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Metastable quantum phase transitions in a periodic one-dimensional Bose gas. II. Many-body theory
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We show that quantum solitons in the Lieb-Liniger Hamiltonian are precisely the yrast states. We identify such
solutions with Lieb’s type II excitations from weak to strong interactions, clarifying a long-standing question
of the physical meaning of this excitation branch. We demonstrate that the metastable quantum phase transition
previously found in mean-field analysis of the weakly interacting Lieb-Liniger Hamiltonian [Phys. Rev. A 79,
063616 (2009)] extends into the medium- to strongly interacting regime of a periodic one-dimensional Bose
gas. Our methods are exact diagonalization, finite-size Bethe ansatz, and the boson-fermion mapping in the
Tonks-Girardeau limit.

DOI: 10.1103/PhysRevA.81.023625 PACS number(s): 03.75.Hh, 03.75.Lm

I. INTRODUCTION

Exactly solvable quantum systems [1,2] are now within
reach of experiments. This is best accomplished in highly con-
trollable systems, such as ultracold quantum gases [3], because
one has precise control over the effective dimensionality, so
that one and two dimensions can be studied for a wide range
of interactions, both repulsive and attractive, from the weakly
to the strongly interacting, over seven orders of magnitude [4].
Moreover, these systems are well insulated, where there is
only negligible exchange of energy and particles with the
environment and thus suitable for the study of the metastable
quantum phase transitions in excited states [5], as well as
ground-state quantum phases.

In this article we investigate the many-body ground and
excited eigenstates of a periodic one-dimensional (1D) Bose
gas [6] under an external rotating drive going beyond the
mean-field regime. Such a geometry has been realized in
experiments [7–11] from the weakly interacting condensate
regime to the strongly interacting Tonks-Girardeau (TG)
limits [12–14]. In our previous analyses we showed that the
average angular momentum of weakly repulsive bosons in a
one-dimensional ring undergoes a quantum phase transition
(QPT) in the metastable states as a function of interaction and
rotation [15]. In the mean-field theory this phenomenon is
intuitively understood in terms of bifurcation of stationary
excited-state energy branches of the plane-wave state prop-
agating on the ring and of localized soliton trains [16]. Each
excited state has a denumerably infinite number of bifurcations
from the plane wave to a state containing one or more
gray or dark solitons; each such bifurcation corresponds to
a QPT. Formally these QPTs are in fact “crossovers,” because
the two different kinds of physical behavior, superflow and
soliton, can be connected by analytic continuation. However,
these QPTs have no meaning in the thermodynamic limit,
where there is no Bose-Einstein condensation in 1D, and as
such are fundamentally restricted to the finite-size isolated
systems typically found in experiments on Bose-Einstein
condensates. Moreover, such crossovers can appear quite sharp
in experiments, so that the matter of terminology becomes a
question of theory, not experiment. In metastable states of
matter waves, such as soliton trains [17,18], the effects of

dissipation can be suppressed and the metastable condensate
is observable. However, this picture does not extend into
the medium- to strongly interacting regime, where quantum
fluctuations cause mean-field solitons to decay [19,20]. Two
questions follow. (1) Does the QPT indicated by mean-field
analysis hold for stronger interactions? (2) If so, in what way
is the system characterized on either side of this QPT, given
that mean-field solitons are clearly no longer eigenstates?

Our answer lies in the special class of many-body eigen-
solutions called yrast states [21,22], defined as the lowest-
energy solutions for fixed angular momentum. Studies of
one-dimensional systems relevant to our chosen model have
a long history, including exactly solvable quantum systems
[6,23,24], decay of persistent current [25–29], and classical
solitons [30–32]. In the thermodynamic limit it has been
known since Lieb that there exist two excitation branches in the
system, called type I and type II excitations. While the physical
meaning of type I was clarified as the particle excitation and
was found to agree with the Bogoliubov-type excitation in the
weakly interacting limit, the meaning of type II was elusive,
described only as hole excitations [23]. Seventeen years after
their discovery, type II hole excitations were identified as a
soliton branch by analysis of the energy of a classical soliton
in terms of the nonlinear Schrödinger equation [30]. However,
the validity range of the nonlinear Schrödinger equation is
limited only within the range where the matter wave possesses
off-diagonal long-range coherence.

The central finding of this article is that quantum solitons
in the Lieb-Liniger Hamiltonian are precisely the yrast states,
and such states are the key to the metastable QPT previously
identified in the mean-field context [15,16]. We first show
how to distill the mean-field branches and QPT, which are
previously found in the mean-field theory, from the metastable
yrast states. Throughout the manuscript, this is our basic
fashion of discussing the metastable states. The mean-field
superflow-soliton QPT found in Refs. [15,16] is shown to
be obtained by extremizing the yrast spectra. In the weakly
interacting regime, this type II excitation can indeed be called
a soliton branch as shown in Ref. [30] because of quantitative
agreement with the Gross-Pitaevskii mean-field theory [33].
We next introduce the concept of the “particle” and “hole”
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excitations which are clearly defined in the strongly interacting
Tonks-Girardeau (TG) limit. We recover Lieb’s result and the
metastable condition for the type II excitation branch leads
to the observable quantum phase with a nonintegral single-
particle average momentum. The type II “hole” excitation
branch is made metastable (as opposed to unstable) by
subjecting the gas to a rotating drive and is observable in
typical “rotating-bucket-type” experiments [34] in a manner
similar to the method used to create quantized vortices. Finally
we apply this concept to the regime of medium interaction
strength.

This article is structured as follows. In Sec. II we introduce
the Lieb-Liniger Hamiltonian subject to an external rotating
drive. The yrast problem and basic properties of the eigenstates
are described. In Sec. III we investigate the many-body
spectrum by exact diagonalization of the Hamiltonian in a
truncated angular-momentum basis in the weakly interacting
regime, comparing with those obtained by the mean-field
theory. In Sec. IV we study the opposite limit of the interaction
strength, i.e., the strongly interacting TG limit where the
many-body eigenproblem can be analytically solved using the
Bose-Fermi mapping. In Sec. V we address the intermediate
regime of repulsive interaction between the weakly and
strongly interacting limits via the finite-size Bethe ansatz
approach. Finally, we summarize the results in Sec. VI.

