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BCS-BEC crossover and the disappearance of Fulde-Ferrell-Larkin-Ovchinnikov correlations
in a spin-imbalanced one-dimensional Fermi gas
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We present a numerical study of the one-dimensional BCS-BEC crossover of a spin-imbalanced Fermi gas.
The crossover is described by the Bose-Fermi resonance model in a real space representation. Our main interest
is in the behavior of the pair correlations, which, in the BCS limit, are of the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) type, while in the Bose-Einstein condensate limit, a superfluid of diatomic molecules forms that exhibits
quasi-condensation at zero momentum. We use the density matrix renormalization group method to compute
the phase diagram as a function of the detuning of the molecular level and the polarization. As a main result,
we show that FFLO-like correlations disappear well below full polarization close to the resonance. The critical
polarization depends on both the detuning and the filling.
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I. INTRODUCTION

Ultracold atoms provide a unique opportunity to study basic
many-body problems both in equilibrium and in nonequi-
librium situations [1]. A particularly appealing feature of
these systems is the possibility of changing the interaction
strength over a wide range via Feshbach resonances. In
a two-component Fermi gas, this allows one to study the
crossover from BCS-pairing to a Bose-Einstein condensate
(BEC) of strongly bound molecules [1–3]. In a situation
in which the two states involved in the pairing are equally
populated, this is a smooth crossover. By contrast, in the
case of an imbalanced gas, unconventional superfluid ground
states such as the Fulde-Ferrell [4] or Larkin-Ovchinnikov [5]
(FFLO) state with finite-momentum pairs, a Sarma phase with
two Fermi surfaces [6], or a mixture consisting of a BEC
of strongly bound pairs and a Fermi gas of unpaired atoms
have been proposed [7–11]. Experimentally, spin-imbalanced
two-component Fermi gases have first been realized at MIT
[12–14] and Rice [15,16]. From the spin-resolved density
profiles and, in particular, the existence of a lattice of quantized
vortices in a rotating gas [13], it is possible to observe the
disappearance of a conventional superfluid in the center of
the cloud with increasing imbalance. By assuming that a local
density approximation applies, this allows one to determine the
breakdown of BCS-type pairing beyond a critical imbalance
p3D

c that is close to p3D
c ∼ 0.4 for the uniform gas at unitarity

in three dimensions [17,18].
Unfortunately, in the three-dimensional (3D) case and in

the unitary regime, where the scattering length is much larger
than the average interparticle spacing, it is difficult, both
experimentally and theoretically, to establish unambiguously
the existence of phases with unconventional pairing that
are expected when the balanced (p = 0) superfluid becomes

unstable. The experimentally observed density profiles [17] at
the unitary point are consistent with the prediction of a first-
order transition from a balanced superfluid to a normal state, in
which the two spin components each form a Fermi liquid [2].
This theoretical prediction is based on a variational ansatz
for the ground state [18,19], which excludes unconventional
superfluid phases. It is therefore of considerable interest to
study models, for which the phase diagram of the imbalanced
gas along the BCS-BEC crossover is accessible by methods
that are sensitive to states with complex order.

In the case of one dimension, such powerful numerical
and analytical tools are indeed available. In fact, for both the
attractive fermionic Hubbard model [20] and the associated
continuum model [21,22], there is an exact solution that can
be extended to the imbalanced case [23–27]. The ground-state
phase diagram consists of three phases: a balanced superfluid,
a polarized intermediate phase, and a fully polarized, normal
Fermi gas [28]. In the weak-coupling limit, both a solution of
the Bogoliubov de Gennes equations [29] and bosonization
[30] indicate that the polarized intermediate phase is an
FFLO-like state at any finite imbalance. This prediction
has been recently verified by density matrix renormalization
group (DMRG) [31–35] and quantum Monte Carlo (QMC)
calculations [36,37]. It applies both to the continuum case
and in the presence of an optical lattice, and the FFLO
state exists in mass-imbalanced systems as well [38–41]. It
is important to point out that these methods give access to
the regime of strong interactions as well, where the energy
scale of the superfluid states is of the same order as the
Fermi energy. In the context of cold atoms, this is the relevant
regime because, in weak coupling, nontrivial order only
appears at unobservably low entropies of s � Tc/TF � 1 per
particle.
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As realized by both Fuchs et al. [42] and Tokatly [43],
however, attractive fermion models are not sufficient to
account for the full physics of the BCS-BEC crossover in one
dimension. Indeed, in the strong-coupling limit, they describe
a Tonks-Girardeau gas of dimers. They are unable, therefore, to
cover the regime of weakly interacting bosons that is reached
when the size of the two-particle bound state is smaller than the
oscillator length of the transverse confinement. In this limit,
the hard-core constraint of the tightly bound dimers becomes
irrelevant. Moreover, in models of attractively interacting
fermions there is only one phase at a finite spin imbalance
below saturation, namely the FFLO phase [23–25,30–34,36].
As we shall emphasize in this work, the generic phase diagram
of a more general two-channel model is much richer, in
particular, close to resonance.

A description of the 1D BCS-BEC crossover that properly
accounts for the coexistence of fermions and bound pairs in
the imbalanced case can be achieved in the framework of the
Bose-Fermi resonance model [44,45] in which two fermions
in an open channel couple resonantly to a diatomic molecule
in a closed channel. The associated amplitude due to the
off-diagonal coupling between the open and closed channel
determines the intrinsic width of the Feshbach resonance [1].
In a continuum description, the 1D Bose-Fermi resonance
model has been studied by Recati et al. [46] for the special case
of a vanishing imbalance, where a smooth BCS-BEC crossover
occurs. Its BCS side is described by attractively interacting
fermions while on the BEC side, one has a repulsive Bose
gas of dimers. In the limit of a broad Feshbach resonance, the
transition between the two regimes is sharp, yet continuous. In
particular, the quasi-long-range superfluid order of the ground
state does not change along the full BCS-BEC crossover. As
realized recently by Baur et al. [47] in a study of the associated
three-body problem, however, the situation is more complex
and interesting in the case of an imbalanced gas. There, FFLO
physics with spatially modulated pair correlations that are
present on the BCS side of the crossover must disappear at
a critical point, giving room to a Bose-Fermi mixture that is
a conventional superfluid, where quasi-condensation appears
at zero total momentum. At the three-body level, this critical
point shows up as a change in the symmetry of the ground-state
wave function [47].

