for symmetric excita-
tions one observes remarkable asymmetries in output intensity
distributions [compare Figs. 5(c) and 5(e)]. If the amplitude
increases even further, the nonlinearity-induced delocalization
is gradually replaced by the localization due to the soliton-type
mechanism. We calculated the dependence of the critical
amplitude Adel at which the distance-averaged power fraction
in the excited channels decreases below the level of 0.9Umax

(here Umax is the distance-averaged power fraction in the
primary resonance at A → 0) and the mode experiences
nonlinearity-induced delocalization on the depth of longitudi-
nal modulation µ. We found that Adel monotonically increases
with µ [see Fig. 4(b)], while the symmetric mode experiences
delocalization at smaller values of input amplitudes than its
antisymmetric counterpart as is shown in Fig. 4(a). This
feature is rather surprising when taking into account the almost
identical asymptotical behavior of the tails of symmetric and
antisymmetric modes, which intuitively suggests that in the
unmodulated arrays such modes will experience a similar rate
of discrete diffraction [see Fig. 5(a) showing the diffraction
pattern for the antisymmetric mode in the unmodulated array].
One therefore may conclude that antisymmetric modes are
more robust in the longitudinally modulated arrays. However,
the fact that symmetric modes experience delocalization at
smaller amplitudes is not connected with symmetry-breaking
instability analogous to instabilities of even solitons in waveg-
uide arrays. Thus, the energy exchange between the two central
waveguides in the case of the symmetric mode (which might
serve as an indication of the development of such instability)
begins at the amplitude value that is even smaller than the
amplitude of the overall nonlinearity-induced delocalization
Adel. Importantly, this amplitude does not depend on the
longitudinal modulation depth, while Adel does depend on
µ. Although this instability does not result in an overall
delocalization it may cause asymmetry in output intensity
distributions for initially symmetric input modes.

The representative propagation dynamics for two-channel
excitations is presented in Fig. 5. Figure 5(a) demonstrates
the diffraction of the antisymmetric mode in an unmodulated
waveguide array [Fig. 1(a)]. Figures 5(b) through 5(d) illustrate
the propagation of antisymmetric modes in an “in-phase”
modulated waveguide array when the modulation frequency
corresponds to the primary linear resonance. In a practically
linear regime at A = 0.01 one observes localization [Fig. 5(b)]
(it should be stressed that although the longitudinal refractive
index modulation in such a structure does not result in
100% inhibition of tunneling the distance-averaged power
fraction in resonance is still very close to unity, so that
coupling to other channels is not visible at the distances
considered here); nonlinearity-induced delocalization takes
place at intermediate amplitudes [A = 1.59, Fig. 5(c)]; the
relocalization can be observed at sufficiently high amplitude
[A = 2.00, Fig. 5(d)]. Figures 5(e) and 5(f) compare the
propagation of symmetric and antisymmetric modes with equal
amplitudes in such a setting. While the antisymmetric mode
is still localized [Fig. 5(f)], its symmetric counterpart already
experiences delocalization [Fig. 5(e)] in agreement with the
results presented in Fig. 4(b).

Finally, Fig. 6 illustrates that the longitudinal refractive
index modulation allows inhibition of light tunneling not only
for two-channel excitations, but also for complex multichannel
ones. As one can see from Fig. 6(c), the antisymmetric fourth-
order mode perfectly preserves its structure in the “in-phase”
modulated lattice [see Fig. 6(a) for the corresponding lattice
profile], while in the case of “out-of-phase” modulation [see
the corresponding lattice in Fig. 1(b)] the structure of this
mode is strongly distorted due to the energy exchange between
adjacent waveguides [Fig. 6(b)], although in both cases the
coupling between the central group of excited guides and the
surrounding array is inhibited.

In summary, we show that the inhibition of light tunneling
can be achieved not only for single-site excitations, but also
for complex multichannel excitations in properly modulated
waveguide arrays. Thus, specific “in-phase” modulation is
found to be more favorable for modes with multiple humps
than conventional “out-of-phase” modulation when the re-
fractive index in all waveguides of the array oscillate out-
of-phase. We also show that the band of modulation frequency
where tunneling inhibition is possible and the delocalization
amplitude value are sensitive to the type of longitudinal
modulation and the structure of the input collective mode.
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