II. FORMULATION OF THE PROBLEM

A. The model and yrast states

We consider the same model as in Refs. [15,16], and solve
its eigenproblem beyond the mean-field and Bogoliubov the-
ories. The Hamiltonian for periodic one-dimensional bosons
with a contact interaction,

Ĥ0 = −
N∑

j=1

∂2

∂θ2
j

+ g1D

∑
j<k

δ(θj − θk), (1)

is known as the Lieb-Liniger Hamiltonian (LLH) [6], where
θj is the azimuthal angle that satisfies 0 � θj < 2π , N the
number of bosonic atoms, and g1D the effective strength of
s-wave interatomic interaction in one dimension (1D) [35].
The length and energy units are the circumference of the ring
R, and h̄2/(2mR2) with m being the atomic mass, respectively.
The coupling constant is measured in units of h̄2/(2mR) and
g1D is hence dimensionless. The purpose of this article is to
elucidate the many-body properties of these bosons subjected
to a rotating drive. The LLH in a rotating frame of reference
with an angular frequency 2� is given by

Ĥ (�) = Ĥ0 − 2�L̂ + �2N, (2)

where

L̂ ≡ −i

N∑
j=1

∂

∂θj

(3)

is the angular-momentum operator. From the single-
valuedness boundary condition of the many-body wave func-
tion [34], one can show that solving the eigenproblem in the
rest frame Ĥ0�0 = E(0)�0 suffices in order to obtain solutions
to the eigenproblem Ĥ (�)� = E(�)� [16]. The eigenvalue

is simply given by E(�) = E(0) − 2�〈L̂〉 + �2N , which is
periodic with respect to �.

Throughout this article our approach is based on yrast
problems [21,22]. Yrast, a Swedish term originally used in
nuclear physics which can be translated as “dizziest,” refers to
the lowest energy state for a given angular momentum. This ap-
proach is particularly profitable for a finite system, because all
the information about physical properties in the rotating frame
are embedded within the spectrum in the rest frame. Thus
the physical meanings of yrast states can be extracted by
the simple transformation of yrast spectra. Since the LLH
commutes with the angular-momentum operator, [Ĥ0, L̂] = 0,
the yrast problem is well defined irrespective of the sign and
strength of interaction, and all the yrast states are eigenstates
of both the Hamiltonians Ĥ0 and Ĥ (�).

All the eigensolutions of Hamiltonians Ĥ0 and Ĥ are
classified according to the number of atoms N and total
angular momentum L. Let us write the set of eigenstates
classified into the subspace given by parameters (N,L) as
|N,L; q〉, where q ∈ |Z| is an energy quantum number that
arranges the eigenvalues for fixed (N,L) in ascending order.
The yrast states (the lowest-energy state under a given set
of N and L) are denoted as |N,L; q = 1〉. The essential
properties of the ground and low-lying excited states can be
described within the yrast states. Thus we henceforth omit
the quantum number q from the notations for eigensolutions.
There are two external parameters, the coupling constant and
the external angular frequency of the rotating drive (divided
by 2), written as (g1D,�), respectively. With the abbreviation
of the quantum number q = 1 and for fixed coupling constant
g1D, the eigenvalues that correspond to the yrast states are
written as EN,L(�), where we explicitly write the parameter �

in the notation in order to clarify in which frame the system is.
With this notation, the eigensolutions in the rest (non-rotating)
frame are written as EN,L(0).

B. Center-of-mass rotation states

Due to the translational invariance of the LLH with respect
to θ and �, properties of a particular set of yrast states can
be analyzed without solving the problem. We denote the set
of yrast states for which total angular momentum is equal
to an integral multiple of the total number of atoms N , as
center-of-mass rotation (CMR) states. The energy of the CMR
state takes the form

EN,L=JN (0) = J 2N + Vint, (4)

where Vint is the interaction energy and J ∈ Z is an integer.
We call J the center-of-mass quantum number, because it
physically expresses the amount of uniform translation of the
center-of-mass momentum. In the Gross-Pitaevskii mean-field
theory, J is conventionally called the phase winding number;
out of the mean-field regime, such terminology becomes
questionable if not meaningless. In the rotating frame, the
energy of the CMR state is given by

EN,JN (�) = (J − �)2N + Vint, (5)

where the change in energy associated with the frame change
is involved only in the kinetic energy term, and the interaction
energy is completely separated from the parameter �.
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For repulsive interactions, g1D > 0, the ground state in the
absence of the rotating drive is the state with zero angular
momentum, EN,L=0(0). The excitation energy of the CMR
states with a finite angular momentum L = JN is thus given
by

EN,JN (0) − EN,0(0) = J 2N, (6)

which is independent of the strength of interaction g1D. This
is natural because changing the total angular momentum by
the amount JN is just a frame change and the interaction is
isotropic. The ground state in the presence of the rotating drive
is characterized by the CMR quantum number

J0 = ⌊
� + 1

2

⌋
, (7)

where �x� denotes an integer that does not exceed x.
Because of the periodicity in the eigensolutions, an eigen-

state |N,L〉 with the energy EN,L(�) has a denumerably in-
finite number of counterparts |N,L + JN〉 and EN,L+JN (�),
corresponding to arbitrary values of J ∈ Z. Solving the yrast
problem for a limited range of fixed angular-momentum
states, e.g., −N/2 � L < N/2, therefore suffices to obtain all
the eigensolutions. Moreover, the spectra are degenerate for
the same magnitude of angular momentum, EN,L = EN,−L

in the absence of rotating drive, while this degeneracy is
resolved in the presence of rotation due to the Sagnac effect
[36]. All other yrast states for L out of this limited range can
be obtained by shifting the total angular momentum by N

while keeping the internal structure of the eigenstates. This
is similar to a band theory concept, as discussed in Ref. [16],
with −N/2 � L < N/2 playing the role of the Brillouin zone.

III. WEAKLY INTERACTING LIMIT

In our previous studies [15,16], we investigated the weakly
interacting limit of the Bose gas on a rotating ring. The
Gross-Pitaevskii equation, which corresponds to the mean-
field approximation for the Hamiltonian (2), has two kinds of
solutions, namely uniform superflow and soliton train [37].
The mean-field energy diagram is characterized by the set of
bifurcations of the soliton branch from the superflow branch.
These bifurcations make a continuous topological crossover
in the condensate wave function possible by changing �. The
motivation of this section is to demonstrate how in general
to distill the mean-field branches from a sea of many-body
eigenvalues. We argue how the mean-field soliton branch, for
which average angular momentum is not quantized, emerges
from the yrast spectra. The meaning of spectra related to
symmetry breaking associated with the existence of soliton
branch is also discussed.

