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Resonant high-order harmonic generation from plasma ablation: Laser intensity dependence
of the harmonic intensity and phase
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Experimentally observed strong enhancement of a single high-order harmonic in harmonic generation from
low-ionized laser plasma ablation is explained as resonant harmonic generation. The resonant harmonic intensity
increases regularly with the increase of the laser intensity, while the phase of the resonant harmonic is almost
independent of the laser intensity. This is in sharp contrast with the usual plateau and cutoff harmonics, the
intensity of which exhibits wild oscillations while its phase changes rapidly with the laser intensity. The temporal
profile of a group of harmonics, which includes the resonant harmonic, has the form of a broad peak in each
laser-field half cycle. These characteristics of resonant harmonics can have an important application in attoscience.
We illustrate our results using examples of Sn and Sb plasmas.
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I. INTRODUCTION

The generation of high-order harmonics by irradiating
atoms with an intense short laser pulse was observed more than
20 years ago (for reviews see Refs. [1–5]). In this process, due
to the nonlinear interaction with the strong electric field of the
laser pulse, the medium emits coherent radiation at frequencies
that are multiples (up to a few hundred [6,7]) of the laser field
frequency ω. The high-harmonic intensity is characterized by
a long plateau in which all harmonics have almost the same
intensity. For a linearly polarized laser pulse, this plateau
consists of odd harmonics and finishes with an abrupt cutoff
at the energy 3.173UP + 1.325IP [8]. Here UP = I/(4ω2) (in
atomic units) is the electron ponderomotive energy, with I

the laser intensity and IP = −E1 the ground-state ionization
energy.

More recently, high-order harmonic generation (HHG) was
discovered in experiments with preformed plasma plumes. It
was shown that this medium (i.e., the ablated plasma) also
generates high-order harmonics characterized by a plateau and
a cutoff. The role of atoms is now taken by the plasma ions [9]
(for recent reviews see Refs. [10,11]).

The main problem of HHG from atomic gases is its low
conversion efficiency. It is up to a few times 10−5 for HHG by
a linearly polarized laser field [12], while it can be slightly
higher for HHG by two-color field combinations [13,14].
However, in experiments with laser plasma ablation strong
resonance enhancement of single harmonics with conversion
efficiency ∼10−4 was observed [15–21]. Another advantage of
the ablation medium is a wider selection of the target material.
The resonant enhancement was observed in In [15], Sn [16],
GaAs [17,18], InSb [18], Cr [18], Sb [19], nanoparticles [20],
and Te [21] plasmas. For more references see the recent
reviews in Refs. [10,11]. The positive ions of the mentioned
plumes have a large absorption strength for the transition
between the ground state 1 and the excited state 2. This
excited state is metastable and is embedded in the continuum so
that the excitation energy �ω = E2 − E1 > IP. The resonant
enhancement was observed for the laser frequency ω such
that �ω = (2nR + 1)ω, nR integer. The conversion efficiency

depends on the oscillator strength and it was the highest for
In II [15].

For application of this ultrashort coherent extreme ultra-
violet (XUV) sources it is not only necessary to generate
intense high harmonics, but it is also very important to analyze
characteristics of these harmonics (pulse duration, wavelength,
coherence, focusability, divergence, etc.). Such an analysis
was performed for HHG from atomic gases (see, for example,
Ref. [2]), but for plasma harmonics a lot of effort in this
direction still needs to be done [10,11]. The first reconstruc-
tion of the electromagnetic field of the harmonic spectrum
generated from Cr plasma was presented at the conferences
in Refs. [22,23]. Using the method of reconstruction of
attosecond beating by interference of two-photon transitions
(RABITT) [24], in [22,23] the attosecond pulse trains with
300 as duration were reconstructed. This result shows that
the plasma harmonics are also sources of attosecond pulses,
similar to gas harmonics. However, this experiment concerns
regular plateau harmonics in Cr II. More precisely, five odd
harmonics between the 11th and 19th were taken into account.
The question is how the resonant harmonics (for Cr II this is the
harmonic 29) behave in this context. This is important because
the intensity of resonant harmonics is much higher, making
them an excellent candidate for various applications [25–27].

In the present contribution we first introduce our model
of resonant HHG in Sec. II. In the following two sections
we analyze the dependence on the laser intensity of both
the plateau and the resonant harmonics intensity and phase.
In Sec. V we analyze the temporal profile of groups of
harmonics, mode-locking of which enables attosecond pulse
train generation. Finally, our conclusions are given in Sec. VI.