For studies on the many-body physics of the 1D Bose-Fermi
resonance model, we refer the reader to Refs. [46,48–51].
Bosonization has been applied to the balanced case in
Refs. [48,49], and Bethe ansatz results for the imbalanced
case have been presented in Refs. [50,51]. FFLO correlations,
however, have not been discussed in either of these studies.

Experimentally, the formation of molecules in Fermi gases
that are tightly confined in two transverse directions has
been demonstrated by the ETH group [52], using a balanced
mixture. The binding energy of molecules is finite for an
arbitrary sign of the 3D scattering length a, in contrast to the
situation without confinement, where the two-particle binding
energy vanishes on the BCS side of negative a.

The objective of this work is to study a spin-imbalanced
Fermi gas described by the Bose-Fermi resonance model
Hamiltonian. We use a real-space representation with a finite,
incommensurate filling and map out the zero-temperature
phase diagram by computing pair correlations as a function

of polarization and detuning. We find that FFLO correlations
[4,5] dominate in a wide parameter range, and we clarify
how the presence of molecules affects the stability of this
phase. Qualitatively, the presence of molecules binds a certain
fraction of minority fermions into molecules, reducing the
overall number of pairs in the FFLO channel. As a main result,
we determine the critical polarization in the crossover region
at which FFLO correlations disappear and its dependence on
filling and detuning. Beyond this critical polarization and
below saturation, the system is a superfluid of composite
bosons in the molecular channel immersed in a gas of either
fully or partially polarized fermions. As a numerical tool, we
employ the DMRG method [53–55].

This exposition is organized as follows. First, in Sec. II,
we introduce the model Hamiltonian and discuss its limiting
cases. Further, in Sec. II B, we analytically solve the two-body
problem. In Sec. III, we present our DMRG results for the pair
correlations, the momentum distribution, and the number of
molecules as a function of filling, polarization, and detuning.
We close with a summary and discussion in Sec. IV.

II. THE BOSE-FERMI RESONANCE MODEL

A. Hamiltonian

We use a minimal Hamiltonian for the 1D BCS-BEC
crossover [46,47] in a real-space version, incorporating the
kinetic energies of fermions and molecules, the detuning of the
molecular level, as well as the coupling between the fermions
and molecules:

H = −t

L−1∑
i=1

(c†i,σ ci+1,σ + H.c.) − tmol

L−1∑
i=1

(m†
i mi+1 + H.c.)

− (ν + 3t)
L∑

i=1

m
†
i mi + g

L∑
i=1

(m†
i ci,↑ci,↓ + H.c.). (1)

c
(†)
i,σ is a fermionic annihilation (creation) operator acting on

site i, while m
†
i creates a composite boson on site i. The

boson energy is shifted with respect to that of single fermions
by an effective detuning ν + 3t . It is chosen such that the
energy for adding two fermions or one boson, each at zero
momentum, coincides at resonance ν = 0. The amplitude for
the conversion of two fermions into a closed channel molecule
and vice versa is given by the Feshbach coupling constant g.
For a negative detuning, ν < 0, of the molecular level, it gives
rise to an attractive two-particle interaction g2/ν < 0 between
the fermions [46]. Near resonance, ν � 0, this dominates any
direct background interaction Ubg between the two fermionic
species, which is therefore neglected from the outset. The
hopping matrix elements for fermions and molecules are
denoted by t and tmol, respectively. We further set tmol = t/2,
which accounts for the mass ratio of 2:1 between molecules
and fermions. L is the number of sites. Further, ni,σ = c

†
i,σ ci,σ ,

yielding the number of fermions of each species as Nσ =∑
i〈ni,σ 〉, with Nf = N↑ + N↓ and the pseudo-spin index σ =

↑,↓. The only conserved particle number is N = Nf + 2Nmol,
where Nmol = ∑

i〈nmol
i 〉; nmol

i = m
†
i mi . We use n = N/L to

denote the filling factor and p = (N↑ − N↓)/N as a measure
of the polarization, which we shall also sometimes refer to as
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imbalance. Note that at maximum one molecule can sit on a
single site (i.e., the molecules behave as hard-core bosons).

B. Two-body problem and spin gap

1. Scattering amplitude and bound-state energy

In this section, we calculate the effective interaction
between two fermions that is mediated by the molecules at
the two-body level. Following the method outlined in [46], we
determine the bound-state energy εb > 0 of two fermions by
the condition

D−1
0 (k = 0, ω = −εb) = �(k = 0, ω = −εb),

where D0(k, ω) is the bare molecular propagator and �(k, ω)
is the self-energy of the closed channel propagator (with,
as usual, ω and k denoting frequency and momentum,
respectively).

The resulting equation

εb − ν = g2
∫ π

−π

dk

2π

1

εb + 4t(1 − cos k)
(2)

admits a unique, real solution εb > 0 irrespective of the sign
of the detuning ν. Of particular interest is the binding energy
ε� = εb(ν = 0) at resonance. Except for the scale 2t set by
the bandwidth, it only depends on the dimensionless Feshbach
coupling constant g′ = g/(2t). For small coupling strengths
g′ � 1, it is given by ε�/(2t) = g′4/3/22/3, while ε�/(2t) = g′
for g′ 	 1. The ratio ε�/(2t) = 1/(r�)2 is essentially the size
of the bound state (in units of the lattice spacing) at resonance.
In terms of this characteristic length, the condition for a broad
Feshbach resonance is simply nr� � 1 [46]. Taking ε�(g′) as
a characteristic energy scale, we can write the equation for
the dimensionless binding energy � = εb/ε

� for an arbitrary
value of the dimensionless detuning ν ′ = ν/ε� in the form

ν ′ = −
√

4 + ε�/(2t)

�[4 + �ε�/(2t)]
+ �, (3)

which is easily solvable for the bound-state energy �(ν ′) as a
function of the detuning. The definition of � guarantees that
� ≡ 1 at resonance, irrespective of the value of the Feshbach
coupling g′. In Fig. 1, we show the dependence of the binding
energy �(ν ′) on the detuning for three values of g/t = 0.1,

0.5, and 1. As suggested by the preceding discussion, the
� = �(ν ′) curve is practically independent of g′.