A. Solution of the yrast problem

To rewrite the LLH in second-quantized form, the bosonic
field operator is expanded in terms of a plane-wave basis with
the single-particle angular momentum l,

ψ̂(θ ) = 1√
2π

+∞∑
l=−∞

b̂le
ilθ , (8)

where the pre-factor of 1/
√

2π comes from the normalization
of the plane wave and b̂l and b̂

†
l are annihilation and creation

operators which obey the standard commutation relations for
bosons. Equation (8) manifestly satisfies the periodic boundary
condition ψ̂(θ ) = ψ̂(θ + 2π ). The Hamiltonian (1) in second
quantized form is then given by

Ĥ0 =
+∞∑

l=−∞
l2b̂

†
l b̂l + g1D

+∞∑
k,l,m,n=−∞

b̂
†
kb̂

†
l b̂mb̂nδk+l,m+n. (9)

Note that all the angular momenta are measured in units of
h̄. The eigenstates can be expanded in terms of a Fock-state
basis |{nl}〉 that represents the occupation number of each
single-particle angular-momentum state,

|{nl}〉 = | . . . , n−1, n0, n1, . . .〉. (10)

These states satisfy the conservation laws∑
l

nl = N,
∑

l

lnl = L. (11)

In practice, for numerical calculations we require a cutoff
angular momentum lc � 0. The range of the possible total
angular momenta for numerical diagonalization is hence
limited to the interval of integer values L ∈ [−lcN, lcN ].
In the weakly repulsive interacting regime g1DN <∼ O(1),
which we study in this section, a cutoff of lc = 2 provides
a quantitative agreement in energy eigenvalues [38] with those
obtained by the Bethe ansatz shown in Sec. V. Thus all the
results from this section are obtained with a cutoff of lc = 2.

Figure 1 shows the yrast energies EN,L(� = 0) =
〈N,L|Ĥ0|N,L〉, namely the smallest eigenvalue obtained
by the diagonalization of the Hamiltonian Ĥ0 within the
restricted Hilbert space |N,L〉 for (a) g1D = 2.5 × 10−2π and
(b) g1D = −2.0 × 10−2π for N = 40. The ratio of the mean-
field interaction energy to the kinetic energy corresponding
to these values of g1D and N is (a) g1DN/(2π ) = 0.5 and
(b) −0.4, respectively. The case of attractive interaction is
shown just for reference, as our main interest is in the case
of repulsive interactions. As the cutoff angular momentum
is lc = 2, 4N + 1 yrast states (eigenstates corresponding to
the eigenvalues for L ∈ {0,±1, . . . ± 2N}) are plotted. Recall

FIG. 1. Yrast energy eigenstates for (a) repulsive and (b) at-
tractive interaction for N = 40 bosons on the ring, obtained by
diagonalization of Hamiltonian (9) with the cutoff angular momentum
|lc| = 2. The spectrum has kinks where L is an integral multiple of
N and is symmetric with respect to L = 0, i.e., EN,−L(0) = EN,L(0).
In the large N limit, the number of points increases and the discrete
yrast energies approach a continuous curve while the curvature and
kink points remain unchanged.
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that energies depend only on the magnitude of the angular
momentum: EN,L = EN,−L for � = 0.

The key feature of the spectrum is that there appears a
prominent kink at every CMR state L = JN . As shown in
Sec. II B, the excitation energy of these states is given by
J 2N . We note, however, that other states L 
= JN as well as
the curvature of the spectrum are also important and determine
the existence of another quantum phase, as we show next.

B. Superflow and soliton components

In order to obtain the eigenstates of the LLH in the rotating
frame, we transform the yrast spectrum according to the
Legendre transformation,

EN,L(0) → EN,L(�) = EN,L(0) − 2�L + �2N. (12)

Figure 2 plots energies EN,L(�) as a function of �, where
the finite number of dots, each of which is characterized by
the different angular momentum L in Fig. 1, become convex
downward curves in Fig. 2. Each curve is thus characterized
by a different total angular momentum and has a minimum at
a certain value of �. The degeneracy EN,L(0) = EN,−L(0) in
the absence of a rotating drive is resolved for finite � due to the
Sagnac effect [36], i.e., the energy difference naturally arises
in the corotating and counter-rotating states with the external
rotating drive.

For repulsive interactions [Fig. 2(a)], the energy
EN,L=J0N (�) corresponds to the ground state where J0 is
the ground-state CMR quantum number given by Eq. (7).
The angular-momentum states with L = JN correspond to
the CMR states, and the center of the parabola is located at
� ∈ {Z} at which the CMR state becomes the ground state. On
the other hand, for attractive interactions [Fig. 2(b)] the CMR

FIG. 2. (Color online) Energy eigenvalues of the Hamiltonian (2)
obtained by the Legendre transformations (12) of yrast eigenstates
in Fig. 1. Each curve is distinguished by a different total angular
momentum L. The lower panels are enlargements of the upper panels
near one of the swallowtail regions. The dashed curves show a
comparison to the Gross-Pitaevskii superflow (blue) and soliton (red)
branches.

state is not always a ground state and is partially substituted
for by the nonintegral average angular-momentum states.

The transformation of the yrast spectrum according to
Eq. (12) tells us that the eigensolutions of the Hamiltonian
in the rotating frame have an extremely high density of states
around � ∈ {±0.5,±1.5, . . .} due to the crossing of many
eigenvalues. These regions are enlarged in the lower panels
of Fig. 2 for both signs of g1D, where we also plot the
energies of the stationary states given by the mean-field theory.
Swallowtails were previously found within the mean-field
theory to occur past the phase transition boundary between the
uniform superflow and broken-symmetry soliton states [16].
In the microscopic quantum theory, the high-density region
also forms an upward/downward swallowtail-shape domain for
repulsive/attractive interactions, and the region is almost filled
by various energy eigenvalues of various angular-momentum
states crossing each other. The domain with the high-density
swallow-tail shape looks as if it is enclosed by the two kinds
of stationary branches predicted by the mean-field theory.

Although all the angular-momentum states shown in Fig. 2
are eigenvalues of the Hamiltonian (2), not all states are
realized in practice. One example is vortex formation in a
scalar condensate under rotation. Solving the yrast problem
in two dimensions results in all the angular-momentum
states, including the rest condensate (L = 0), off-axis vortex
(0 < L < N), a centered vortex (L = N ), and vortex lattices
(L > N ). In experiment, however, one drives the system with
a specific angular frequency. In such a situation, there exists a
small distortion in the trap, which “selects” a metastable
angular-momentum state with respect to the variation in the
angular momentum of the condensate. As a result, in reality
one does not observe a stationary off-centered vortex except
as a transient state.