II. THEORETICAL MODEL OF RESONANT HIGH-ORDER
HARMONIC GENERATION

We recently introduced a theoretical model of resonant
HHG [28] (see also recent application of this model to more
complex systems and comparison with the experiment [29]).
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This model is based on the generalization of the Lewenstein
et al. [8] model to HHG from a coherent superposition of
states [30,31]. The model introduced in Ref. [28] assumes that
the ground state having the energy E1 < 0 and the excited state
(E2 > 0) have different parity so that it is possible to form a
coherent superposition of these states in an excitation process
(the excitation energy is �ω = E2 − E1 and the resonant
enhancement was observed for the large absorption strength of
the transition 1 → 2). In accordance with the three-step-model
picture of HHG, in the resonant HHG the laser-driven electron
wave packet starts from the excited state of the single charged
plasma ablation ion and after propagation in the continuum,
it finishes in the ground ionic state, which is resonantly
coupled to this excited state. During the recombination to
the ground state, a high harmonic having the energy � is
emitted. In Fig. 1 we schematically present the previously
described process of resonant HHG. In this process the parity
has to be conserved. The ionic states have different parity,
which gives the parity −1. One high-harmonic photon also
contributes to the parity by −1. Therefore, the even number
of photons 2k has to be exchanged with the laser field to
conserve the parity −1 = −1 × (−1)±2k . This gives the reso-
nant high-harmonic energy � = �ω ± 2kω, k = 0, 1, 2, . . . ,.
If the resonant condition �ω = (2nR + 1)ω is fulfilled, we
will have the emission of odd harmonics at the frequencies

~ 1015 W/cm2
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FIG. 1. (Color online) Laser ablation plasma is created by
focusing a laser pulse, having duration of the order of 1 ps to 1 ns
and the intensity of 1010 W/cm2, on a solid target. A shorter (∼30 fs)
and stronger (∼1015 W/cm2) linearly polarized laser pulse is focused
on this plasma and high harmonics of frequency � = (2n + 1)ω are
emitted. In the upper part of the figure the three-step model of resonant
HHG is depicted. The states with energies E1 and E2 have different
parity and the excited state is embedded in the continuum (E2 > 0). In
step 1 the electron is ionized from the excited state of the ion and then,
in step 2, it propagates in the laser field acquiring the kinetic energy
EK. In step 3 the electron recombines to the ground state E1 and a
harmonic photon of frequency � = �ω ± 2kω = [2(nR ± k) + 1]ω
is emitted.

� = (2nR + 1)ω, (2nR + 1 ± 2)ω, . . . ,. The standard single-
state high harmonics having the energy (2n + 1)ω are also
emitted.

The harmonic intensity is defined by �4|D(�)|2, where
the harmonic strength is D(�) = |D(�)| exp[i�(�)] ≈
a1a2D12(�), with a1 and a2 the initial amplitudes of the
ionic bound states in the superposition of states 1 and 2 (for
simplicity we choose a1 = a2 = 1/

√
2). D12(�) is the Fourier

transform of the time-dependent dipole.
It should also be mentioned that the previous results for

resonant HHG were recently confirmed using a Floquet-based
formalism [32]. The influence of the plasma characteristics on
resonant HHG was studied in Ref. [33] and the results obtained
are consistent with the model of Ref. [28]. Furthermore,
very recently [34] it was shown that the influence of atomic
autoionizing states on the phase matching of HHG may result
in the efficient selection of the single harmonic, which explains
why in the experiments only the enhancement of a single
resonant harmonic was observed.

III. DEPENDENCE OF THE HARMONIC INTENSITY ON
THE LASER INTENSITY

We first show numerical results for the Sn, keeping in
mind that all other target materials for which the resonant
enhancement of HHG was observed have qualitatively similar
behavior. The Sn II (IP = 14.632 eV) has the gf values
1.52 for the transitions 2P3/2 → (1D)2D5/2 for which �ω =
26.27 eV (see Table 1 in Ref. [35]). The laser wavelength
that corresponds to the resonance of �ω with the 17th
harmonic is 802 nm. As our second example, we consider
Sb II (IP = 16.63 eV), which has the gf values 1.36 for the
transitions 3P 2 → (2D)3D3 for which �ω = 32.79 eV (see
Table 4 in Ref. [36]). The resonance of �ω with the 21st
harmonic appears for the wavelength 794 nm. We will first
explore how the harmonic intensity changes with the laser
intensity.

In Fig. 2 we present, in false colors, the harmonic intensity
for Sn II as a function of the laser intensity, which changes
from 2 × 1013 to 5.2 × 1014 W/cm2, and the harmonic order.
It is obvious that the harmonic 17 is strongly enhanced for
all intensities. Other harmonics form a plateau with a cutoff
in accordance with the 3.173UP + 1.325IP cutoff law, which
forms a diagonal in Fig. 2. Analogous results for Sb II are
presented in Fig. 3. In this case the harmonic 21 is strongly
enhanced.