On the BCS side, where ν ′ � −1, one obtains a very small
binding energy

√
� = √

4 + ε�/(2t)/(2|ν ′|) � 1, approach-
ing

√
� = 1/|ν ′| for small values g′ � 1 of the Feshbach

coupling. In the BEC regime of strongly positive detuning,
ν ′ 	 1, the binding energy

� = ν ′ + (g/ε�)2/ν ′ + · · ·
follows the detuning, that is, the energy of the molecular state
to leading order. As a result, the closed channel fraction

Z = ∂εb

∂ν
= 1 − (g/ε�)2

ν ′2 + · · · (4)

is close to one, as expected in the BEC limit. The dimensionless
binding energy � = (r�/rb)2 determines the size rb of the
bound state normalized to its value at resonance. For � 	 1,
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FIG. 1. (Color online) Dimensionless binding energy � vs
detuning as computed from Eq. (3). The thick line is � = ν ′, the
asymptotic behavior in the BEC regime (see the text). For comparison,
the figure includes DMRG results (squares) for the spin gap 
 at
g = t and a small density of n = 0.1, extrapolated in system size
to the thermodynamic limit L → ∞. Inset: Characteristic energy
ε∗ = ε(ν ′ = 0) vs g′.

therefore, this size is much smaller than the lattice spacing
unless g′ 	 1.

2. Spin gap

In the previous section, we argued that the binding energy
� and, in particular, ε∗ are important quantities to characterize
the 1D BCS-BEC crossover on the two-body level. We next
discuss the relation of � to the spin gap 
, which we calculate
with DMRG as a function of filling, detuning, and the Feshbach
coupling. The connection between the binding � and the spin
gap has previously been pointed out by Orso [23].

The spin gap is computed from


(L) = E0(Sz = 1) − E0(Sz = 0), (5)

where E0(Sz) is the ground-state energy of a system of
length L in the subspace with Sz = (N↑ − N↓)/2. We then
extrapolate the finite-size data for 
(L) in system size to the
thermodynamic limit L → ∞.

Figure 1 includes the DMRG data for the spin gap at a
filling of n = 0.1 and for g = t (squares). Evidently, the spin
gap coincides with the two-fermion binding energy � not only
on the BEC side (ν ′ > 1) where this is expected, but also far
into the BCS regime. Of course, for very weak coupling, this
agreement must eventually be violated because the spin gap

 � exp [−π/(2|γ |)] depends on the filling n. In particular, it
is exponentially small in the dimensionless coupling constant
|γ | = 2/(n|a1|) � 1 (where a1 is the effective scattering
length in one dimension; see [42]), while the two-particle
binding energy εb = ε�/ν ′2 is independent of n and vanishes
algebraically with the detuning in this regime. Near resonance,
the spin gap is identical with the two-particle binding energy in
the low-density limit nr� � 1, as shown by Fuchs et al. [42].
With increasing values of the filling, however, the spin gap
increases, as is evident from Fig. 2. The many-body spin
gap is therefore clearly distinct from the two-particle binding
energy.
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FIG. 2. Spin gap 
 at resonance ν = 0 vs (a) filling n at g = t

and (b) Feshbach coupling g at n = 0.6. All results are obtained by
extrapolations in system size to L → ∞.

To illustrate this behavior, we display 
 as a function of
filling at g = t in Fig. 2(a) and as a function of g at n = 0.6 in
Fig. 2(b), both at resonance ν = 0. 
 = 
(g) at n = 0.6 also
grows with the Feshbach coupling g.

C. Limiting cases of the Bose-Fermi resonance model

To guide the interpretation of our numerical results to
be presented in the following sections, we find it useful to
start with a qualitative discussion of the limiting cases of the
Hamiltonian Eq. (1) in terms of the dimensionless detuning
ν ′ = ν/ε∗ (see also Ref. [47], which uses the more standard
opposite sign convention for the detuning).

1. The BEC limit, ν ′ � 1

In this limit, all particles are bound in the molecular state
(i.e., Nmol = N/2). At filling, Nmol/L < 1, this realizes a
superfluid lattice gas of hard-core bosons, that is, effectively a
Tonks-Girardeau gas of molecules.

Its ground state is characterized by quasi-long-range order
in the one-particle density matrix

ρmol
ij = 〈m†

i mj 〉 (6)

in the molecular channel of the form |ρmol
ij | ∼ x−1/2 (x =

|i − j |) [56]. As the detuning is decreased and resonance is
approached, the molecules start to make virtual fluctuations
into fermions. The presence of excess fermions suppresses
these fluctuations, giving rise to a repulsion between fermions
and molecules which is proportional to g2/ν [47]. Within a
continuum model, this effective atom-molecule interaction on
the BEC side of the resonance has been calculated exactly
at the three-body level by Mora et al. [57]. They find that
the interaction is repulsive in the regime where the two-body
binding energy εb is larger by a factor 2.2 than its value ε�

at resonance. For smaller binding energies, on the BCS side,
the effective atom-molecule interaction becomes attractive and
also nonlocal, indicating that the picture of bosons that can
coexist with unpaired fermions is no longer applicable [47,57].

It is instructive to compare the regime ν ′ 	 1 of the
lattice model studied here to the corresponding continuum
model studied in Ref. [46]. In the latter case, the relevant
dimensionless interaction parameter γB = gB/nB (where nB

denotes the density of molecules) can be tuned to values
small compared to one even in the deep molecular limit
because gB ∼ |εb|−5/2 vanishes as the two-particle binding
energy |εb| becomes very large. As a result, the effective
Luttinger exponent K(γB) is then much larger than unity and
one obtains a weakly interacting gas of molecules, whose
one-particle density matrix ρmol

ij decays as |ρmol
ij | ∝ x−(1/2K)

with an exponent 1/(2K) that is close to zero. In the continuum
and for ν ′ 	 1, therefore, the weakly interacting molecule gas
exhibits almost true long-range order. This regime, however, is
not reachable in the framework of the model given by Eq. (1),
because even in the deep molecular limit (ν ′ 	 1), where the
size of the two-particle bound state rb (in units of the lattice
spacing; see the definition of rb given above) is much smaller
than one, we still keep only the eigenvalues 0 and 1 for the
local molecule occupation number nmol

i = m
†
i mi . In reality,

however, more than one closed-channel molecule could sit on
a lattice site in this limit because the lattice spacing is much
larger than rb. We shall not discuss or pursue this question
further in the present work. Consequently, while we will be
able to see the suppression of FFLO physics due to molecule
formation, which is the main focus of our present work, Eq. (1)
does not describe the full BCS-BEC crossover at a finite
imbalance that should feature a weakly interacting BEC in
the limit ν ′ 	 1.