The same argument applies to our case. In the presence of
any kind of noise, such as an infinitesimal distortion of the
trapping potential, quantum measurement of the matter wave,
or whatever else breaks the translation symmetry of the ring
trap, the realizable stationary state or metastable stationary
state is determined by extremization with respect to variations
in angular momentum. In order to find the metastable states
we impose the condition

∂EN,L(�)

∂L
= 0 (13)

with � and g1D being fixed.
Figure 3 plots energy eigenvalues that satisfy the

condition (13) as a function of �; and Fig. 4 shows the
corresponding angular momentum. These figures are quite
similar to those given by mean-field theory, i.e., by imposing
the stationary condition (13) for the manifold of eigenvalues
we identify the mean-field stationary branches. The resultant
branches are classified into two kinds according to the value of
the angular momentum and have physical meanings as follows:

Superflow: Due to the kink in the yrast spectrum at L = JN

in Fig. 1, these CMR states always satisfy the condition (13).
In particular, for the weakly interacting regime the CMR states
can be specifically called uniform superflow states, of which
energies are given by Eq. (5) and which correspond to the
thin parabolic curves in Fig. 3. The energy of superflow states
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FIG. 3. Energy eigenvalues of the Hamiltonian (2) that satisfy the
extremization condition dEL,N (�)/dL = 0 for N = 40 and (a) g1D =
0.025π and (b) g1D = −0.02π . Each thin curve is characterized by
an integral average angular momenta, L/N = J ∈ {0,±1, . . .}, while
each thick point by different nonintegral angular momentum L/N 
=
J so that each thick curve smoothly connects two thin curves with
different angular-momentum states. The energy of the former group
agrees with the mean-field energy of the uniform superflow state,
while the latter is well approximated by the mean-field energy of
solitons.

EN,JN agrees very well with the plane-wave energy N [(� −
J )2 + g1DN/(2π )] in the mean-field theory [16].

Soliton Components: Other kinds of metastable angular-
momentum states appear that connect distinct superflow states
as a function of �, as shown by the thick curves in Fig. 3.
The corresponding angular momentum divided by N is
nonintegral (see Fig. 4), but it approaches integral values at
both ends of this branch. These branches are equivalent to the
maximum/minimum envelope of the high-density swallow-

FIG. 4. (Color online) Average angular momentum L/N that
gives dEL,N (�)/dL = 0 for (a) repulsive and (b) attractive inter-
actions with N = 40. Solid curves plot the single-particle angular
momentum obtained by the mean-field theory.

tail domain for repulsive/attractive interactions and can be
approximated by soliton energies given by the Gross-Pitaevskii
mean-field theory.

However, we should not call the thick curve a soliton branch
in a rigorous sense, because each point of this branch in Fig. 3
is the eigenvalue of the Hamiltonian and thus still possesses
translational symmetry, unlike solitons. Instead we should call
all the angular-momentum states inside the swallow tail in
Fig. 2 the soliton components, because in the presence of
infinitesimal noise these states do form a broken-symmetry
state, which we denote |χ〉. Soliton solutions of a Gross-
Pitaevskii equation can be interpreted in terms of the eigen-
solutions of the many-body Hamiltonian as a state where the
several eigenvalues in the swallow-tail region are collectively
superimposed. The delocalization of a mean-field-like soliton
in weakly interacting theories, as demonstrated by Dziarmaga
et al. [39], is a dynamical demonstration of this idea.

The energy associated with this superposition does not
change significantly because the energy required to make
it is on the order of 1/N . As a result, the energy of the
broken-symmetry soliton state |χ〉 is also well approximated
by the thick curve in Fig. 3. In the presence of an infinitesimal
symmetry-breaking potential, the angular momentum is no
longer a good quantum number. However, the expectation
value of the angular momentum 〈χ |L̂|χ〉 agrees well with
that of the solitons obtained by mean-field theory and thus
behaves like that shown in Fig. 4 [15]. With all these caveats
in mind, we briefly say the branch drawn by thick curve in 4 is
the quantum soliton branch in the weakly interacting regime.

We also calculate the second derivative d2EN,L(�)/dL2

with respect to � in order to check whether the metastable
angular-momentum state is a local maximum or minimum. For
repulsive interactions the superflow state with a CM quantum
number J0 = �� + 1/2� is indeed the ground state because the
second derivative is positive at that point, while the thick points
are local maxima with respect to L, since the second derivative
is negative. For attractive interactions, the ground state is either
a plane wave or a bright soliton in −0.5 <∼ g1DN/(2π ) < 0 but
the soliton becomes the sole ground state for g1DN/(2π ) <∼−0.5. Consistently, the thick curve in Fig. 3(b) becomes the
global minimum.

To sum up this section, we obtained the yrast states |N,L〉
of the LLH by diagonalization of the Hamiltonian in the
weakly interacting regime. Among these eigenvalues of the
Hamiltonian in the rotating frame, we distilled the metastable
branches from the variety of yrast spectra by imposing an
extremization condition. Two kinds of metastable branches,
superflow and quantum soliton, were found, consistent with
mean-field theory. The region where the different angular-
momentum states in the quantum theory densely cross indeed
agrees with the soliton regime predicted by the mean-field and
Bogoliubov theories. The phrase “quantum flesh sewn onto
classical bones” has been used elsewhere [40,41] as a visual
metaphor, perhaps inspired by x-ray images, to describe this
accord. As we show later, the simple method shown in this
section for obtaining metastable states is applicable to other
regimes; these two branches continuously exist over a wide
range of interaction, from the weakly interacting regime all
the way to the strongly interacting TG gas.
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IV. TONKS-GIRARDEAU LIMIT

In the previous section, we studied the weakly interacting
limit of the LLH in the rotating frame to demonstrate how
to obtain the mean-field-like stationary states. In the opposite
limit of the strongly interacting TG regime, where the bosons
are impenetrable and hence behave like spinless fermions, the
eigenproblem can be calculated via the Bose-Fermi mapping.
In this section we thus solve the yrast eigenproblem of free
spinless fermions. In particular, we introduce the particle and
hole excitations, which are well defined in the fermionized gas,
and show that these excitations are related to the mean-field
stationary states in the opposite weakly interacting limit.

A. Bose-Fermi mapping

The Bose-Fermi mapping theorem [13] states that the
eigenvalues EB of impenetrable bosons are identical to those
of spinless free fermions EF of the same form of Hamiltonian,
and the corresponding many-body wave function of bosons
is identical to the magnitude of the wave function of free
fermions,

�B({θ}) = |�F ({θ})|. (14)

This theorem holds for all the eigensolutions and hence signif-
icantly simplifies our eigenproblem. The detailed properties of
the TG gas are reviewed in Ref. [42].

We first calculate the ground- and excited-state energies
of free fermions without taking the thermodynamic limit. For
simplicity of notation we show the analytic expression only
for an odd total number of particles. For an even number of
particles the periodic boundary condition must be taken as
antisymmetric.

The ground state of N (odd) free fermions is obtained by
the occupation of the lowest angular-momentum states from
l = −lF to l = lF (see L = 0 in Fig. 5), where lF ≡ (N − 1)/2
is the Fermi momentum. The ground-state energy is thus

EN,L=0(� = 0) =
lF∑

l=−lF

l2 = 1

12
N (N2 − 1). (15)

We note that the N dependence of Eq. (15) is the same as that of
the bound state for attractive interactions, E ∝ −g1DN (N2 −
1), except for the prefactors [43].