In our simulations we neglected the depletion of the initial
states. Using the method of Ref. [37], generalized to the p

ground state [38], we found that for a 30-fs laser pulse having
the peak intensity 5.2 × 1014 W/cm2 10% of ions survive the
intensity 1.38 × 1014 W/cm2 (1.93 × 1014 W/cm2) for Sn II

(Sb II) so that the depletion effect becomes important only for
higher intensities. Furthermore, in Ref. [31] we explored the
depletion effect for HHG from a coherent superposition of the
1s and 2s hydrogen-like states and found that it affects only
the low-energy part of the spectrum, which corresponds to
HHG from the excited state alone and which is not of interest in
the present article. It should also be mentioned that our results
are obtained using the single-active electron approximation
(SAEA). This approximation provides a good description of
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FIG. 2. (Color online) The harmonic intensity, presented in false
colors, as a function of the laser intensity and harmonic order for
HHG from Sn II. The laser wavelength is 802 nm and its intensity
changes from 2 × 1013 to 5.2 × 1014 W/cm2.

the ionization dynamics of the rare gases that have a closed
shell. Analysis of the ionization of open-shell atoms is more
complicated. Both the experiment [39] and theory [40] showed
a dramatic suppression of ionization relative to the SAEA
expectations. The conventional SAEA theory overestimates
ionization by orders of magnitude. Since Sn II and Sb II

have open shells we expect that these ions can survive higher
intensity. In our model we also neglected the nonradiative
decay of the excited state that is embedded in the continuum.
Let us discuss this. For example, the linewidth of the relevant
excited state of Sb II is 137 m eV [36]. This corresponds to
the decay time of 4.804 fs = 1.814 optical cycles. Since the
harmonic emission happens on the time scale of a small part of

FIG. 3. (Color online) Same as in Fig. 2 but for HHG from Sb II,
the wavelength 794 nm, and the intensity from 2 × 1014 to 5.2 ×
1014 W/cm2.
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FIG. 4. (Color online) The intensities of the harmonic 11 (red
solid line), 15 (black long dashed line), 17 (green dot-dashed line),
19 (magenta dotted line), 31 (blue dashed line), and 49 (maroon
double-dot dashed line), as functions of the parameter (IP + UP)/ω,
for HHG from Sn II by a linearly polarized laser field having the
wavelength 802 nm. The intensity of the harmonics 15, 17, and 19 is
divided by 100.

the optical cycle it is not necessary to consider the nonradiative
decay of the excited states.

Let us now analyze the dependence of particular harmonic
intensities on the laser intensity in more detail. In Fig. 4
we show (for Sn II) the dependence of the intensities of
the harmonics 11, 15, 17, 19, 31, and 49 on the laser
intensity, expressed through the dimensionless parameter nc =
(IP + UP)/ω, for the laser intensity from 2 × 1014 to 5.2 ×
1014 W/cm2 (notice that the intensity of the much stronger
resonant harmonic is divided by 100). For the single-state
HHG this parameter is important since the enhancements, the
physical origin of which is different than that of the resonant
harmonic, appear for integer values of nc (this is related to
the closings of the channel nc [41]). The harmonic 11 is in
the lower part of the plateau and below the resonant harmonic
17, while the harmonic 31 is in the middle of the plateau
and above the resonance. The intensities of the harmonics
11 and 31 show an increasing oscillatory dependence on
the laser intensity. In Ref. [41] this was explained as the
interference of the contributions of many quantum orbits (see
also Refs. [42–44] for details of the quantum-orbit theory). At
the channel closings the harmonic intensity exhibits a threshold
behavior, which manifests as a constructive interference of a
large number of quantum-orbit contributions leading to two
types of enhancements [45]. For the higher harmonic order
49 the harmonic intensity first grows rapidly (but without
oscillations) with the increase of the laser intensity. This is
the cutoff region in which only one quantum orbit contributes
[42,43]. When the harmonic enters the plateau region the
contributions of several quantum orbits began to interfere
leading to the oscillatory structure shown in Fig. 4. Such
behavior of the harmonic intensity is well known and was
described in detail in Refs. [2,42,43]. We are interested here
in the behavior of the resonant harmonic 17. From Fig. 4
we see that the increase of the 17th harmonic intensity with
the laser intensity is quite regular. There are no traces of
oscillations, which are characteristic for the single-state HHG.
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FIG. 5. (Color online) The intensities of the harmonic 15 (black
dashed line), 21 (red solid line; the intensity is divided by 100),
31 (green dot-dashed line), 41 (magenta dotted line), and 51 (blue
circles), as functions of the parameter (IP + UP)/ω, for HHG from
Sb II by a linearly polarized laser field having the wavelength
794 nm.