2. The BCS limit, ν ′ � −1

Here, Nmol ≈ 0. Virtual transitions into the molecular state
give rise to a weak attractive on-site interaction U = g2/ν

between fermions. At a finite polarization p > 0, we thus
expect FFLO-like correlations with real-space oscillations in
the modulus of the pair-pair correlations

ρ
pair
ij = 〈c†i,↑c

†
i,↓cj,↑cj,↓〉. (7)

For small polarizations, these correlations are described by the
sine-Gordon theory whose ground state is an array of domain
walls, where the superfluid order parameter changes by π

[29,30]. For larger polarizations, the domain walls merge and
the order parameter acquires a purely sinusoidal form with a
power-law decay ∣∣ρpair

ij

∣∣ ∝ | cos(Qx)|/xα(p) (8)

as a function of the separation |i − j | = x. The associated
wave vector,

Q = kF,↑ − kF,↓ = πnp, (9)

is fixed by the density imbalance via the difference of the
Fermi wave vectors kF,σ = πNσ/L of the majority (minority)
spins. More precisely, as shown by Sachdev and Yang [58]
from a generalized Luttinger theorem for Hamiltonians of
the form (1), the difference kF,↑ − kF,↓ of the Fermi wave
vectors of the interacting system is quite generally fixed by
the imbalance p as in Eq. (9). While the Nσ are not conserved
separately in the case where the bosons are condensed,
this theorem implies that the wave vector of superfluid
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order in the fermions is given by Eq. (9), independently of
the detuning (i.e., the strength of the interaction). In the
notation of Ref. [9], the associated FFLO state is thus
commensurate.

The exponent α(p) of the power-law decay has a quite in-
teresting dependence on polarization and interaction strength,
first discussed by Yang [30]. At vanishing polarization (p =
0), it is fixed by the Luttinger parameter Kc > 1 of the
attractive 1D Fermi gas in the charge sector via α(p = 0) =
1/Kc. In the limit of small polarizations, bosonization gives
α(p > 0) = 1/Kc + 1/2 [30], that is, a discontinuous jump of
α(p) at p = 0+. This dependence has recently been verified in
Ref. [34], using the attractive 1D Hubbard model.

III. DMRG RESULTS FOR THE IMBALANCED CASE

In this section, we present our DMRG results for the
number of molecules, the pair correlations, the momentum
distribution function (MDF) of both fermionic components,
as well as the MDF of the molecules, all as a function of
polarization and detuning. As a main result we show that,
while FFLO correlations are present in the BCS limit, as
the number of molecules increases, the FFLO correlations
disappear well below full polarization. Upon increasing the
polarization at a fixed detuning and in the crossover regime,
the system thus first has FFLO-like correlations, and then
undergoes two phase transitions at polarizations p1 and p2.
For p1 < p < p2, pairing at zero momentum coexists with
FFLO correlations, while for p2 < p < 1, the system behaves
as a Bose-Fermi mixture with only one fermionic component,
the majority spins. Therefore, the large-p phase is divided
into a superfluid of molecules immersed in either a gas of
partially polarized fermions or fully polarized fermions below
saturation. We further establish that the molecular and pair
correlations are identical for p < p1 in the sense that they
feature instabilities at the same wave vector and that their
highest occupied natural orbitals are identical. Our results are
summarized in phase diagrams for g = t/2 and g = t that are
presented and discussed in Sec. III C.

A. Number of molecules

To identify the crossover region characterized by a finite
density of both fermions Nf /L > 0 and molecules Nmol/L >

0, we first calculate Nmol as a function of the detuning ν at both
g = 0.1t and g = t . The results are depicted in Fig. 3, both for
p = 0 and several values of the filling n [Figs. 3(a) and 3(c)]
and p > 0 at fixed filling n = 0.6 [Figs. 3(b) and 3(d)].

We see that, in the balanced case, the crossover region is
−3t <∼ ν <∼ t for g = 0.1t and in the range −4t <∼ ν <∼ 4t for
g = t . Moreover, the increase of Nmol as ν is moved from the
BCS to the BEC side occurs over an increasingly wide range of
detunings with increasing density n. This is consistent with the
result that an abrupt change from a purely fermionic system
(Nmol ≈ 0) to a purely molecular one (Nf ≈ 0) only exists in
the low-density limit of a broad Feshbach resonance, nr� � 1,
as discussed previously in Refs. [42,46]. An obvious, but
important consequence of the off-diagonal Feshbach coupling
g is that the filling nf = Nf /L in the fermionic channel
depends on the detuning and the Feshbach coupling, ranging
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FIG. 3. (Color online) Number of molecules, Nmol, as a function
of the detuning ν for (a, b) a resonance with g = 0.1t and (c, d)
a resonance with g = t . (a) and (c): Balanced mixture p = 0, with
different fillings n = 0.1, 0.2, 0.4, 0.6, and 0.8 (L = 40). (b) and (d):
Results for different polarizations at a filling of n = 0.6 (L = 40).

from nf = n in the ν ′ � −1 limit to nf = 0 in the BEC limit
ν ′ 	 1. Therefore, the Fermi wave vectors kF,↑/↓ vary, too.
This is consistent with our numerical observation from Fig. 2
that the spin gap is a function of ν, n, and g.

The effect of the imbalance at some generic density n [n =
0.6 in Figs. 3(b) and 3(d)] is to narrow the window in which
molecules and both fermionic species coexist with comparable
densities. In the g = 0.1t case, the detuning, at which 2Nmol ≈
N , is shifted toward the BCS regime ν < 0 as the polarization
increases.

Figure 4(a) shows the number of molecules, 2Nmol/N,

as a function of polarization and for several values of the
detuning ν at g = t and n = 0.6. As soon as the line N↓ = 0
is reached at some polarization p2, pairing of fermions is no
longer possible, and we are left with a BEC of molecules
immersed in a fully polarized gas of fermions. This sets an
upper limit, well below saturation N = N↑, for the emergence
of FFLO-like correlations. In fact, in Sec. III C, we shall see
that the FFLO regime actually disappears well below p2.