B. Particle and hole excitations

We next consider the low-lying excitations. Lieb has shown
[23] that excitation of the repulsively interacting Bose gas in
the thermodynamic limit has two branches. The first branch
is called type I and was shown to be in agreement with the
Bogoliubov spectrum of plane waves in the weakly interacting
regime. The second branch is called type II, and this was
supposed to be absent in the Bogoliubov spectrum. Intuitively,
the type I and II branches correspond to the particle and hole
excitations, respectively.

We reconsider these branches in the context of yrast states.
For the excited state EN,L(0) with total angular momentum
L ( 
= 0), there exist two kinds of excitations, type I (particle
excitations) and II (hole excitations), as originally named

FIG. 5. (Color online) Low-lying yrast ground and excited states
of free fermions. (I) Particle excitations where the angular momentum
of a particle increases while a hole is positioned at lF + J . (II) Hole
excitations where a particle is placed at the lowest unoccupied state
and the angular momentum of a hole decreases. When L is an integral
multiple of N , only the center-of-mass angular momentum is shifted
from the ground-state configuration. The lower panel shows type I
and type II excitation energies as a function of L/N for N = 11 free
fermions.

by Lieb. To obtain these excitations one uses the following
procedure.

(I) Remove a particle at the Fermi momentum lF and place it
at the momentum lF + L. For free fermions, there is no energy-
level reconstruction in an (N ± 1)-particle system associated
with removal or addition of a particle. The energy of the type I
excited state E

(I)
N,L(0) is thus obtained as

E
(I)
N,L(0) = EN,0(0) − l2

F + (lF + L)2. (16)

Relative to the ground state the energy is

	E
(I)
N,L(0) ≡ E

(I)
N,L(0) − EN,0(0) = L(N + L − 1). (17)

There is no limitation on the single-particle angular momentum
for this excitation. Such excitations are doubly degenerate for
� = 0 for l → −l.

This type of excitation has an infinite set for the different
CMR states J . The particle excitation of the L = JN state
is achieved by removing a particle at lF + J and replacing it
at l = lF + J + L − JN . The resulting excitation energy is
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given by

	E
(I)
N,L(0) = J 2N + (lF + J + L − JN )2 − (lF + J )2,

L � JN. (18)

(II) Starting from the ground state, remove a particle (create
a hole) at the momentum lF − L + 1 and place the particle at
lF + 1, where 0 � L � N . It is clear from Fig. 5 that the hole
with this kind of low-lying excitation energy be created only
within the range −lF � l � lF . The energy of this excited state
is given by

E
(II)
N,L(0) = EN,L(0) − (lF − L + 1)2 + (lF + 1)2, (19)

and the excitation energy is thus

	E
(II)
N,L(0) = L(N − L + 1), 0 < L � N. (20)

At L = N , the particle configuration in the angular-
momentum space is the same as in the ground state, provided
that the center-of-mass angular momentum is shifted. Starting
from the state L = N , we can consider the same kind
of hole excitation, where we now place a particle at the
lowest-unoccupied angular momentum lF + 2 and place a
hole at lF + 2 − L + N . In this way, the type II excitation
is extended for JN < L � (J + 1)N states. This is a hole
excitation of angular momentum lF − L + JN + J + 1 with
a particle fixed at lF + J , starting from the yrast state L = JN .
Since the excitation energy of the CMR state L = JN is
	EN,L=JN (0) = J 2N , the type II hole excitation energy is

	E
(II)
N,L(0) ≡ E

(II)
N,L(0) − EN,0(0)

= J 2N + (lF + J + 1)2

− (lF − L + JN + J + 1)2, (21)

where JN < L � (J + 1)N .
Excitation energies of type I and II are plotted in Fig. 5

for N = 11 for L ∈ {0, 1, . . . , 3N}, i.e., up to J = 2. The
figure shows the spectra as continuous curves according to
Eqs. (17) and (21); in fact the finite-size system discretizes
these curves. We note that the region 0 � L/N � 0.5 was
presented in Ref. [23].

C. Metastable hole excitation under rotation

Next we consider the excitations under rotation, i.e.,
rotate all the yrast spectra according to EN,L(�) = EN,L(0) −
2�L + �2N . The energy of the type II excited state Ẽ

(II)
N,L(�)

for JN < L � (J + 1)N measured relative to EN,L=0(0) is
given by

Ẽ
(II)
N,L(�) = 	E

(II)
N,L(0) − 2�L + �2N. (22)

In a similar manner to the previous section, we look for
the metastable angular-momentum states by imposing the
extremization condition ∂Ẽ

(II)
N,L(�)/∂L = 0. By inspection

CMR states L = JN are (either ground or excited) metastable
states. This extremization condition gives another metastable
angular momentum,

L̄ = (N + 1)

(
J + 1

2

)
− �, (23)

50

40

30

20

10

0

FIG. 6. Realizable yrast eigenstates in the strongly interacting
TG limit for N = 11. All the energies are plotted relative to the
ground-state energy of EN,L=0(0). The thin curves plot the energy
of the states with angular momentum L = JN and L = (J + 1)N ,
while the bold curve is the type II excitation energy for JN < L �
(J + 1)N . The angular momentum decreases from (J + 1)N to JN

according to Eq. (23) along the bold curve.

and the corresponding energy,

Ẽ
(II)
N,L̄

(�) = (N + 1)

[
� −

(
J + 1

2

)]2

+ N (N + 1)

4
. (24)

As a function of � this is a parabolic curve the minimum of
which is located at � = J + 1/2 with energy N (N + 1)/4,
as shown in Fig. 6. Let us next compare this curve with
those of two CMR states ẼN,L=JN (�) and ẼN,L=(J+1)N (�).
These CMR energies intersect at � = J + 1/2 with the
energy ẼN,JN (J + 1/2) = ẼN,(J+1)N (J + 1/2) = N/4. The
minimum of (24) is thus higher than the value ẼN,JN by N2/4
at � = J + 1/2.

Another important point is the emergence of certain critical
angular frequencies where the metastable type II branch
disappears and merges into the CMR branch:

�∓
cr =

(
J + 1

2

)
∓ N

2
. (25)

The stable angular momentum approaches L̄ = (J + 1)N at
�−

cr, and L̄ = JN at �+
cr, respectively, and the corresponding

energy coincides with the energy of CMR states.
This is reminiscent of the uniform superflow to dark soliton

transition in the weakly interacting limit, where there exists
a critical angular frequency at which the soliton branch
bifurcates from the superflow branch. Thus a continuous
crossover between these topologically distinct states exists in
the TG limit, as well as the weakly interacting limit. Naturally,
we can associate the hole excitations in the TG limit with the
soliton branch in the weakly interacting limit.