Such behavior is similar to that of low-order harmonics [31].
The harmonics 15 and 19 are neighbor harmonics to the
resonant harmonic 17 and can be considered as low-order
harmonics with respect to it, which explains their similar
nonoscillatory behavior as a function of the laser intensity.

In Fig. 5 we show results analogous to that of Fig. 4, but
for Sb II. In this case, the resonant harmonic is 21 so that
we decided to show the dependence of the intensities of the
harmonics 15, 21, 31, 41, and 51 on the parameter nc, for
the same laser intensity interval as in Fig. 3. The harmonic 15
(black dashed line) is in the lower part of the plateau and below
the resonant harmonic 21 (red solid line), while the harmonic
31 (green dot-dashed line) is in the middle of the plateau
and above the resonant harmonic. As expected, the intensities
of the harmonics 15 and 31 show an increasing oscillatory
dependence on the laser intensity. The harmonic intensities of
the harmonics 41 (magenta dotted line) and 51 (blue circles)
first grow rapidly (cutoff region) and then have a lot of
oscillations (plateau region). The cutoff region is longer for the
harmonic 51 so that the mentioned oscillations start for a higher
intensity than for the harmonic 41. The increase of the resonant
21st harmonic intensity with the laser intensity is quite regular.
Again, there are no oscillations that are characteristic for the
single-state HHG.

IV. DEPENDENCE OF THE HARMONIC PHASE ON
THE LASER INTENSITY

Let us now analyze the dependence of the harmonic phase
on the laser intensity. It is known that for the single-state HHG
the harmonic phase changes rapidly with the laser intensity
(more precisely, it decreases linearly as −UPτ where τ is
the travel time of the corresponding quantum orbit [2,42,43]).
The phases of the harmonics 49 and 51, presented in Figs. 6
(for Sn II) and 7 (for Sb II), respectively, really show such a
behavior: They decrease linearly with the increase of the laser
intensity [except for high intensities near channel closings
for nc � 25 (for Sn II) or nc � 27 (for Sb II); for Sb II the
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FIG. 6. (Color online) The phases of the harmonic 13 (black
dashed line), 17 (red solid line), and 49 (blue circles), as functions of
the parameter (IP + UP)/ω, for HHG from Sn II. The laser wavelength
is 802 nm.

exceptions are also low laser intensities for nc < 20]. In the
Sn II example, shown in Fig. 6, the 13th harmonic phase also
decreases with the increase of the laser intensity, except in the
regions near channel closings. This decrease is not so rapid as
for the harmonic 49 phase. A similar conclusion is valid for
the Sb II example and the harmonics 15 and 51 in Fig. 7.

The most impressive result shown in Fig. 6 is that the phase
of the resonant harmonic 17 is almost constant. It changes from
0.757 to 0.868 rad. Let us estimate the phase of the harmonic
� = �ω. For short travel times (τ ≈ 0), from Eqs. (20) and
(21) and the Appendix C in Ref. [31] it follows that

D(�) ≈ D12(�) ∝
∫

dtei�td12(t) ∝ i

∫
dtei�t

× [cos(�ωt) − sin(�ωt)]f (t) ∝ δ�,�ωei π
4 . (1)

This approximate result � = π/4 = 0.7854 rad is in excellent
agreement with the previous numerical results. In the case of
Sb II (Fig. 7) an analogous result for the phase of the resonant
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FIG. 7. (Color online) The phases of the harmonic 15 (black
dashed line), 21 (red solid line), and 51 (blue circles), as functions of
the parameter (IP + UP)/ω, for HHG from Sb II. The laser wavelength
is 794 nm.
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harmonic 21 is that it changes from 0.772 to 0.805 rad, which
is again in excellent agreement with the approximate result
� = π/4. As we will see in the next section, this unexpected
behavior of the resonant harmonic phase can have important
consequences for applications.

V. MODE-LOCKING OF HIGH HARMONICS AND THE
ATTOSECOND PULSE TRAIN GENERATION

By mode-locking of several high harmonics it is possible
to generate a train of attosecond pulses. This train can be
quantitatively characterized by associating to each harmonic
the field En(t) = n2 exp(−inωt)D(n), where D(n) is the
previously defined nth harmonic strength. Combining a group
of N subsequent harmonics, starting from a fixed harmonic
n0, we define the ratio R of the coherent over the incoherent
sum of harmonic intensities [4,42,46,47]

R(n0, N ; t) =
∣∣∣∣∣
n0+N−1∑

n=n0

En(t)

∣∣∣∣∣
2 /

n0+N−1∑
n=n0

|En(t)|2, (2)

where t is the harmonic emission time. If the amplitudes of
all N modes of the harmonic field are equal, then the ratio (2)
varies from R = 1 (for modes that are oscillating in a random
fashion) to R = N when all modes oscillate in phase.