It is further instructive to compare the polarization de-
pendence of all particle densities, that is, majority fermions
N↑/N , minority fermions N↓/N , and molecules Nmol/N , in
the crossover region and before resonance ν = −t , shown in
Fig. 4(b). The large-polarization region, in which N↓/N ≈ 0,
is consequently characterized by a linear dependence of Nmol

and N↑ on the polarization, with the slope being independent
of the detuning ν. Note that by comparing data from L = 40
and L = 120 sites, we conclude that finite-size effects are
negligible for the parameters considered.
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FIG. 4. (Color online) (a) Number of molecules, Nmol, as a
function of polarization at n = 0.6, g = t , for several values of the
detuning ν. The dashed line shows the maximum possible Nmol at a
given p at which N↓ = 0. The polarization p2 at which Nmol(p, ν)
meets that line sets an upper limit for the emergence of FFLO
correlations. (b) Density of majority N↑/N (solid line), minority
N↓/N (dot-dashed line), and molecules 2Nmol/N (dashed line) as a
function of polarization for ν = −t (n = 0.6, L = 120, g = t).

To determine p2, we compute the polarization curves p =
p(h) for a given detuning and filling n, where h denotes an
effective “magnetic field,” coupled to the Hamiltonian through
a Zeeman-like term

Hfield = −h(N↑ − N↓)

that favors a finite imbalance p > 0.
The results for g = t and n = 0.6 are displayed for ν/t =

−3, −1, 0, and 1 in Fig. 5. For ν = −3t , the p(h) curve has
no features and indicates the presence of a very small spin
gap. At small polarization, p = p(h) increases linearly with
h, consistent with recent studies of the magnetization process
of attractively interacting fermions [59,60]. At ν = −t , we
first identify the presence of a large spin gap (identified by
2hc) and two kink-like features at finite polarizations p1 and
p2. Essentially, at p > 0, the system is a multicomponent
Luttinger liquid, and the presence of kinks indicates the
disappearance or appearance of one component. It is thus easy
to guess that the kink at larger polarizations, p2, is associated
with the depletion of the minority fermions (i.e., N↓ ≈ 0 for
p > p2). This is consistent with our results for the particle
densities shown in Fig. 4(b) and will be further corroborated
by the discussion of the momentum distribution functions
(see Sec. III B1). In view of the results for the BCS-BEC
crossover of the imbalanced Fermi gas in three dimensions
(see, e.g., Refs. [10,11]), one might speculate about the
possibility that phase separation could appear also in one
dimension. However, we stress that the critical fields h1 and h2

corresponding to p1 and p2 are well separated. In particular, a
finite-size scaling analysis of the fields h1 and h2 for ν = −t

shows that h2 − h1 > 0 remains finite in the limit of L → ∞.
This rules out the possibility of a jump in p(h) and thus of
phase separation in a uniform system.
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FIG. 5. (Color online) Polarization vs field h (n = 0.6 and g = t)
for (a) ν = −3t , (b) ν = −t , and (c) ν = 0, t (thick and thin solid
lines, respectively). The dash-dotted line in (a) is a fit to p(h) =
a(h − hc) close to hc, while the dotted line in (c) is a fit of the
numerical data to p(h) = b

√
h − hc. hc is the critical field for the

breakdown of the BEC at p = 0 with N ≈ 2Nmol.

The nature of the first kink p1 in Fig. 5(b) will become
obvious from the analysis of the pair correlations to be
discussed in Sec. III B. As we shall see, below p1, we have
pairing at a finite momentum (i.e., the 1D FFLO state),
molecules and the two fermionic components, while at p > p1,
additional pairing at zero momentum are formed. On reso-
nance, that is, at ν = 0, we still identify a kink at p2, while on
the BEC side (ν = t), the polarization curve is smooth, with
p(h) ∝ √

h − hc, where the critical field hc for the onset of a
finite polarization p �= 0 is in fact connected to the spin gap
by the simple relation 2hc = 
 [23].

This behavior is characteristic for a band-filling transition of
a single component, which in this case are the majority spins.
Note that the same square-root dependence in magnetization
curves has been found for a 1D Bose-Fermi mixture [51].

B. Pair correlations and superfluidity of molecules

1. Momentum distribution functions for pairs,
molecules, and fermions

To address the key questions of (i) the existence of FFLO-
like correlations and (ii) their stability against the presence of
molecules, we compute the momentum distribution function
of pairs (npair

k ) and then the momentum distribution function
of the molecules (nmol

k ) by taking a Fourier transformation of
the real-space data for Eq. (7) and of the one-particle density
matrix of the molecules, ρmol

ij [compare Eq. (6)], respec-
tively. In the following we focus on g = t , unless otherwise
stated.

The results for n
pair
k and nmol

k and a filling of n = 0.6 are
shown in Fig. 6 and Fig. 7, respectively. We choose three values
of the detuning: ν = −3t [panels (a)], which is on the BCS
side, ν = −t [panels (b)] in the crossover region, and finally
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FIG. 6. (Color online) Fourier transform of pair correlations at
g = t and n = 0.6, as a function of polarization. (a) ν = −3t , BCS
regime; (b) ν = −t , crossover region; (c) ν = 0, on resonance. The
insets in (a) and (b) show the position Q of the maximum in n

pair
k

vs polarization p (squares). The solid lines in these insets are kF↑ −
kF↓ = πnp. The inset in (c) shows n

pair
k=0 vs polarization.