V. FINITE-SIZE BETHE ANSATZ

We studied metastable states drawn from the yrast spectrum
in the limits of the weakly and strongly interacting TG regimes
by the extremization condition of the eigenvalues and by
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introducing the particle and hole excitations. The goal of
this section is (i) to properly interpolate these limits via
the finite-size Bethe ansatz approach with the hint that the
physical properties of the LLH with repulsive interaction are
continuous and (ii) to show that two distinct phases exist over
the entire range of repulsive interactions. We also vindicate
our hypothesis that the soliton branch in the weakly interacting
regime are “hole” excitations of the quasimomenta in general.
The ground- and excited-state energies in the thermodynamic
limit were given by the integral equation as a continuous limit
of the Bethe equations [6,23]. Recently, the spectrum of LLH
was obtained [44] by treating the inverse of the TG parameter,
which is infinite at the TG regime, as the expansion parameter,
and its analytical interpolation was given [45].

A. Bethe equations for quasimomenta

We first present how to derive the eigensolutions of the
LLH by the Bethe ansatz [2]. The delta-function interaction
imposes the conditions[(

∂

∂θj

− ∂

∂θk

)
�

]
θj =θ+

k

−
[(

∂

∂θj

− ∂

∂θk

)
�

]
θj =θ−

k

=g1D�|θj =θk
.

(26)

Equation (26) is rewritten by the interchange of the subscripts
j, k as [(

∂

∂θj

− ∂

∂θk

)
�

]
θj =θ+

k

= 1

2
g1D�

∣∣∣∣
θj =θk

, (27)

where � = �({θ}) is the many-body wave function. The
periodic boundary condition is expressed as
�(0, θ2, . . . , θN ) = �(θ2, . . . , θN , 2π ). The entire coordinate
space is expressed as R : 0 � θR1 < θR2 < · · · < θRN

� 2π ,
where {R1,R2, . . . ,RN } is given by a permutation of
{1, 2, . . . , N}. The next procedure for solving the problem is
to restrict the original coordinate space R to the ordered space
RI and solve the Hamiltonian within the ordered space, say,
RI : 0 � θ1 � · · · � θN � 2π . The LLH and the condition
Eq. (27) yield

−
N∑

j=1

∂2

∂θ2
j

�̃ = E�̃ (28)

and [(
∂

∂θj+1
− ∂

∂θj

)
�̃

]
θj+1=θj

= 1

2
g1D�̃

∣∣∣∣
θj+1=θj

, (29)

respectively, where �̃ refers to the many-body wave function in
the ordered coordinate space. The periodic boundary condition
and its derivative in the region RI are given by

�̃(0, θ2, . . . , θN ) = �̃(2π, θ2, . . . , θN )

= �̃(θ2, . . . , θN , 2π ), (30)
∂

∂θ
�̃(θ, θ2, . . . , θN )

∣∣∣∣
θ=0

= ∂

∂θ
�̃(θ2, θ3, . . . , θN , θ )

∣∣∣∣
θ=2π

.

(31)

The Schrödinger equation (28) describes free particles. All
eigenstates and spectra can therefore be represented formally

by those of free particles. The eigenfunction in the region R
can be written as

�̃ =
∑
P

A(P,R) exp

⎛
⎝i

N∑
j=1


Pj
θRj

⎞
⎠ , (32)

where {
n} are called quasimomenta (or quasi-angular mo-
menta). This is the basic idea of the Bethe ansatz: one writes
down the many-body wave function in terms of a symmetrized
superposition of plane waves with quasimomenta, which
implicitly includes all the effects of interactions. This wave
function is a superposition of plane waves with N distinct
quasimomenta 
1 < 
2 < · · · < 
N ,P means N ! permutations
of quasimomentum indices, and A(P,R) is the coefficient of
superposition of plane waves with a different configuration of
quasimomenta {
n}.

Substituting the wave function (32) into the conditions (29)
and (30), we obtain the equations that determine the values of
quasimomenta {
n}:

(−1)Ne−i2π
j = exp

[
i

N∑
k=1

�kj

]
, j ∈ {1, . . . , N}, (33)

where

�kj ≡ −2arctan

[
2(
k − 
j )

g1D

]
(34)

is the two-body phase shift.
Note that the quasi-angular momenta {
n} do not have a

physical meaning per se; however, the sum of quasi-angular
momenta does have a physical meaning as the total angular
momentum,

L =
N∑

n=1


n. (35)

Energy is also given in terms of {
n} as

EN,L(� = 0) =
N∑

n=1


2
n, (36)

where the units of quasi-angular momentum and energy are the
same as the previous sections, h̄ and h̄2/(2mR2), respectively.
From the boundary condition we obtain N simultaneous
nonlinear equations (Bethe equations),

(−1)N−1e−2πi
n =
N∏

m=1


n − 
m + ig1D/2


n − 
m − ig1D/2
, (37)

which determine the set of values {
n} for each atom n ∈
{1, . . . , N}. Since all the quasi-momenta are known to be real
and continuous for positive g1D, Eq. (37) can be separated into
real and imaginary parts, both of which are found to give the
same set of solutions. Therefore it is sufficient to solve only
the real part of the set of equations.

B. Weakly interacting regime

We numerically solve the real part of the Bethe
equations (37) for each set of energy levels characterized by
the different total angular momenta. The numerical solution
of Eqs. (37) is highly sensitive to the initial set of trial
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values of {
n}. If this initial set is sufficiently close to a
solution for a target angular-momentum state, the set of
solutions {
n} can be correctly obtained. In contrast, if the
initial set is closer to another angular-momentum state, the
total angular momentum given by Eq. (35) reveals undesired
jumps, deviating from the target angular momentum. In such
a case we again start from another initial set of trial values of
quasimomenta.

For simplicity we start with consideration of the trivial
noninteracting limit g1D = 0 where all the quasi-angular
momenta {
n}, and hence the total angular momentum L, are
zero for the ground state. The energy of the first excited state
corresponds to the degenerate yrast levels EN,L=±1(� = 0),
where only one of the quasi-angular momenta has the value 1
or −1 and the remaining quasi-angular momenta are zero. The
second excited state has total angular momentum L = ±2,
that is, two of the quasi-angular momenta take the value
|
n| = 1. Higher excited states can be obtained in a similar
way. Starting from these initial conditions, solutions can be
obtained from the non-interacting to the strongly interacting
regime by gradually increasing the value of g1D.

Results of the Bethe ansatz are obtained by the following
steps:

1. For L ∈ {0, 1, . . . , �N/2�}, the quasimomenta are
given by {
n} ∈ {(0, . . . , 0), (1, 0, . . . , 0), (1, 1, 0, . . . , 0),
. . . , (1, 1, 1, 1, 1, 0, 0, 0, 0, 0)} for g1D = 0 and for N = 10,
for example. Each set is directly calculated by solving
Eq. (37) with the target angular-momentum state from L = 0
to L = N/2, respectively.