In Fig. 8 we show the ratio (2) for different groups of odd
harmonics for HHG from Sn II. The group of odd harmonics
from 45 to 55 (blue dot-dashed line) shows a behavior typical
for the single-state HHG: Two dominant peaks in each half
cycle correspond to long and short orbits of the Lewenstein
et al. model [8,42]. For HHG from Sb II a similar behavior has
the group of odd harmonics from 41 to 51 (blue dot-dashed
line in Fig. 9). The temporal profile of the group of odd
harmonics from the 3rd to the 13th (harmonics below the
resonance for Sn II in Fig. 8) and the group of odd harmonics
from the harmonic 3 to 17 (for Sb II in Fig. 9) show a similar
behavior: There is a structure that repeats in each half cycle
(red dashed line). This structure is more complicated due
to the contribution of more quantum orbits. On the other
hand, the group of harmonics that includes the resonant
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FIG. 8. (Color online) The ratio of the coherent over the incoher-
ent sum of the harmonic intensities as a function of the time during
one optical cycle. The results for the groups of odd harmonics, as
indicated in the legend, are presented. HHG is from Sn II, the laser
intensity is 4 × 1014 W/cm2, and the laser wavelength is 802 nm.
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FIG. 9. (Color online) Same as in Fig. 8, but for HHG from Sb II,
the laser intensity 4 × 1014 W/cm2, and the wavelength 794 nm.

harmonic 17 (for Sn II) or the harmonic 21 (for Sb II) shows a
completely different behavior. There is one broad peak in the
middle of the optical cycle. The shape of this peak does not
depend on the number of harmonics included. In Fig. 8 the
result for the interval 15–19 (black solid line) almost overlaps
with the result for the longer interval 11–23 (cyan dotted line).
The corresponding full width at half maximum is between 468
and 489 as. Analogous results for Sb II are shown in Fig. 9:
The corresponding harmonic intervals are 19–23 and 15–27,
while the full width at half maximum is from 462 to 482 as.

It is important to notice that for the atomic HHG by a lin-
early polarized laser field four attosecond pulses are generated
during one optical cycle. It is possible, by appropriate focusing,
to select two pulses from these four pulses per cycle since the
collective effects due to the macroscopic propagation select
the short or long trajectories of the Lewenstein model [2].
Recently, such an attosecond train of two pulses per cycle was
obtained by phase locking of five harmonics generated from Cr
plasma [22,23]. However, in the case of resonant harmonics
the previously mentioned selection of pulses by appropriate
focusing is not necessary since we already have only one peak
in the laser-field half cycle. This can simplify the experimental
setup. Furthermore, due to the larger time interval between
the pulses in the train we expect that the resonant HHG by
a few-cycle laser field is a good candidate for the isolated
attosecond pulse generation [26,27].

VI. CONCLUSION

In conclusion, we find that the laser intensity dependence
of the intensity and phase of the single harmonic generated in
resonant HHG from plasma ablation is different than that of
the standard plateau and cutoff high harmonics. The resonant
harmonic intensity increases continuously (i.e., without rapid
oscillations) with the increase of the laser intensity, while the
resonant harmonic phase is almost constant. Such unusual
(for HHG) behavior of the harmonic phase requires a de-
tailed experimental investigation. Namely, the harmonic phase
dependence is important for synchronization of high-order
harmonics. The subfemtosecond light pulses can be obtained
by superposing several high-order harmonics [24,25].

023802-5
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In the context of recent first attosecond pulse train recon-
struction of high-order harmonics from laser ablation plasma
[22,23] the results of the present work are even more important.
We find that the temporal profile of a group of odd harmonics,
which encompasses the resonant harmonic is in the form of a
broad peak in each laser-field half cycle. This is an advantage in
comparison with the usual plateau and cutoff harmonics where
two such peaks are generated per half-cycle, which requires
the appropriate experimental technique (i.e., such focusing that
the collective effects due to the macroscopic propagation select
only one peak). Taking into account a smooth dependence of

the harmonic intensity on the laser intensity and that it is
not necessary to manipulate with long and short orbits by
appropriate focusing, we expect that the resonant HHG has a
bright perspective for application in attoscience [26,27].
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