ν = 0 [panels (c)] on resonance. It is instructive to contrast
the behavior of these quantities with that of the momentum
distribution functions of majority and minority spins, that is,
n

↑,↓
k , displayed in Fig. 8. nσ

k is the Fourier transform of the
one-particle density matrix ρσ

ij = 〈c†i,σ cj,σ 〉.
Starting with the Fourier transform of pair correlations, we

note that, in the BCS limit and as the polarization is increased,
we observe quasi-coherence peaks at a finite momentum
Q > 0 [see Fig. 6(a)]. Yet, these peaks are weak and the pairs’
MDF resemble the one of a weakly interacting two-component
Fermi gas described by the attractive Hubbard model. (Note
that the finite-Q peak is more pronounced in the molecules’
MDF [Fig. 7(a)]). The rather weak peaks are probably a
consequence of the fact that the pair correlations differ from a
pure cosine [as suggested by Eq. (8)]. This is certainly the case
at small values (p � 1) of the polarization (see, e.g., Ref. [29]
and the discussion in Sec. II C).
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FIG. 7. (Color online) Momentum distribution of the molecules
at g = t and n = 0.6 as a function of polarization. (a) ν = −3t , BCS
regime; (b) ν = −t , crossover region; (c) ν = 0, on resonance. The
insets in (a) and (b) show the position Q of the maximum in nmol

k vs
polarization p. In the FFLO region, the MDF of the molecules shows
a peak at Q = kF,↑ − kF,↓. The inset in (c) shows nmol

k=0/nmol
k=0(p = 0)

(circles) and Nmol/Nmol(p = 0) vs polarization (L = 60).

The position Q of the maximum in n
pair
k follows kF,↑ − kF,↓,

as we illustrate in the insets of Figs. 6(a) and 6(b). This, as
usual, is a defining feature of the 1D FFLO state.

The quasi-coherence peaks are considerably more pro-
nounced in the crossover region (i.e., ν = −t), which is of
primary interest in this work [see Fig. 6(b)]. We observe the
breakdown of FFLO-like correlations at a finite polarization
0 < p1D

c < 1. This critical polarization p1D
c is smaller than the

upper limit p2 previously discussed. An emergent feature of the
pairs’ MDF in the crossover region ν ∼ −t is the coexistence
of peaks at both Q = 0 and Q > 0 at intermediate polarization
[see, e.g., the dotted line in Fig. 6(b)]. By determining the
polarization at which we see pairing at both Q = 0 and Q > 0
[the dotted line in Fig. 6(b)], we find that this coincides with the
first kink seen at p1 in the polarization versus magnetic field
curves shown in Fig. 5(b). Therefore, we conclude that the first
phase transition and thus the boundary of the 1D FFLO phase in
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FIG. 8. (Color online) Momentum distribution functions nσ
k at

n = 0.6, g = t , as a function of polarization [left panels: σ =
↑; right panels: σ = ↓]. (a) ν = −3t , BCS regime; (b) ν = −t ,
crossover region; (c) ν = 0, on resonance. Arrows indicate increasing
polarization p. In the case of panel (b), n

↓
k ≈ 0 for p > 1/2.

the crossover regime and at p > 0 is the one at p = p1 where
pairing at Q = 0 starts to contribute, effectively adding an
additional quasi-long-range order parameter to the system. We
can further define a crossover polarization p∗ > p1, beyond
which the dominant instability is at Q = 0. In the example of
ν = −t shown in Fig. 6(b), p∗ = 1/2. Note that slightly above
p∗, some modulation in the pairs’ MDF survives, which shows
up as a smaller maximum in n

pair
k at a finite momentum. Finally,

we note that the FFLO correlations are typically enhanced at
low densities (e.g., at n = 0.2; results not shown here). To
summarize, we identify p1D

c with the upper boundary of the
FFLO phase (i.e., p1D

c = p1).
Right at resonance (ν = 0), signatures of FFLO correlations

are no longer visible, and the momentum distribution functions
of both the pairs and the molecules feature a maximum at
zero momentum [see Figs. 6(c) and 7(c)]. We observe the
same behavior on the BEC side, ν > 0. For illustration, the
k = 0 weight in the pair and molecular MDFs are shown as
a function of polarization in the insets of Figs. 6(c) and 7(c).
Quite notably, nmol

k=0 exhibits features that can be related to
the phase transitions the system undergoes as p increases.
First, the weight discontinuously drops from its p = 0 value,
as the critical field for breaking up molecules is overcome

at p = 0+. Second, nmol
k=0 takes a maximum at p2, where the

system enters into the Bose-Fermi mixture phase at p > p2. A
similar, yet less significant behavior can be seen in the number
of molecules, Nmol(p)/Nmol(p = 0), which we have included
in the inset of Fig. 7(c) for comparison (solid line) [see also
Fig. 4(b)].

An important point that should be emphasized in this
context is the fact that the respective quasi-condensates of
molecules and fermions are locked into each other. Indeed, they
qualitatively show the same behavior concerning the position
of their maxima, as is evident from comparing Figs. 6 and 7.

We next discuss the MDF of the two fermion components,
shown in Fig. 8. In the BCS limit, the MDFs feature a sharp
edge, reminiscent of a weakly interacting lattice gas and
consistent with the features observed in Fig. 6(a). As ν moves
the system into the BEC regime, the p = 0 MDFs become
quite broad, as expected for a strongly interacting system and
for the standard BCS-BEC crossover (see, e.g., Refs. [1,61]).
Upon polarizing the system, n

↑
k develops a sharper edge [see

Figs. 8(a), 8(b), and 8(c), left panels], as eventually only
the majority fermions remain. This is particularly evident
in the case of ν = −t shown in Fig. 8(b): For p > 1/2,
N↓ = ∑

k n
↓
k ≈ 0. Simultaneously, for p > 1/2, n

↑
k changes

from a smooth function seen at p � 1/2 to a steep one, since
for p > 1/2, there is a single fermionic component left. Thus
the depletion of minority fermions characterizes the transition
to the Bose-Fermi mixture phase at p � p2.

2. Natural orbitals

To render the analysis of the locking effect [46,48,49,62]
between ρ

pair
ij and ρmol

ij more quantitative, we compute the
eigenvalues and eigenvectors (sometimes called “natural
orbitals”) of the associated one-particle density matrices,
ρ

pair
ij and ρmol

ij . In particular, the orbital φ0 that is connected
with the largest eigenvalue according to the Penrose-Onsager
decomposition [63] of the density matrix reveals the real-space
structure of the quasi-condensates [64]. In the presence of
FFLO-type order, φ0 is therefore a nontrivial function even
for a homogeneous system. The modulus of this quantity, that
is, |φ0|, is plotted in Fig. 9(a) for n = 0.2 and in Fig. 9(b)
for n = 0.6, in both cases for p = 0, 1/6 and values of the
detuning such that the system is in the crossover regime.