2. The L ∈ {�N/2�, �N/2� + 1, . . . , N} states are ob-
tained from a transformation of the first �N/2� − 1
states of (i) via L = N − L̃, where L̃ ∈ {�N/2�, �N/2� −
1, . . . , 0}. The quasimomenta are given by a transformation
of the following form. For example, L̃ = 1 with {
n} =
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0) transforms to L = 9 with {
n} =
(0, 1, 1, 1, 1, 1, 1, 1, 1, 1).

3. There exist degenerate spectra with the same magnitude
of angular momentum EL = E−L for the yrast states. The
corresponding quasimomenta are given by a transforma-
tion, L : (
1, 
2, . . . , 
N ) → −L : (−
1,−
2, . . . ,−
N ). Al-
though there exist a denumerably infinite number of other
kinds of excitations of higher energy, these states are irrelevant
for comparison with the previous results. Hence we do not use
the larger quantum-number subscript q � 2, as in previous
sections.

4. We gradually increase g1D from zero with the step size
O(10−4) for g1D <∼ O(1), O(10−2) for O(1) <∼ g1D <∼ O(10),
and O(10−1) for O(10) <∼ g1D <∼ O(102). The convergence of
the numerical solutions of Eq. (37) is confirmed by comparing
both sides of the Bethe equation with the substitution of the
solution {
n}. We set the tolerance factor, i.e., the difference
in the left- and right-hand sides of Eq. (37), to be 10−8.
We also required as a secondary convergence criterion that
the total angular momentum be conserved to better than 10−8

in the target angular momentum. If, during the changing
of g1D, the angular momentum unexpectedly deviates from
the target angular momentum, and/or some of quasi-angular
momenta show a jump as a function of g1D, these errors
are detectable. For the attractive case, complex solutions of

FIG. 7. (Color online) Comparison of exact yrast eigenenergies of
Eq. (36) obtained from the Bethe ansatz, yrast states obtained from the
diagonalization of Hamiltonian (9) for N = 10, and the plane-wave
energy branches for J ∈ {0, 1, 2} given by the mean-field theory. For
Bethe ansatz and diagonalization results, the ground (L = 0), and 2N

yrast states |L| ∈ {1, . . . , 2N} are plotted on a log scale. The inset
enlarges the region 1 � g1D � 5 on a linear scale.

Eqs. (37) appear [46], indicating ground-state soliton forma-
tion, which we do not treat here.

In Fig. 7, we compare low-lying excited states obtained by
three different theoretical methods: Bethe ansatz, diagonaliza-
tion, and GP mean-field theory. We note that the concept of
yrast state for the angular momenta JN < L < (J + 1)N does
not exist in the mean-field theory: this theory is concerned only
with the single-particle angular momentum, which coincides
with the average angular momentum in this theory. We thus
plot the mean-field energy for the integral single-particle
angular momenta. We plot the first 4N + 1 yrast spectra EN,L,
|L| ∈ {0, . . . , 2N}, as a function of the strength of interaction
g1D for N = 10. As expected, the rigorous Bethe ansatz spectra
have the lowest energy for any g1D, the mean-field plane-wave
branch has the highest value, and diagonalization results have
values in between those obtained by the Bethe ansatz and
mean-field theory. For g1D <∼ 1, the Bethe ansatz and diag-
onalization results quantitatively agree very well, while the
latter becomes larger than the exact spectra for g1D >∼ 1 [38].

C. Medium- to strongly-interacting regime

We now further investigate the yrast states via the
Bethe ansatz, going beyond the weakly interacting mean-
field regime. Figure 8(a) plots EN,L(� = 0) for |L| ∈
{0,±1, . . . ,±2N} over a wide range of repulsive interactions,
where the horizontal dotted line shows the ground-state energy
of free fermions given by Eq. (15). All the ground- and
excited-state energies monotonically increase with respect to
g1D > 0.

Note, however, that the energy does not monotonically
increase with respect to the total angular momentum for
a fixed strength of interaction. This is clearly shown in
Fig. 8(b), where we show the excitation energy (EN,L −
EN,L=0)/N of yrast states for several values of fixed interaction

023625-9



R. KANAMOTO, L. D. CARR, AND M. UEDA PHYSICAL REVIEW A 81, 023625 (2010)

FIG. 8. (a) Eigenvalues EN,L of the Lieb-Liniger Hamiltonian (1)
obtained by the finite-size Bethe ansatz as a function of interaction g1D

for L = 0 (ground state) and L ∈ {±1, . . . ,±2N} (excited states),
where EL = E−L. The horizontal dashed line corresponds to the
energy of free fermions (15) with the same number of atoms.
(b) Excitation energies (EN,L − EN,0)/N of yrast states as a function
of angular momentum |L|/N for fixed strengths of interaction. A,
B, C, D, and E correspond to the vertical line in (a). At L = JN ∈
{0,±N, ±2N, . . .} the energy is that of a CMR state (relative to the
unboosted ground state), therefore independent of g1D, and is given
by J 2, even in the thermodynamic limit.

strengths (indicated as A, B, C, D, and E) as a function of L/N .
In the noninteracting limit, the the yrast spectrum is linear with
respect to |L|/N with nodes at |L|/N ∈ Z. While in a weakly
interacting limit (plot A), the spectrum still looks almost linear,
as the interaction g1D increases, the kinks in the yrast spectra
at L = JN ∈ {0,±1, . . .} become more pronounced due to
the large increase in the energy of the yrast state in between
JN < L < (J + 1)N . For strong interactions (curve E), the
system is in the TG regime, which can be confirmed by the
fact that the excitation energy has the value between Eq. (21)
for N = 9 and N = 11.

Finally, we observe numerically that the excitation energy
of the CMR state L = JN is independent of g1D, and is
given by Eq. (6), namely (EN,L − EN,0)/N = (L/N)2. This
follows from the nature of the CMR state L = JN , which
is just a Galilean boost of the nonrotating state; under this
transformation interactions are unchanged.

FIG. 9. (Color online) Eigenvalues of the Hamiltonian (2) that
satisfy the extremization condition ∂EL,N/∂L = 0 for (a) weakly
interacting mean-field regime, (b) and (c) medium-interaction regime,
and (d) strongly interacting TG regime. The corresponding average
angular momentum of the thin curves is given by integers L/N = J .
The thick curves, whose average angular momentum is noninteger,
come from the type II excitation branch.