Both at p = 0 and in the FFLO phase, the natural orbitals of
molecules and pairs are fully identical, as has been shown for
the limit of vanishing polarization in previous studies [46,49].
Further, in the 1D FFLO phase, the spin density〈

Sz
i

〉 = (〈ni,↑〉 − 〈ni,↓〉)/2

follows the real-space modulation of the natural orbital,
with excess majority fermions residing in the nodes of the
quasi-condensate (compare Refs. [29,31] for the case of the
1D attractive Hubbard model). In contrast to the behavior of the
spin density, the density of molecules follows the modulation
of the quasi-condensate. In other words, the molecular density
has its maxima and minima at the same positions as the natural
orbital. We should stress here that the presence of features
in the densities are due to the open boundary conditions
used in our simulations. In the limit of L → ∞, the density
and spin profiles will become flat, while the modulations
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FIG. 9. (Color online) Natural orbital |φ0| for pairs (lines) and
molecules (symbols) for (a) n = 0.2, ν = 0.005t and (b) n = 0.6,
ν = −t , both at p = 0, 1/6 (circles and squares, respectively). The
stars are 〈Sz

i 〉 for p = 1/6. The inset in (b) shows the density of
molecules 〈nmol

i 〉 at p = 0, 1/6. (c) Natural orbitals in the intermediate
phase p1 < p < p2 for ν = −t , p = 1/2, g = t, and L = 60.

can then be detected in the respective correlation functions
(compare Refs. [33,65] for the attractive Hubbard model). In
the experimentally relevant situation of harmonically trapped
particles, however, the density profiles themselves should have
properties similar to those discussed here for finite systems
with open boundary conditions, at least in parts of the particle
cloud.

Note that, in the regime p1 < p < p2, the molecular and
the pair correlations still exhibit instabilities at the same wave
vectors [see Fig. 9(c)], even though the natural orbitals differ in
their amplitude. The locking effect (i.e., natural orbitals of pairs
and molecules with the same amplitude) is re-encountered in
the high-field region p2 < p < 1. There, the molecular |φ0| is
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FIG. 10. (Color online) Decay of pair correlations in real space
for g = t , n = 0.6, ν = −t, and p = 0, 1/6, 5/6. Symbols denote
DMRG results from L = 120 sites while the dashed line is a fit
of f (x) = a| cos(Qx + φ)|/xα(p) [30] to the numerical data. The
fit parameters are a, α, and φ, while Q is taken from the Fourier
transform of the pair correlations. The p = 5/6 curve is offset by a
factor of 0.1 for clarity.

smooth, while the corresponding natural orbital for the pairs
exhibits small oscillations.

3. Spatial decay of pair correlations

To conclude our analysis of the pair correlations, we
show that the pair correlations at n = 0.6 asymptotically
decay as |ρpair

ij | ∝ | cos(Qx)|/xα , x = |i − j |, in agreement
with predictions from bosonization for the slowest decaying
contribution to |ρpair

ij | [30]. To that end, we fit

f (x) = a| cos(Qx + φ)|/xα

to our numerical data, measuring j away from the center of
the system (i.e., i = L/2). Given that the system sizes are
not that large, the agreement between the DMRG results and
the formula from bosonization is remarkable [see Fig. 10].
In the regime, where FFLO correlations have completely
disappeared, the pair correlations decay with a power law, as
Fig. 10 suggests for the example of p = 5/6. Small oscillations
are due to an inhomogeneous background density of pairs and
molecules [compare the inset of Fig. 9(b)].

Finally, we have also verified that, at p = 0 and in the
BEC limit ν ′ 	 1, our numerical data are consistent with
a power-law decay of the one-particle density matrix of the
molecules

∣∣ρmol
ij

∣∣ ∝ 1/xβ

with an exponent of β ≈ 1/2.

C. Phase diagram

Our results for the phase diagram of the 1D BCS-BEC
crossover described by Eq. (1) are summarized in Fig. 11,
for the cases of g = t [Fig. 11(a)] and g = t/2 [Fig. 11(b)].
The main panels contain the data for n = 0.6 and we
present polarization p versus dimensionless ν ′ detuning phase
diagrams.
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FIG. 11. (Color online) Phase diagrams of polarization p vs
dimensionless detuning ν ′ for n = 0.6 and (a) g = t and (b) g = t/2.
The line p = p1(ν ′) (squares) separates 1D FFLO from the BEC +
PP LL regime. The stars denote p2 (see Sec. III A), separating BEC +
PP LL from BEC + FP FG. Insets in (a) and (b) show the dependence
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(circles). (c) The same as in (a), yet here plotted as a magnetic field h′

vs detuning ν ′ phase diagram. hc (triangles) is the critical field for the
breakdown of the balanced gas, while hsat (circles) is the saturation
field. Lines are guides to the eye.

We identify three regions at p > 0:

(i) The BEC limit, ν ′ 	 1 and p2 < p < 1: Here,
molecules are immersed in a sea of fully polarized
fermions. This phase is denoted as BEC + FP FG in
the figures, where FP FG stands for fully polarized
Fermi gas.

(ii) The 1D FFLO phase at 0 < p < p1: In the crossover
regime, FFLO is suppressed as p is increased. We have
determined the phase boundary p1 (open squares) from

both the position of the first kink in the polarization
curves and from the pair correlations. In the latter case,
at p1, the peak at Q = 0 starts to build up in the MDF
of the pairs. For instance, the 1D FFLO phase extends
up to ν <∼ −0.3t at this filling and g = t . This is slightly
before resonance on the BCS side, where, nevertheless,
the density of molecules is already finite, that is, Nmol >

0 (compare Fig. 3).
(iii) p1(n, ν) < p < p2, beyond which we have a Q =

0 superfluid of molecules immersed in a partially
polarized (PP) fermionic gas: This third phase, de-
noted by BEC + PP LL, is eventually replaced by the
BEC + FP FG phase at p � p2, where we determine p2

from the analysis of p = p(h) curves (see Sec. III A).

Note that the boundary of the 1D FFLO phase, p1, depends
on the filling n. From the insets of Figs. 11(a) and 11(b),
we infer that the larger n, the wider the crossover region is,
consistent with the discussion of the number of molecules
(compare Sec. III B1). As n → 0, the critical line p = p1

becomes quite steep and approaches ν ≈ (0.048 ± 0.002)t ,
or ν ′ ≈ 0.97, for g = t .