In order to see how these points are transformed in the
rotating frame, we again rotate the yrast spectrum according
to

EN,L(�) =
N∑

j=1

(
j − �)2

= EN,L(0) − 2�L + �2N. (38)

The results are shown in Fig. 9 for various strengths of
interaction. The thin curves are parabolas (� − J )2 + Vint for
various values of center-of-mass quantum numbers J . The
lowest possible energy of the CMR state is thus given by Vint

at � = J ∈ {Z}.
The thick curves plot other metastable angular-momentum

states, the angular momentum of which is given by a
nonintegral multiple of N . The weakly interacting mean-field
regime is shown in Fig. 9(a), where the type II branch that
satisfies the metastable condition just starts to appear. Thus
these are the energies of the quantum solitons [see also
Fig. 3(a)]. As the interaction increases [Figs. 9(b) and 9(c)] the
domain with the swallow-tail shape enclosed by the two CMR
branches, as well as the size of the type II branch, increases.
In the TG limit [Fig. 9(d)], the area of the swallow-tail region
saturates the spectra.

These behaviors are quantitatively summarized in
Fig. 10(a), which shows the energy EN,L(�)/N of metastable
states relative to the interaction energy Vint at each strength
of interaction. The CMR branches drawn by the thin curves
no longer have a g1D dependence because of the subtraction
of Vint, while the thick curve gradually increases the domain
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FIG. 10. (a) Two CMR states with L = 0, N (thin curves) and
the type II branch (thick curve) that connects them. The energy
is defined relative to the interaction energy Vint. (b) The existence
range of the type II branch with angular momenta L ∈ [0, N ]. At the
left (right) boundary, the angular momentum is L = N (L = 0), and
L = N/2 at � = 0.5 (vertical dashed line), decreasing linearly with
respect to � in the shaded area. (c) Enlargement of (b) in the weakly
interacting regime. The solid curve is the phase boundary given by
the Bogoliubov theory. (d) Difference between the phase boundaries
given by the Bethe ansatz and the Bogoliubov theory. The Bogoliubov
phase boundary overestimates the extent of the shaded area.

over which it extends as g1D increases. For simplicity we plot
only two CMR branches with angular momenta L = 0, N ,
and a metastable state associated with the type II branch that
smoothly connects these two CMR states.

As � increases, the thick curve appears to bifurcate from
the CMR branch with angular momentum L = N at a certain
�(<0.5) and at � = 0.5 the energy becomes minimum. As
� increases further, this branch smoothly merges into the
CMR branch with angular momentum L = 0 and eventually
disappears at a certain �(>0.5). We therefore find that the
same kind of energy bifurcation which was found in the
mean-field theory persists over the full range of repulsive
interactions.

Figure 10(b) plots the existence range of the metastable-
state type II excitation branch. The shaded area indicates the
existence of such a branch. For higher angular-momentum
uniform superflow states L = (J + 1)N and L = JN , the
boundary can be obtained by the parallel displacement of
this figure along the � axis. The angular momentum on
the phase boundary �(<0.5) is given by L = N , and the
angular momentum linearly decreases as � increases, just
like in Fig. 4(a). At � = 0.5 (vertical dashed line), the value
of the angular momentum is given by L = N/2 irrespective
of the strength of interaction. At a certain value of �(>0.5)
the angular momentum eventually goes to zero, causing the
metastable hole excitation branch to disappear. This behavior
corresponds to the fact that in the mean-field theory the type II
branch bifurcates from the plane-wave regime, developing
nodes, and it again merges into the plane-wave regime with
the increase of � [15,16]. The phase boundary approaches
� = (J + 1/2) ± N/2 in the strongly interacting regime.

In the lower panel of Fig. 10 the phase boundary is
compared with the one obtained by Bogoliubov theory in the
weakly interacting regime. Bogoliubov theory thus predicts
the quantitatively correct phase boundary to the 5% level
in the weakly interacting limit g1D <∼ 5 (for N = 10), but
it significantly overestimates the phase boundary as the
interaction increases.

These results indicate that the continuous change in the
topologically distinct quantum phases can be found at any
strength of interaction. For larger strength of interaction, the
existence range of the type II branch increases. In this existence
range the angular momentum changes linearly in �, and the
rate of change thus decreases for larger coupling constant.

VI. CONCLUSIONS

We addressed the continuous topological change in the
repulsively interacting 1D Bose gas on a ring, previously
found in the Gross-Pitaevskii mean-field theory [16]. In the
mean-field theory the Gross-Pitaevskii equation has two kinds
of solutions: uniform superflow and the broken-symmetry
soliton train as a function of interaction strength and rotation.
In the weakly interacting regime, the energy diagram is
characterized by the smooth bifurcation of a soliton branch
from a plane-wave branch in the rotating frame, which is the
key to the continuous change in the topology of the condensate
wave function characterized as a self-induced phase slip.

In this article we vindicated this picture starting from the
many-body Hamiltonian without assuming the existence of the
condensate wave function and spontaneous symmetry break-
ing. We solved the yrast problem of the original Lieb-Liniger
Hamiltonian by three methods: diagonalization of the Hamil-
tonian in the weakly interacting regime; Bose-Fermi mapping
in the strongly interacting TG regime; and the Bethe ansatz
approach for all regimes of repulsive interaction strength.

We then obtained the eigensolutions in the rotating frame
through transforming the eigenvalues according to specific
values of the angular frequency of the external rotating
drive �. The extremization condition is imposed so that
eigensolutions which are realizable in practice are extracted
from a very large number of possibilities. The realizable
states, namely those metastable under symmetry-breaking
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perturbations, reveals that two kinds of eigensolutions are
physically distinguished. One is the superflow state in which
angular momentum is an integral multiple of the number of
atoms. The other is a quantum soliton characterized by a set
of soliton components, which are also the yrast states. In the
weakly interacting regime, the energy and angular momentum
obtained by exact diagonalization and the Bethe ansatz agree
well with those predicted by the Gross-Pitaevskii equation.
This fact bears out the above physical meanings of metastable
states. In the opposite limit, the strongly interacting TG limit
was studied by the Bose-Fermi mapping. We introduced the
concept of particle and hole excitations, which are well defined
not only in the fermionized system but also for the whole
interaction range in terms of the quasimomenta. The solution
was similarly transformed into the rotating frame to extract the
metastable states.

In between the weakly interacting mean-field and strongly
interacting TG limits, we employed the Bethe ansatz approach.
In order to compare with the diagonalization results, the
set of Bethe equations was solved without substituting the
summation with an integral, and the lowest (2N + 1) discrete
excited states were found. By the same transformation into
the rotating frame, we elucidated how the energy diagram of

these topologically distinct states changes as the strength of
interaction increases.

Energy and angular momentum of the two kinds of
topologically distinct states exist over the whole of repulsive
interaction g1D. The quantum phase diagram in the �-g1D

plane for the quantum soliton with a single density notch and
with angular momentum 0 < L < N was explicitly shown.
This metastable quantum phase transition is technically a
crossover: it can occur only in a finite system, as expressed
by our choice of units in terms of the ring circumference, and
all states are connected analytically. Nevertheless, one finds
a sharp change between distinct physical states which will
appear as a QPT in experiments.
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