The comparison of the g = t and the g = t/2 phase diagram
shows that the FFLO phase disappears much faster in the
case of g = t/2, well before resonance. Qualitatively, one
can ascribe this to the fact that with decreasing values of
the Feshbach coupling the number of molecules, or more
precisely, the closed channel fraction [compare Eq. (4)]
becomes larger. The presence of molecules tends to reduce
the number of pairs with FFLO correlations. This can be
expected to more efficiently suppress FFLO physics for smaller
g since the locking of molecules and pairs is then also weaker.
These observations are consistent with our DMRG results for
the number of molecules and their dependence on polarization
and detuning presented in Fig. 3. In particular, the maximum
number of molecules is reached at smaller values of ν for larger
polarization.

Figure 11(c) shows the data of Fig. 11(a) in the magnetic
field versus detuning plane, using the dimensionless detuning
ν ′ and field h′ = h/ε∗. This yields additional information on
the saturation field hsat and the zero-field spin gap 
 of the
standard 1D BCS-BEC crossover of the balanced system,
measured by hc. In comparison with Fig. 1, where we have
shown 
 � ε∗ for n = 0.1, we repeat that the spin gap

 = 2hc is an increasing function of the filling n [compare
also Fig. 2(a)]. In the limit of ν ′ 	 1, 
 = 2hc behaves as

 ∝ ν ′ since there, independently of filling, the ground state
of the balanced system has N ≈ 2Nmol and Nf ≈ 0.

In a previous work on the three-body problem in the
continuum limit, Baur et al. [47] have shown that the change in
correlations between an oscillating behavior on the BCS side
due to FFLO physics to a smooth one on the BEC is revealed
in the symmetry of the three-body ground-state wave function.
The numerical value of the detuning where this change occurs
is ν ′

c ≈ 0.63 [47]. It is remarkable that a similar critical value
for the disappearance of FFLO correlations is also found in
our many-body calculation of the phase diagram. Indeed, in
the low-density limit, where a comparison makes sense, the
boundary of the 1D FFLO at small polarizations is typically
close to resonance, yet on the BEC side of positive detuning
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ν > 0. For a quantitative comparison, we have determined the
critical value ν ′

c(n = 0.1) for the loss of FFLO correlations
for several values of g from data taken with L = 120 sites
and polarization p = 1/6, the smallest imbalance possible
for this system size. The resulting values are in the range of
0.55 <∼ ν ′

c
<∼ 0.91, remarkably close to the value inferred from

three-body physics in Ref. [47].
In conclusion, it is evident from Fig. 11 that the best

regime for observing the 1D FFLO state is (i) low density and
(ii) small polarizations. The low density will favor a large
weight in the quasi-coherence peaks, while the polarization
needs to be kept smaller than p1. Moreover, the 1D FFLO
phase is more stable at large Feshbach couplings g.

IV. SUMMARY AND DISCUSSION

In this work, we studied the Bose-Fermi resonance model
in the imbalanced case as a simple model to describe the BCS-
BEC crossover of a spin-imbalanced system in one dimension.
Our main focus was on the existence and stability of the 1D
FFLO phase. So far, many-body calculations of 1D FFLO
physics were mostly concerned with models of attractively
interacting fermions, which do not account for the existence of
composite molecules in the closed channel, typically encoun-
tered in experiments. Using a numerically exact method, the
density matrix renormalization group method, we computed
several quantities to characterize the crossover, including
the number of molecules, pair correlations, the momentum
distribution function, as well as polarization curves. Most
notably, we found that FFLO correlations are suppressed in the
crossover region due to the presence of the diatomic molecules.
In particular, the 1D FFLO phase gives room for a regime of
molecules, quasi-condensed at zero momentum. The latter is
first immersed in partially polarized fermions, which is then
replaced by a Bose-Fermi mixture with spinless fermions
below saturation. Thus, the system undergoes two phase
transitions in the crossover region at critical polarizations
p1 < p2 < 1 as the polarization increases.

While our work was concerned with the homogeneous
system, in experiments, the particles typically experience
a confining harmonic potential. The shell structure for at-
tractively interacting fermion models in one dimension was
intensely discussed. The emerging picture for the continuum
case, based on numerically or analytically exact approaches
(the latter typically combined with the local density ap-
proximation) [23,24,37], is that one finds either fully paired
wings at small polarization or fully polarized wings, while
the core is always partially polarized. In the case of lattice
models, DMRG calculations that take the trap into account
exactly report fully polarized wings with a partially polarized
core [31,32] at intermediate and large polarizations, and the

latter also remains true in coupled chains at sufficiently large
polarizations [66].

While we expect the behavior of trapped, attractively
interacting fermions to carry over to the BCS regime of the
Bose-Fermi resonance model, a finite density of molecules
may lead to qualitatively different shell structures. For in-
stance, the heavier molecules should mostly reside in the center
of the trap. On the one hand, one may expect this to destabilize
the FFLO phase in the core, while on the other hand, as long
as the Feshbach coupling g and hence the locking between
pairs and molecules is sufficiently strong, the locking could
protect the FFLO correlations. The clarification of the effect
of a harmonic trap is left for future research.

An important question is how the FFLO state can be
detected in an experiment. Several proposals have been put
forward, for instance, time-of-flight measurements [67], the
analysis of noise correlations [34,68], or features in the spin
density and correlations [65]. Regarding the spin correlations,
one expects a peak at nonzero momentum 2Q �= 0 in the
presence of FFLO order [65]. In fact, the spin density follows
the modulation of the natural orbitals, as has previously been
demonstrated for the 1D attractive Hubbard model [31]. As we
showed here, this behavior is also realized in the FFLO phase
of the Bose-Fermi-resonance model (compare Fig. 9). Even if
the FFLO phase was present in a 3D system, the obstacle there
would be that the FFLO phase is in the wings of a 3D, trapped
Fermi gas (see, e.g., Ref. [69]). This constitutes another
advantage of searching for FFLO physics in a 1D system:
There, the core of a trapped gas will host this phase [23,31,37],
and therefore the associated modulation in the spin density
should exist in a large part of the cloud, in contrast to the
3D case.

Note added in proof. Recently, we became aware of
a related, very recent experiment at Rice that studies the
spin-imbalanced Fermi gas with attractive interactions in one
dimension [70].
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